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Abstract 

An optimal road capacity exists at which the energy use of the road infrastructure and 
its traffic is minimal. It implies that 15% of the time, the traffic is jammed. The socio-
economic optimal road capacity implies jammed traffic for no more than 5% of the 
time. The claim that widening roads reduces the environmental damage of transport, 
because it prevents the formation of traffic jams, is generally speaking incorrect. 
However, modification of road transport infrastructure with the aim of reducing CO2 
emissions of transport is not efficient, since other economic sector can reduce CO2 
emission at far less costs. 

Should one wish to optimize a network on a criterion that is different from the criterion 
that governs the flows over the network, complex systems behavior looms. This report 
advocates the use of back casting as most likely approach to optimize complex networks 
on an infinite horizon basis. In a network that should be build up, the procedure that 
leads to a (near) optimal construction strategy is demonstrated. 

First, one assesses the optimal end state of the system. Second, one determines the time 
that is required for the construction works to transform the network from the original 
configuration to the optimal end configuration. Consequently, one back casts the system 
configuration under the condition that the shadow price of a network link modification 
is equal for all network links. As long as the attainability domain is respected, this 
procedure is shown to provide near optimal results. Whether the near optimal results are 
also unique, optimal results is not mathematically proven. 
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Application of optimal control to guide the development of 
transport networks 

Sander M. Lensink (lensink@ecn.nl) 

1. Introduction 

1.1. About the optimization of energy use in the transportation sector 
Transport and traffic are integral parts of human society. Individualized travel has 
helped shape modern societies by facilitating emancipation. Notwithstanding the 
importance of transport, transport has detrimental effects on the environment. Partly due 
to the diversity of the transport system, it is difficult to formulate generalized policy to 
combat the adverse environmental impact of transport. Nowadays, policy attention 
seems to be focused on the reduction of emissions of small particles (PM10)1. 
Sustainable transport, as essential element of sustainable development, goes beyond the 
reduction of specific emissions. Sustainable transport is often envisioned as transport 
that restrictively uses electrical or hydrogen vehicles. However, even with the related 
‘clean’ energy carriers, a more efficient use of energy resources is expected in future 
transport. 

 The transport system is, as mentioned, diverse as it consists of both passenger 
traffic and goods transport using many different, possible interacting, transport modes 
like road, rail, water and air transport. Generally, transport uses vehicles and 
infrastructure, whereas most infrastructures can accommodate a range of different 
vehicles. The efforts to reduce the environmental impacts of transport have been 
targeted at reduction of the transport volume, change of modal split, the development of 
more efficient engines and cleaner fuels. The latter two options have proven to be 
successful, while the primer two have shown themselves to be difficult to realize. 

 Assuming an increasing scarcity of available energy resources, one can wonder 
to which extent the scarcity of resources might shape future transport systems. 
Reversely, one can aim to shape future transport systems in order to minimize the 
primary energy use of transport. An analysis of the future development of transport 
infrastructures can limit the variety in development paths of the transport system. By 
looking at the impact that available transport infrastructures have on the energy use, one 

                                                 
1 EU-Council Directive 1999/30/EC of 22 April 1999 had let to, for example, speed restrictions in Austria 
(50 km/h in Vienna), in the Netherlands (80 km/h on urban highways), traffic access measures in 
Germany and the tendency to impose filters on diesel exhausts. 
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can determine the effects of long term changes in the transport system under the 
conditions of increasing energy scarcity.  

 Control theory, more specifically optimal control theory using the Pontryagin 
maximum principle [3], is applied to determine the energy-optimal transport 
infrastructure and explore the options transport policy has or takes to approach this 
energy optimum. For this, infrastructure construction is taken as governmental control 
to change the characteristics of the transport system. Section 2 starts with an overview 
of the application of optimal control theory on a single-road segment. Section 3 outlines 
the methodology for a system of two competing, parallel road segments. Section 4 looks 
to formulate the optimal development paths. It shows a generalist approach to finding 
the solution, and demonstrates that the generalist approach is, at least, nearly optimal. 

 This paper shows twofold conclusions in Section 6. Based on the conclusions, it 
supports (or not) the extended use of optimal control theory in the transport and energy 
related sciences. Section 6 indicates as well whether future efforts to achieve a 
sustainable transport system should mainly be targeted at engine and fuel efficiencies, 
or the latter efforts should (also) be directed towards changing the structure of the 
transport system by modifying infrastructure capacities. 

1.2. Introduction to optimal control 
Optimal control theory has proven itself as useful tool in economics [4]. With the 
Pontryagin maximum principle, one can determine the optimal investment strategy that 
maximizes future profits. Similarly, infrastructure construction can be seen as 
investments in the transport system, which should increase the future rate of return. As 
such, the optimal control theory does not help optimizing a profit that is as high as 
possible, but an energy use that is as low as possible. 

 Optimal control problems are conventionally presented as the following problem 
(P), see e.g. [1,3]. 

Problem (P): 

( );)(),()( tutxftx =  (1.1) 

;)( Utu ∈  

;)0( 0xx =  (1.2) 

( ) .)(),(),( maximize
0
∫
∞

−= dttutxgeuxJ tρ  (1.3) 

 The time in these equations runs in ).,0[ ∞∈t Initially, the state of the system 
x(0) is known, see (1.2). The development of the state of the system in time x(t) is 
controlled by some control parameter u(t), which can take any value in the set U. The 
precise manner in which x(t) changes is determined in (1.1) that is referred to as the 
state equation. One should find the control u(t) that satisfies the objective defined in 
(1.3). 
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 A pair (u, x) in which x is the trajectory of system (1.1) corresponding to the 
control u is called admissible. The admissible pair that also meets the objective (1.3) is 
the optimal pair ),( ** xu , consisting of the optimal control .y  trajectoroptimal and ** xu  

1.3. Optimal control in the field of energy and transportation 
The information that is required or requested decisions on transport policy is often fairly 
specific and detailed, like in Environmental Impact Statements (EIS) for transport 
projects, or quite generic for transport programs2. The optimal control methodology 
conforms to the generic nature of the information needed for the latter. For the 
methodology applied to be most explanatory in describing the dynamics between 
infrastructure construction and the energy use of the transport system, it is considered 
best to use as few parameters as possible in a so-called minimalist model.  

 By using a minimalist model, the paper chooses implicitly that many transport 
related phenomena remain unchanged. Principally, only three aspects are taken as 
dynamic characteristics of the transport system: the capacity of the network 
infrastructure, the traffic flows over the transport infrastructure and the energy use of 
the transport system. 

