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Foreword

The optimization techniques is a key tool for analyzing complex socio-economic, envi-
ronmental and engineering systems. Increasing complexity of practical applications arise
various complications in using standard optimization methods. As a consequence, new
practical problems as a rule require appropriate adjustments and new developments of
existing methods.

This report deals with a rather difficult stochastic optimization models of engineering
design involving multiple competing objectives which can be estimated only by using
Monte Carlo type simulations. This situation is typical for various integrated assessment
models although the main goal of the report is to consider only the problem of conceptual
aircraft design. Accordingly, references and methods of this report reflect only approaches
primarily adopted in this field.

The essential feature of stochastic engineering design problems is their relatively
small dimensionality in contrast to general problems of stochastic optimization arising
in integrated socio-economic and environmental assessments. Using this fact, the author
develops a novel approach combining specific global stochastic optimization procedures
with multicriteria analysis.

This report documents the research the author advanced when she joined the Inte-
grated Modeling Environment (IME) Project during the Young Scientists Summer Pro-
gram (YSSP) 2006.

Yuri Ermoliev
Marek Makowski
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Abstract

A method is proposed for solving stochastic multi-objective optimization problems. Such
problems are typically encountered when one desires to optimize systems with multiple,
often competing, objectives that do not have a closed form representation and must be
estimated via simulation. A two-stage method is proposed that combines generalized pat-
tern search/ranking and selection (GPS/R&S) and Mesh Adaptive Direct Search (MADS)
developed for single-objective stochastic problems with three multi-objective methods:
interactive techniques for the specification of aspiration/reservation levels, scalarization
functions, and multi-objective ranking and selection. This combination is devised specif-
ically so as to keep the desirable convergence properties of GPS/R&S and MADS while
extending application to the multi-objective case.
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Search Techniques for Multi-Objective Optimization of
Mixed-Variable Systems Having Stochastic Responses

Jennifer G. Walston (jennifer.walston@afit.edu)* **

1 Introduction

With the advent of advanced numerical techniques for analyzing complex engineering
problems, engineers are seeking to integrate them into smart design processes. Thus,
optimization techniques have become increasingly important in engineering design prob-
lems, specifically in the area of conceptual aircraft design [1]. However, complications
arise when applying traditional optimization techniques to aircraft design. Such design
problems typically contain multiple, often competing, objectives [2, 3, 4, 5]. Addition-
ally, these objectives are often subject to measurement error or must be estimated with
simulations [6, 7, 8, 2]. Thus, multi-objective and stochastic optimization techniques
should be used.

1.1 Requirements Analysis

Because engineering design optimization and many other practical optimization applica-
tions are generally multi-objective and contain both stochastic elements and mixed vari-
ables, an optimization method capable of handling the following characteristics is desired.

1. Stochastic. Stochastic optimization algorithms able to determine the aforemen-
tioned Pareto frontier approximation for problems in which function evaluations
are known to contain measurement error or must be estimated via simulation. Fur-
ther, such an algorithm should be convergent to Pareto solutions thus guaranteeing
a representation of the frontier in the region of interest can be found. However, as
stated by Sriver [9], convergence for stochastic methods is usually given in terms
of probabilitye.g., with probability 1.

2. Multi-Objective. Algorithms capable of finding a reasonably accurate approxima-
tion of the Pareto frontier are desired for problems for which no preference infor-
mation is explicitly known or even exists. However, in many engineering design
problems, some information about desired performance goals, as well as minimum

* Operations Research Doctoral Candidate, Air Force Instituteof Technology, Department of Operational
Sciences (AFIT/ENS), Wright-Patterson Air Force Base, Ohio, USA.

** Disclaimer: The views expressed in this article are those of the author and do not reflect the official
policy of