 Energy research, for as far as Energy Analysis (EA) is concerned, does not 
commonly include time discounting [5]. EA is closely related to Life Cycle Assessment 
(LCA), which is formalized to great extent [6]. Historically, LCA and EA are product-
based assessments, for which temporal aspects of energy use are hardly relevant. 
However, the data presented in EISs on energy use of (alternatives in) construction 
projects are in essence determined in an EA-like assessment. Furthermore, the latter 
data is sometimes presented in the form of a cost-benefit analysis. Indeed, if one 
considers energy quantities as monetary values, energy research can benefit greatly 
from methodologies applied in economics. The rationales for money discounting might 
also be valid for energy discounting. 

1.4. Introduction to the problem 
The optimization of transport infrastructure as such is not a clearly defined process. 
Besides the optimization criteria - this report demonstrates both economic and energy-
related criteria - multiple actors are present in infrastructure use and planning. The latter 
actors may have different objectives and time frames. This report assumes the existence 
of the following two actors: a road planning authority that optimizes the energy use of 
the entire transport system, and the travelers, the infrastructure users, that minimize 
their travel time. The time frame of the road planning authority ranges from months to 
decennia, while the time frame of travelers ranges from minutes to days. 

 The study should increase understanding of the dynamics that occur when a 
transport network is improved. Using the insight, the report attempts to use the optimal 
control theory to optimize the transport system with an infinite time horizon, while 
taking the short time travel behavior into account. As dilemmas in infrastructure 

                                                 
2 See EU-directive (85/337/EEG) and its change in (97/11/EG) of March, 3, 1997. 
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optimization frequently appear in road infrastructure planning, the outcome of the study 
should comment on general policy choices. 

The research aims are threefold: 

1) to characterize the optimal road, given a certain criterion; 

2) to identify the optimal network configuration, given certain criteria; 

3) to determine the optimal construction strategy, given the latter criteria. 

2. System description 

2.1. Introduction in the energy use of road transport 
This study takes the energy use as main criterion for determining optimal road and 
network configuration and optimal network development. The energy use includes both 
the energy that is required for the propulsion of the vehicles and the energy required for 
constructing, maintaining and discarding the road infrastructure. Of the total energy use 
of road transport, 85% is roughly attributable to the fuel consumption of the vehicles, 
while the remaining 15% are infrastructure related, including the construction of major 
artworks like tunnels and bridges [16]. 

 Diversity in the per vehicle energy use is large. Whereas a passenger car 
typically uses between the 2 and 4 MJ/vkm, a freight truck has an average energy use of 
about 10 MJ/vkm, largely dependent on the (vehicle and cargo) mass to be transported.3   

 One kilometer of Western European highway requires circa 90·106 MJ/km and 
can accommodate circa 2000 vehicles per hour per lane [16]. When the traffic intensity 
approaches the road capacity, a traffic jam may occur. In the Netherlands, traffic jams 
are for 12% directly caused by traffic intensity/road capacity ratio, and for more than 
80% indirectly caused by i/c ratio (e.g. bottlenecks) [10]. 

 Discussions, both societal and scientific, about road construction policies are 
inclined to include the effect of generated traffic, i.e. traffic that results for travel that 
would not have been undertaken had a certain road not been improved [11]. 
Notwithstanding the importance of generated traffic for the effects of road constructing 
measures for the total energy use of the transport system, the effect of generated traffic 
is not included in this report. In finding the optimal construction policy, it is 
methodological of minor importance. Furthermore, the effect of generated traffic is hard 
to predict and would cloud the results with large uncertainties. 

 The report assumes that induced traffic, i.e. traffic that uses a different time or 
route for performing a journey, has no effect on the energy use of the transport system. 
In other words, it is assumed that deflected traffic can be accommodated elsewhere on 
the network with same energy intensity, measured in MJ/trip; 

 Finally, it is assumed that road capacity is a continuous variable, thus road 
improvements might be infinitesimal small. As a consequence, the results may not be 
applied straightforwardly to a specific road construction case. 

                                                 
3 vkm stands for vehicle times kilometer. 
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2.2. Single road system description 

2.2.1 Capacity as state variable 
Infrastructure construction requires the application of energy resources. One could 
consider the latter application as investment of energy resources in the transport system. 
A reduction of energy use, or increased efficiency of transport, provides the profit of the 
investment. For each project considered, one can use an EA to assess the cost-benefit 
ratio of the energy resource investment. The latter practice is, encouraged through EU-
legislation2, common for large construction projects. The EA is also a suitable tool for 
assessment of the impacts of largely discrete choices. 

 Due to the large scale of transport infrastructure, the transport system changes 
gradually in time, despite the sometimes even enormous discrete changes from the 
traveler’s perspective. The dynamic behavior of the entire transport is suitably 
illustrated with the use of a continuous state variable. Using a continuous state variable, 
one should keep in mind the limited meaning the state variable will have for single, 
specific cases. 

 The state of the system is described by the capacity of the road segment x, in 
vkm/h.4 It is a measure of the transport performance that can be accommodated on a 
road segment. 

 The road capacity has an autonomous decay rate δ. It is a crude approximation. 
For one, because the decay rate partly depends on the cumulative traffic load that 
occurred since the last maintenance activities, and partly as the decay rate increases as 
the maintenance-free period becomes longer, see [7,8]. Without construction and 
maintenance activities, the capacity of the road, or the state of the system is described 
by (2.1):  

...)()( +⋅−= txtx δ ; (2.1a) 

Typical values for δ are estimated at 0.15 yr-1 [9]. 

2.3.2 Construction activities as control variable 
The capacity can be increased by the maintaining or constructing capacity at a rate of 
u(t), measured in vkm/h2. Following (1.1), with )()(),( tutxuxf +⋅−= δ , the state 
equation becomes:  

);()()( tutxtx +⋅−= δ  (2.1) 

 The energy resources to be committed for construction activities are given by 
α·u(t), in which α is the energy intensity of construction activities or capacity increase. 
The energy intensity depends on the type of civil engineering construction required for 
e.g. road widening. Typical values are 10·103 MJ/(vkm·h-1) for ground level highways, 
and 100·103 MJ/(vkm·h-1) for tunnel highways [9]. 

                                                 
4 vkm stands for vehicle · km. 
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2.3.3 Life cycle energy use as utility function 
The road transport system uses a great variety of road types and road vehicles. For now, 
it is assumed that any benefit has to be achieved through reduced energy use of the 
vehicles, thus reduced fuel consumption5. Vehicular fuel consumption per kilometer 
traveled is, not exclusively, influenced by the average vehicular velocity, changes in 
velocity and altitude differences. Apart from the speed limits set, inner city velocities 
depend on many road characteristics, like number of crossings, priority regulations, 
traffic lights and speed bumps. The velocities on rural roads, however, are more often 
determined by the capacity of the roads in relation to the occurring traffic intensity. In 
fact, the majority of the traffic jams in the Netherlands is caused by insufficient capacity 
or by bottlenecks [10]. A bottleneck is formed by two or more converging traffic flows. 
To some extent, it is also the limited capacity of the road junction or road intersection 
that causes traffic to flow slower. Therefore, the road capacity is seen as the explaining 
factor for the occurrence of vehicle velocities well below the speed limit on rural 
highways. The road capacity might furthermore serve sufficiently well, although being a 
continuous variable, provided that a sufficiently long road segment or extensive road 
network is considered. 

 The variety in road vehicles has presumably three important aspects for the 
determination of the general vehicular fuel consumption, notably the dependence of 
energy use on velocity6, the official speed limits7, if any, and the length of the vehicle 
(or the amount of capacity that should be allocated to the vehicle). Part of the variety 
can be cancelled out by averaging the curves of energy use vs. velocity. Furthermore, 
calculations can be carried out using the passenger car equivalent (pce), in which often 
one freight vehicle stands for 2 pce. 

 Two variables are considered in the determination of the fuel consumption of the 
vehicles: the traffic intensity and the road capacity. The capacity of the road, or state 
variable x, is expressed in the dimension of vkm/h. 

 The traffic is represented by the transport performance (vkm/h), which is the 
product of the traffic flux φ in veh/h and the length ℓ of the road segment (km). Traffic 
flux φ is the actual number of vehicles which goes through one km of the road in one 
hour. The traffic flux φ is implicitly limited to a certain value φmax by the capacity x, but 
otherwise assumed to be independent of the capacity x. Although hard to quantify, 
empirical evidence is sufficiently strong to state that expansions of infrastructure have 
led to an increase in traffic [11], or reversely stated: limited capacity in the transport 
network causes some traffic not to occur. This phenomenon consists of two effects. One 
is called induced traffic and implies that people traveling differently after road 
construction than before; the other is referred to as generated traffic and indicates that 
people are traveling that would not have been traveling without the construction of the 
road. 

                                                 
5 Where ever this paper uses the term ‘fuel consumption’, it refers not only to e.g. diesel or gasoline 
consumption, but also to electricity use by electrical vehicles. 
6 Generally speaking, heavy vehicles have higher fuel consumption at any velocity than light vehicles and 
vehicles with a high power-to-mass ratio have their optimal velocity at a higher velocity than vehicles 
with a low power-to-mass ratio. 
7 Freight vehicles often have speed limits in the range of 80-100 km/h, while the passenger car speed 
limits often are 100-130 km/h. 
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 For sure, there exists a theoretical hard upper bound on personal transport, 
corresponding to the case where one is continuously traveling at the highest possible 
velocity. A softer upper bound can theoretically be deduced from the amount of time 
one is willing to spend traveling and the transport modes to ones disposal, see also [12]. 
Suppose the practical upper bound for the transport performance is presented by φmax·ℓ, 
the actual transport performance is thus φ·ℓ ≤ φmax·ℓ or φ ≤ φmax. The difference between 
the upper bound and the actual traffic φlatent = φmax - φ is called the latent transport. For 
the current single-road description, it is assumed that φlatent = 0. 

 The ratio of intensity over capacity, the so-called i/c-ratio, determines to large 
extent the velocity v of the vehicles. An often-used approximating function is called the 
BPR-function [13], from which the velocity (km/h) is easily deduced leading to8: 

2

2
1

max 1),,( ⎟
⎠
⎞

⎜
⎝
⎛+=

x
vxv ϕϕ .  (2.2) 

Herein vmax represents the highest occurring velocity in km/h. 

 The energy use e(v) of the vehicles (in MJ/vkm) is on average to be computed 
out of the velocity. For each type of vehicle and type of fuel used, the energy use 
function e(v) is different. Hickman [14] gives vehicular emissions that have been 
empirically determined under controlled conditions. From the CO2 emissions, the 
primary energy can be deduced. Figure 1 shows the graph for 1990 cars using EURO-I 
gasoline, and the graph that shows the average energy use per freight vehicle, with the 
expected freight vehicle distribution in the Netherlands for 2010. Roughly, the energy 
use per vehicle kilometer of one freight vehicle (excluding vans) approximates the 
energy use of five passenger cars. 
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Figure 1. Fuel consumption of transport vehicles, deduced from Hickman [14]. 

                                                 
8 The factor ½ and exponent 2 are basically empirical determent parameters. In literature, the exponent 
takes values up to 6. As approximating formula, there is no explicit constraint on the i/c ratio that φℓ/x≤1. 



 8

 The graph of the fuel consumption of passenger cars represent that of a 1990 
built passenger car using EURO-I gasoline. It conforms to the formula: 

)(/50.36)(00038.0)(0523.0338.3)( 2 xvxvxvve +⋅+⋅−= ; (2.3) 

The fuel consumption E of the vehicles is thus: 

( ) ( ))(xvexE ⋅⋅= ϕ ; (2.4) 

In the form of (1.3), using (2.4) we get ( ))()(),( xvetuuxg ⋅⋅−⋅−= ϕα  to give 

[ ]dttxEtueJ t∫
∞

− +⋅=
0

))(()( minimize αρ . (2.5) 

 The value of the discount rate ρ is based on the expected average functional 
lifetime of the infrastructure connection at ρ=80 yr-1 [9]. 

2.4. Optimal control solution 
The optimal control problem for a system that represents a single road segment, based 
on (1.2), (2.1) and (2.5), is problem (Psingle): 

Problem (Psingle): 

[ ] .))(()( minimize

;)0(
);,0[ allfor  )(0

);()()(

0

0

max

∫
∞

− +⋅=

=
∞∈≤≤

+⋅−=

dttxEtueJ

xx
tutu

tutxtx

t α

δ

ρ

 

Figure 2 shows that the function E(x) is convex for the lower ranges of x. [8] and [9] 
show that these are the relevant ranges for x as well in finding the optimal capacity.  

 
Figure 2. Fuel consumption of all vehicles in a one kilometer
road per hour, E(x), in MJ/h as function of the road capacity x (vkm/h). 
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Balder proves that an optimal control )(* tu exists in a problem like problem (Psingle), see 
theorem 3.6 in [2]. Furthermore, if ( ))(),( ** txtu is an optimal pair, it satisfies to the 
Pontryagin maximum principle [1,15]. 

 The main tool in the study of problem (Psingle) involves looking for the necessary 
optimality conditions in the form of the Pontryagin maximum principle [1]. The theory 
involves two closely related functions, the Hamilton-Pontryagin function (2.6) 

H ( ))((),(),(),( xEueδx)ψuuxgeuxfx,u,ψt tt +−−=+= −− αψ ρρ   (2.6) 

and the Hamiltonian (2.7) which is the maximum of (2.6) under condition of admissible 
controls 

max0
max),,(

uu
ΨxtH

≤≤
= H Ψ)uxt ,,,( . (2.7) 

In (2.6) and (2.7) the adjoint variable is ψ and its behavior is defined by the adjoint 
equation (2.8) 

x
tutxget

x
tutxft t

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−= − ))(),(()())(),(()( **** ρψψ  . (2.8) 

In the current example, (2.8) is written as 

x
xEet t

∂
∂

+= − )()( ρδψψ . (2.9) 

 In short, if the adjoint variable ψ(t) behaves 'properly', the set of equations (2.6) 
to (2.8) provides the basis for determining the optimal control )(* tu . Section 5 in [8] 
shows the solution to problem (Psingle), including proof of sufficient and necessary 
conditions for optimality. 

 By substituting teρψψ ⋅=~ , (2.9) can be reformulated into a time independent 
equation. [8] shows the latter reformulation and establishes the existence of two rest 
points: one rest point identifies the optimal capacity xopt as the maximum construction 
effort a divided by the road wear rate δ, it points to the maximal maintainable capacity 
given limited resources; the other rest point is located at the capacity where the marginal 
time-discounted energy benefits γ(x) of capacity increase equal the marginal costs α of 
capacity increase. The marginal costs are independent of x, whereas the marginal energy 
benefits is given by the curve defined by (2.10), see also Figure 3: 

x
xEx

∂
∂

+
−=

)(1)(
δρ

γ . (2.10) 
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Figure 3. Marginal time-discounted energy benefits and energy costs of capacity 
increase. The optimal capacity is at a capacity of 0.9 times the traffic intensity. 

2.5. Conclusion for a single road 
The optimal construction policy for an isolated road is twofold: 

If the current capacity is smaller than the optimal capacity, one builds as fast as possible 
and one builds until the optimal capacity is reached or as far as resources allow;  
If the current capacity is larger than the optimal capacity, one lets the road wear down 
until the optimal capacity is reached or down to the highest capacity that can be 
maintained with the available resources. 

2.6. Discussion: energy versus economy 
The solution summarized in section 2.4 has been presented as energy optimum in Figure 
3. However, the theoretical solution is equally valid for use in an economic analysis. For 
an economic analysis, different parameter values apply. With a cost of CO2 emissions of 
7.7 €/ton CO2, and an CO2 emission factor of 69.3 g CO2/MJ, the indirect costs due to 
energy use is 0.53·10-3 €/MJ. The direct costs of construction are 
αecon=1.25·103 €·h/vkm. The variable costs of travel are 
eecon(v)=e(v)·0.53·10-3+0.013+(ℓ/v)·8.17. The time discount rate is set to 1/15 yr-1. These 
parameter values have been established in [9] and lead to Figure 4 as the socio-
economic analogy of Figure 3. 
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Figure 4. Marginal socio-economic benefits and costs of capacity increase. 

 Comparison of Figure 3 and Figure 4 shows that - for a single road - the capacity 
at which the energy use is lowest is significantly9 less than the capacity at which the 
road has the largest socio-economic surplus. Figure 5 relates the marginal net energy 
benefit to the marginal net socio-economic benefit. After conversion of energy figure 
into CO2 emission figures, one can use the results to give a macro-level indication of the 
costs of CO2 reduction through the reduction of the capacity of the road system. 
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€/ton CO2 in the next decades. 

                                                 
9 See [9] for an uncertainty analysis. 
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2.7. Discussion: single road versus network 
Using the description of an arbitrary network system, several symbols, variables and 
definitions are defined in this paragraph. The arbitrary system, taken from [9], in this 
paragraph serves furthermore as illustration to the description of the further study. 

In this paper, the following symbols are used: 

0;0;0;0;0;0;0;0 max212121 >≥≥>≥≥>> vxx ϕϕϕ . 

Furthermore: 

ϕϕϕ =+>+ 2121 ;0xx . 

The transport system is represented by a network that consists of fixed nodes (A1, A2, B 
and C) and arcs or links I, II, III, IV and V. The latter network has to accommodate a 
fixed transport demand Y. The arcs i are the road connections that have a certain mono-
directional capacity xi, the nodes are the road intersections. 

The network is assumed to be symmetrical in the sense that 
IICACA xxx ==

22
. 

Travelers want to travel from one node to another node. Their 
transport demand is shown by a node-to-node matrix. The transport 
demand, presented by a constant origin-destination matrix, is 
symmetrical as well: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

000
0
00
00

21

2

1

BABA

BA

BA

YY
Y
Y

Y . 

 The travellers j will minimize their personal cost function, Cj, by choosing the 
best travel route. The personal cost function might for example represent travel time.  

 Purpose is to change the road capacities xi to ensure to lowest possible energy 
use J of the system. The energy use J of the system is the sum of the energy required for 
the production and maintenance of the road infrastructure and the energy use for 
vehicular movements (thus related to the fuel consumption by the vehicles). The most 
important notations are: 
Length of road  (constant) ℓi km 
(traffic) Flux  φi veh/h 
(traffic) Intensity  yi=φi·ℓi  veh·km/h 
(road) Capacity  (state variable) xi veh·km/h 
Transport demand (constant) Y veh/h 
Energy use of the transport system  J MJ 
Rate of energy use for infrastructure  Gi MJ/h 
Rate of fuel consumption   Ei MJ/h 

   

B

IV III V

C

I II

A1 A2
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The energy use of the entire system is given by: 

∫∑
∞

+=
0

))(),(()),(( dttytxEttxGJ
i

iiiii . (2.11) 

The energy required for the infrastructure writes as: 

( ) )()()()( tutxtmtpG iiiiiii ⋅=⋅+⋅= αα , (2.12) 

wherein: 

αi the energy intensity of road production and maintenance (MJ·h/vkm); 

pi the production rate of new capacity (vkm/h2); 

mi the maintenance rate of existing capacity (h-1); 

ui total construction efforts (vkm/h2). 

The energy required for the propulsion of the road vehicles is: 

( ) ( )),()(),( iiiiii yxveytytxE ⋅= , (2.13) 

Herein is v(xi(t),yi(t)) the average velocity of the vehicles; 

The energy use per kilometer per vehicle is of form  

e(v)=γ1+γ2v+γ3v2+γ4/v; (2.14) 

The average velocity of the vehicles is:  

( ) 2)()(1
))(),((

1

max,
ββ txty

v
tytxv

ii

i
iii +

= . (2.15) 

vmax is the highest allowed velocity – typically 120 km/h; Assumingly, β1=½ and β2=2 
(actually, in literature β2 can take values of 6 or larger). It should be noted that yi(t) can 
be greater than xi(t) in this formula10. The variable xi is defined as the highest amount of 
vehicles that can use a road segment without any significant delay (it corresponds thus 
to an unperturbed traffic flow). The improvement of capacity is seen as a continuous 
entity that can take all values. In reality, this is not the case. Construction activities 
create a jump in available capacity after the works are finished. 

 If the optimal construction policy for an isolated road is applied to a road 
network, ignoring the dynamic travel patterns, the optimization method of the previous 
section fails. Considering the possibility that construction start at the road within the 
network that has the highest marginal net energy benefit, ignoring the effects of this 
construction on future travel patterns, one can witness transition inefficiencies, 
bifurcations and lock-in effects.  

                                                 
10 If one assumes that traffic, which cannot be accommodated on the road considered, will use other roads 
with similar energy efficiency (MJ/vkm) and distance (ℓ), one can loosen the constraint that yi≤xi. 
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Figure 6. Inefficient network improvement policy: the network on the left-hand side is improved. 
One can see that some connection are temporarily improved, while at the optimal configuration they 
are no longer used (e.g. road the connects the nodes 1-3-6). 

3. Methodology 

3.1. Objective as formalized goal of the study 
The objective is to minimize the energy use of the system J by changing the capacities 
xi(t) in time. This is to be done by optimally controlling to system through the 
construction efforts ui(t). While applying certain construction efforts to the system, the 
behavior of travelers will autonomously change. In that sense, a short-time optimization 
occurs where the travelers will minimize their individual travel costs. The long-term 
optimization takes place through the application of the control on the road capacities. 

3.2. Short term optimization: determining travel routes. 
Consider the following road network, see Figure 7. People want to travel from origin A 
to destination B: φAB (veh/h). 

A

B

route 1
ℓ1=10 km

route 2
ℓ2=15 km

 
Figure 7. Two-road network. 

 These travelers choose between route 1, with length ℓ1 (km) and capacity x1 
(vkm/h) and route 2, with length ℓ2 (km) and capacity x2 (vkm/h), resulting in traffic 
fluxes φi over routes i, measured in veh/h. The travelers have full knowledge and make 
their choice based on the travel times Ti (h) for route i. The traffic fluxes are therefore 



 15

determined by the road capacities. Consequently, the velocity vi on road i is determined 
by the flux φi and capacity xi directly, and ultimately by just the capacities x1 and x2. 

 Either only one route is used, or the travel times over both routes are in 
equilibrium: 

),(),( 212

2

211

1
21 xxvxxv

TT =⇒=   (3.1)  

in which vi(x1, x2) is the velocity of the vehicles on route i, and with φAB=φ1+φ2, (3.1) 
becomes: 
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  (3.2) 

Consider the introduction of auxiliary variables, in short notation: 

ABx
c

xx
c

x
c ϕϕϕϕ =−−=−=⋅= ;;; 2

2

3
22

2
1

2132
2

3
2

2
1

2
1

3
1

2
1

22
2

3
2

1 . 

If c2=0, the equality in (3.2) has possible solutions: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−
+=

−+
=

−
=

>−=
≤−=

other. allfor )(
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)(2
. if ,
.0 if ,0

3
2
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212
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1

3
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2
212
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1

3
1

131
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 xx
c
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cc
cc

ϕ
ϕ

ϕ
ϕϕ

ϕϕϕ
ϕ

 (3.3) 

If c2≠0, the equality in (3.2) has possible solutions: 

2

32
2

11
1 2

4
c

cccc −±−
=ϕ . (3.4a)  

Since ϕϕ ≤≤ 10 and from 020 212 <−⇒> ccc and from ϕ>−⇒< 212 20 ccc ,  
it can further be refined to: 

2

32
2

11
1 2

4
c

cccc −+−
=ϕ . (3.4) 

Taking care of the condition ϕϕ ≤≤ 10 , we can identify the special situations: 
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 (3.5) 

For all other cases, the formula becomes: 
2

32
2

11

2
4

c
cccc −+−

=ϕ . (3.6) 

The lower bound of φ1 is reached if and only if c3≥0 or 
.00 1

2
2

3
2

2
2
1

21 =⇒≥−− ϕϕ x  

Due to the symmetry between road 1 and road 2, the upper bound is reached if and only 
if .0 1

2
1

3
1

2
2
1

12 ϕϕϕ =⇒≥−− x  

Now that the traffic fluxes are known, it is possible to give an expression for the (energy 
use due to) fuel consumption E(x1, x2, φ1(x1,x2)), expressed in MJ/h. 

First, the fuel consumption E depends on the traffic flow and the fuel consumption per 
vehicle e(v), expressed in  MJ/vkm. 

)),,((()),(()),,(((),()),(,,( 221121121211211121121 xxxvexxxxxvexxxxxxE ABAB ϕϕϕϕϕϕϕ −⋅−+⋅=
in which  

vvvvevvvve /50.3600038.00523.0338.3)(by  edapproximator  /)( 2
4

2
321 ++−=+++= γγγγ

The latter equations are (3.7) respectively (3.8). 

The final equations for the fuel consumption E(x) are: 
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For other cases, the even more elaborate formula for E(x) can be deduced by combining 
formulas (3.7) and (3.8) with (3.4). 
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3.3. Methodology 

Consider the problem ( networkP ): 

.)(),...,( minimize
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In vector notation, ( networkP ) becomes 

[ ] . minimize

0
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Remembering the state equation )()()( txtxtu iiii δ+= , part of the functional can be 
rewritten as: 
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Hence, the functional J is equivalent to: 
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0 1
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−
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The problem ( networkP ) is thus equivalent to problem (Pnetwork): 
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Here δi>0, αi>0, ρ>0, umax>0 are parameters of the model; xi,0 ≥ 0, i = 1,2,…,n are initial 
conditions; E(x) is continuously differentiable (smooth) positive function. 

 Due to the existence results proved by Balder [2], an optimal admissible pare 
( ))(),( ** tutx  exists.  

 Obviously, all admissible trajectories of the control system are uniformly 
bounded: 00 >∃κ  such that for an arbitrary admissible trajectory x(t), we have 

.0 allfor  )( 0 ≥≤ ttx κ  

 This implies that the gradient ))(( txEx∂
∂ is uniformly bounded on all admissible 

trajectories: 01 >∃κ  such that for an arbitrary admissible trajectory x(t), we have 

.0 allfor  ))(( 1 ≥≤
∂
∂ ttxE
x

κ  

Further, the associated system of differential equations in variations is the following: 

.1)0(),()( =−= iiii ytyty
dt
d δ  

Hence, tety i
i

δ−=)( are uniformly bounded too. 

 All these mean that we can take λ=0 and as far as ρ>0, the assumption 
λρ )1( +> r  from Theorem 4 in [1] is satisfied. So, Theorem 4 is applicable to problem 

(Pnetwork). It implies to following result. 

 Theorem (Maximum Principle) Let ( ))(),( ** tutx  be an optimal admissible pair 
in (Pnetwork). Then pair ( ))(),( ** tutx  satisfies the conditions of the Pontryagin maximum 
principle together with the following current valued adjoint variable 
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i dttxE
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i.e. the following conditions are true for this function ψ(t): 

a) ));(()()()()( * txE
x

tt
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++++= δραψδρψ  (3.14) 
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i
iniii tuttu ψψ  (3.15) 
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 Here we took into account that t
i

ietz δ=)( , i=1,2,…,n in this case (see (5.4) and 
(5.5) in [1]). 

 As an easy corollary of (3.13), we have that for any i=1,…,n the following 
estimate takes place: 
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i

ii
i

δρ
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κδραψ

 (3.16) 

For a two road system, the control u is distributed according to u1ψ1+u2ψ2→max. 
Chapter 4 operationalizes the methodology in a simple two-road network. As the 
methodology described does not offer a specific, unique distribution of construction 
efforts u1,…,un, the next chapter suggests an alternative approach to determine the 
distribution. 

4. Optimal development path 

4.1. Single-road trial run 

The optimal construction strategy is estimated by varying the starting values 0
iψ  in 

order to reach the lowest value of J. In the initial condition, the capacity of the road is 
lower than optimal. Therefore, initial construction lowers the value of J. However, 
construction should cease as soon as the optimal capacity is reached. If construction 
continues afterwards, the value of J rises again. If no construction takes place at all, the 
function of J is steady at a high level. 
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Figure 8. On the left hand side (ψ<approx. 22000), some construction takes place. On the right 
hand side, no construction takes place. The minimum value of J is located at the discontinuity. 
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Figure 8 shows the surface of the utility function as function of ψ(0), one-road system 
(n=1) with ψ the so-called shadow price (in energy terms) of capacity increase. In the 
numerical example dt=1; umax=1; δ=0.15/8766; ρ=(1/80)·8766; the end time T=10000, 
α=10000; x0=2000; φ=10000; ℓ=1. 

4.2. Dual road-system run 
The same procedure as above is repeated for a two-road case. The system consists of 
two non-identical independent roads, both with initial capacity lower than optimum and 
constant traffic flows. Basically, it is the combination of two one-road system, with one 
exception: the control u has to be distributed over the roads in u1 and u2. See Figure 9. 

 
Figure 9. Several 'regimes' or 'construction strategies' are identifiable. On the left-hand side 
backside (low ψ1 and lower ψ2), there is continuous development of x1. The flat surface on the right-
hand side of the foreground (high ψ2 and lower ψ1), reflects the case of continuous development of 
x2. For very low ψ1 (foreground), the value of x2 is balanced, without caring for road 1. The steepest 
line in the 'valley' around ψ2=20000 reflects an optimal construction strategy for road 2, while 
optimality lacks for road 1. 

 Using the grid of Figure 9, it has shown to be difficult if not practically 
impossible to find the optimal construction strategy for the entire system. Problem is the 
discontinuity that is also present in Figure 8. 



 21

 Figure 10 shows an initial run of a two-road system in which the traffic can 
change routes. The structure of the results seems to be comparable to that of system of 
two independent roads. For simplicity, the analysis is subjected to an independent two-
road system. 
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Figure 10. Surface of g(x) of a interdependent two-road system. 

The 'grid'-procedure has also been repeated in the smoothened form: 
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Thus: u1ψ1+u2ψ2+A(u1
2+u2

2)→max. 
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It did not help in finding the optimal point within reasonable computing time, with 
A=100 and a gridsize of Δx=200. Therefore, an alternative smoothing, or regularization 
procedure, is sought. 

4.3. Regularization 
The controls u1(t),…,un(t) have thus far been determined as: 
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The regularization proposal is the replace these control rules with the individual controls 
u1(t) and u2(t) as following: 
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 Remember the previous results of the problem under consideration: Figure 11 
shows the value of the utility function J as function of starting values for ψ1 and ψ2. The 
lowest value in Figure 11 is 421 TJ, whereas the lower, flat plain on the bottom right of 
the graph is situated at a level of 441 TJ. 
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Figure 11. Utility surface without regularization. 

 Closer observation of the data represented in Figure 11 revealed that the 
minimum point is located somewhere along a line of 2

0
21

0
1 cc +⋅≈ ψψ , with c1 and c2 

some constants. This line is pointed to by the arrow in Figure 11. Now, using the 
regularization algorithm referred to above, we zoom in to that line in Figure 12. 

 The results using the smoothing algorithm show indeed the lowest values of the 
utility function along a straight line. Using a grid of Δψ=20, the lowest value of the 
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utility function approaches 370 TJ. After the behavior of the shadow prices has been 
known, it was possible to design an optimizing routine to find the best starting shadow 
price ψ0 and (thus) shadow price trajectories. The results (with ε=0.01) are shown in 
Figure 13. 
 

 
Figure 12. Results of the utility function with the smoothing algorithm. 
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Figure 13. Best trajectories that have been found with the ε=0.01 regularization method. 

4.4. Back casting 
In order to determine the optimal control, and thus to determine the optimal capacities 
of the network in time, one may reconstruct the shadow prices function ψi(t), back 
casting it from infinity to the initial configuration ψi,0. 

4.4.1 Possible optimal end configurations 
If we consider the functional in (3.12), the surface of g(x1,x2) in (1.3) indicates the 
possible end states of the system. First, let us consider the basic functions for velocity v 
and per vehicle fuel consumption e. Figure 14 and Figure 15 lie at the roots of the 
construction of the surface of g(x1,x2) and as such suggest the existence of a limited, if 
not one, local minima. 

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Capacity (km/h)

V
el

oc
ity

 (k
m

/h
)

 

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Road capacity x (km/h)

E
ne

rg
y 

us
e 

pe
r 

ve
hi

cl
e 

e 
(M

J/
km

)

 
Figure 14. Velocity as function of the capacity. Figure 15. Per vehicle fuel consumption as 

function of the capacity. 

 

The surface of g is given by (4.2):  

)()()()())(),(())(),(( 2221112121 txtxtxtxEtxtxg δραδρα ++++=  (4.2) 
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Figure 16 shows the surface for α1= α2=10·103 MJ·h/vkm. 
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Figure 16. Current-time energy use of the transport system of figure 3, as function of road 
capacities x1 and x2, with φAB=2000 veh/h, α1=80 GJ·h/vkm and α2=10 GJ·h/vkm. 

 

 Figure 10 indicates that, depending on the values of αi and δi, either road 1 or 
road 2 is used in the end state, and not both roads. Varying the parameters αi shows that 
the minimum of current-time energy use lies either on the line x1=0 or on the line x2=0. 
If the surface is smooth, the location of the minimum of g(x1,x2) coincides with the end 
states of the system at infinity in terms of xi.  Consider rewriting the utility function as 
following: 

( ) .))(())(())(())((
00

222111 ∫∫
∞

−
∞

− ⋅=++++= dttgedttEtxtxeJ tt xx ρρ δραδρα   (4.3) 

The surface of g, in Figure 17, is a tilted version of the surface of E and Figure 16. 
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Figure 17. Current-time energy use g as function of the point capacities of road 1 and road 2, for 
α1=80000 MJ·h/vkm, α2=10000 MJ·h/vkm, ρ=80 yr-1 and δ1= δ2=1/0.15 yr-1. 

 

 
Figure 18. Optimal configuration lies at one of the axes. 

The suggestion made on the basis of Figure 16 to Figure 18 implies that in the optimal 
configuration - if attainable - two concurrent routes do not coexist. The implies e.g. for 
the more elaborate network of Figure 6 that the possible end configurations can be 
narrowed down to the ones displayed in Figure 19.  
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Figure 19. Possible end states of the network portrayed in Figure 6.  

4.4.2 Indiscriminate behavior 
For n=1, the gradient of the surface g can be expanded into series form: 
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 The formula for the shadow prices (3.13) can thus be expressed in terms of the 
i/c-ratio y/x. In the end state, wherein the traffic fluxes are fixed, the i/c-ratio's are such 
that the shadow prices are equal. If the physical characteristics of the roads are equal in 
the sense that the road wear δi and the energy intensity of construction works αi are 
identical for all roads, the i/c-ratios are equal as well. 

In the optimal path, the condition that )()( tt ** ψu ⋅  is maximal holds for all t. The 

partial derivative becomes constant: .for  0
)(
))((

∞→→
∂
∂ t

tx
tg
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x   

From (3.14) and ),0[ allfor  0
)(
))((

∞∈≤
∂
∂ t

tx
tg

i

x , it is clear that ψ(t) is a declining function. 

It implies the optimal control during the transition is distributed in such a way that all 
ψi(t) are equal in the end state (or ψi(t)=0). In other words: a road is either not used, or 
used with certain i/c-ratio that is equal for all remaining roads in use. 

 Consider now that a fixed i/c-ratio means that the ratio φ(t)ℓ/x(t) is fixed. If this 
ratio is to remain equal for all roads during the transition process, and considering the 
state equation, it follows that the i/c-ratio holds the key for distributing the control 
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efforts. The maximum control is to be applied to the road with the highest shadow price.  
If more roads have similar high shadow prices, the control should be distributed among 
them on the basis of length to ensure the equality of the i/c-ratio. Given the initial 
system x0, roads also have a minimum capacity (see state equation) of 

t
ii etxtx δ−⋅≥ )()( 0, . In back casting, this minimum should not be exceeded. 

4.4.3 Finding the initial position for backcasting 
Consider the function ψi: 

iiiiii xEtt ∂∂++++= )()()()()( xδραψδρψ . 

It implies an end state of )()(;0 iiii xE δραψ +−=∂∂= x . For a one-dimensional 
system, the function xxE ∂∂ )( is convex, see Figure 20 to Figure 22 below. 
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Figure 21. General form 
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If iii xE ∂∂++ )()( xδρα is convex and negative for x(t)<x(T), and if 0)( =Tiψ , then 
ψ(t) is declining. 

The construction activities are distributed using the rule: ;max∑ →
i

iiuψ   

Suppose now two roads exist, i and j, with equal ψi(t)=ψj(t). Assuming the convexity of 
∂E/∂x, the construction efforts ui+uj=umax should be distributed over both roads, such 
that: 

jjjiijjijjiiii xuxuxExuxuxE ∂++∂++=∂++∂++ ),()(),()( δραδρα .  

If construction does not influence traffic flows φi, φj, thus the roads are independent, it 
is: 

 jjjijjijiiii xuxxExxuxE ∂+∂++=∂+∂++ ),()(),()( δραδρα . 

Suppose ψ is concave, any other allocation of construction efforts would lead to shadow 
prices that are higher than those of the optimal path: 

)()()()( *
2

*
121 dttdttdttdtt +++>+++ ψψψψ . 

At the end time T, all roads that are still in use (φi>0) and that have been expanded 
(xi(T)>x0

i·e-δT), must have experienced recent expansion: ui(T-dt)>0. This again is a 
result of the declining nature of ψ: The construction efforts ui leading to only a marginal 
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decrease in ψ: εψ ≤− )(ti , with ε some small positive number, are only 'lucrative' at the 
very last stages of the construction period. 

Therefore, if iallfordtTandTtallfort ii 0)(),0[0)( >−∈< ψψ then it is possible to 
back cast, using initial direction for ψ as described above, and the general description 
for ψ as in (3.14). 

4.4.4 System behavior and end state determination 
Consider a system of n roads. Each road has, at time t, a capacity xi(t), a construction 
effort ui(t) and the marginal net energy benefit of capacity increase ψi(t). The total 
construction effort should be allocated over the n roads and in time t∈[0,∞) such that: 
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The following rules apply: 
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If the n-dimensional surface of the part of (4.5) between brackets - or the function 
g(x(t)) - is smooth, with a single, thus global minimum, the latter minimum defines the 
optimal end state of the road network. As xi(t)→0 with xi,0>0 is only possible if t→∞, 
the optimal end state might not be reached in finite time. The marginal net energy 
benefit is given by: 
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Assumingly, the function ψi(t) is convex in the relevant domain.  

The end state characteristics of road i can be categorized into: 

( )

( )

( )
⎩
⎨
⎧

<
∂

∂
⇒→→

⎪⎩

⎪
⎨
⎧

−=

=
∂

∂
⇒=→

⎪⎩

⎪
⎨
⎧

=

+−=
∂

∂
⇒>>

bounded).(but  0)(0)( and 0)(

reached) be(cannot  ;)(

;0)(
0)( and 0)(

;0)(

);()(
0)( and 0)(

i
ii

ii

iii

i

ii
iii

x
TETTx

T
x

TE
TTx

T
x

TE
TTx

*

*

*

x

x

x

ϕ

αψ
ϕ

ψ

δραϕ

 



 30

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++=
→

)

2
1

2
1

2
())((lim

2
2

2
2

2
max2

2

2
2

2
2

2

2
max3

2
2max

2
24

2

max

4
1201

x

va

x

va
xv

a
v
aatE

x ϕϕ

ϕϕx  for a two road 

network. 

Furthermore, it is true that the i/c-ratios are constant in the end time T: 
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4.4.5 Demarcation of attainability domain 
To determine the time T at which the end state is reached, one first assesses the time that 
is required to complete the construction works. For a network, the amount of initial 

capacity x0 that is worn down is: ;)1()(
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The time needed for the construction works to be completed, taking the instantaneous 
road wear into account, is: 
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The behavior of ψ proposed ensure that for all roads i, the inequality 
T

ii exTx δ−⋅≥ 0)( holds for all T≥0. Equation (4.8) is necessary to guarantee that 
. allfor )0()( 00

0 ixxexTx ii
T

iTi =⇔⋅= −
=

δ  And thus, the back casting procedure ensures 
that the original configuration is reached at T=0. 

 Furthermore, at time Ttraffic, the roads to be abandoned should no longer be in 
use: φi(Ttraffic)=0 if xi(T)→0. The actual end time T is now determined by the highest of 
the latter Ts: T=Max(Tinfrastructure, Ttraffic). If Ttraffic>Tinfrastructure, it implies that the residual 
capacities of the roads to be abandoned are still influencing the traffic flows over the 
network when the construction works are completed as fast as possible. It means that 
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the optimal end state of the network at t→∞ is outside the attainability domain at t=T. 
Figure 23 illustrates the latter reasoning. 

 
Figure 23. The shadow (red) surface of point capacity x2/ℓ2<600 vkm/h shows the domain that is 
unreachable at a certain moment τ. The arrow indicates the behavior of the system from τ until the 
final time T. The capacity of road1 x1 should be increased slowly, to match the reduction of road 
capacity on road2 x2 due to road wear. Therefore, between τ and T the construction activities are 
larger than zero, but might be less than the maximum construction effort: 0 < u(t)  ≤ umax if τ ≤ t ≤ 
T. 

4.4.6 Distributing the construction works over the roads 
The system has a certain inflexibility towards deliberate reduction of capacity. Consider 
now the previously described 2-road-network. Deducible from Figure 23, Figure 24 

plots the location of the minimum of the total energy use, or 0),(

1

21 =
∂

∂
x

xxg as function 

of the capacity of road2 x2. 
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Figure 24. Optimal capacity of road1 as function of a given capacity of road2. See also Figure 23. 

 For a large initial capacity x2 (x2/ℓ2>1232 veh/h), the lowest energy use in the 
attainable domain is reached at x1/ℓ1=2000 veh/h. As road wear on road 2 takes its toll, 
the point of lowest energy use jumps suddenly to x1/ℓ1=100 veh/h. The system cannot 
follow this sudden jump. Therefore, we should only consider networks in which the 
roads to be used should be upgraded. In the following reasoning, roads that need 
downgrading are removed from the control system: 

].,0[ allfor  0)()( 0 TttuxTx iii ∈=⇒<  

 In the period from t=Ttraffic down to t=Tinfrastructure , the construction activities are 
allocated such that the system remains in the configuration of the lowest total energy 
use within the attainable domain at time t. From t=Tinfrastructure down to t=0, the 
maximum construction effort umax is applied at all times t. 

 Consider now the behavior of the marginal energy benefit curves: 
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 The function ψi(t) is convex within certain limits of x(t), especially when 
x(T)>x0. In a numerical approximation, the back casting of this function to t=T-∆t might 
occur through11: 
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11 The examples shown in this report use a Runga-Kutta approximation. 
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 The construction works ui(t) now take place at the road with the lowest marginal 
energy benefit, due to the back casting. These construction works imply that the 
capacity at t=T is larger than at t=T-∆t, thus that the i/c-ratio is larger. A largest i/c-ratio 
generally implies larger net energy benefits. It also leads, through possible redistribution 
of traffic flows, to larger traffic flows on other roads, therefore also larger i/c-ratio's and 
larger net energy benefits on the other roads. Finally, the all time largest net energy 
benefit will occur on the road that is upgraded at time t=0, according with the theory. 

 Due to the convexity of ψ, the construction effort be distributed over roads with 

equal ψ such, that ))()(()( tTuTxE
x ii

i
ii Δ−−

∂
∂

++δρα  is equal for all roads 

considered. This uniform behavior continues until a road reaches the limit of its 
attainable domain, or: t

ii
iextx δ−⋅≤ 0)( . From this point backwards, no construction 

activities are allocated to that road. 

4.5 Results 
The backward-procedure has also been implemented for the two road system. In that 
case, it is assumed that ψT=0 for both roads, and that the values of ψi are kept identical 
(i.e. ψ1(t)= ψ2(t)) as long as possible, thus as long as xi(t)>x0

i(t)·e-δt. The result is that 
initial values of ψ0

1=28907.21 and ψ0
2=31338.33 give a final value of the functional of 

J=355·106 MJ. 
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Figure 25. Comparison of the best 'smoothing' result with the time-backward method. 

Finally, Figure 25 shows the comparison. The best 'smoothing' result has a value for the 
utility function of 351 TJ, whereas the value of the time backward method was 355 TJ. 
However, Figure 25 seems to indicate that this difference is a result of a slightly higher 
control effort. The modified time-forwards algorithm seems to allow for a slightly 
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higher total construction efforts than is allowed (u1+u2>umax). The net result is that the 
optimal network configuration is sooner reached. A better comparison would therefore 
be with the best result of the grid approach of section 4.2 and Figure 11. For this 
comparison, see Figure 26. 

In conclusion, figure 4 does not seem to contradict with a time-backward algorithm. The 
modified time-forward algorithm seems suitable in further study. 

Figure 26. Comparison of back casting and forecasting methods. 

5. Conclusion and discussion 

5.1. Methodological conclusion 
Grand road construction schemes can be devised using optimal control methodology. 
The model fabricated to demonstrate an application of the latter cannot be used for 
specific road projects. The optimal control trajectory can be tracked down by the 
following procedure. First, one should identify the possible and reachable end states. If 
the lowest value of the integrand of the utility function is within the attainability 
domain, the latter value coincides with the optimal end state. Second, one should 
determine the time that is needed to transform the original network to the desired 
network. Third, one should while backcasting, keep the marginal net energy benefit of 
all links in the network equal as long as possible; finally, one should do so until the 
boundary of the attainability domain is reached. From that point backward, the system 
will move along the edges of the attainability domain. 

The report shows that the procedure described provides a trajectory with a very low 
value for the utility function. However, the report does not prove that this good 
trajectory is also the optimal trajectory. Furthermore, several assumptions have been 
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made, most importantly that the optimal end state can be reached in finite time and that 
the road network should be build up and should not be worn down. 

The real life equivalents of the described mathematical procedure are that policy makers 
should be proactive in designing transport networks, should one want to use the 
infrastructure to minimize the energy use of transport (or the maximize the socio-
economic benefits of transport). 

5.2. Transport infrastructure change and the slowing of global warming 
Generally, construction and maintenance of road infrastructure play a limited role in an 
attempt to minimize the energy use of road transport. However, if one wants to enhance 
the capacity of a road connection to eliminate traffic jams that occur only during a 
limited period of time, the relevance of the infrastructure related energy use increases. 

Given common traffic intensity distributions, traffic jams for 15% of the time have been 
shown to be energetically optimal. Traffic jams for 5% of the time are economically 
optimal, which adequately reflects current Dutch policy practice. 

Policy measures that aim the reduce CO2 emissions by modifying transport 
infrastructure are not economically sound, as they are relatively expensive. 
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Figure 27. CO2 abatement costs as function of congestion risk. The figure implies that letting traffic 
jam occurences increase exist is not an economically-efficient approach to reduce CO2 emissions. 

One should keep the economic importance of infrastructure in mind in interpreting 
Figure 27. It is generally assumed that other economic sector can reduce CO2 emissions 
are costs below 100 €/ton CO2. From an environmental and economic perspective, one 
can expand the road capacity to (near) economic optimal values, provided that the 
increased CO2 emissions are compensated in other economic sectors.  
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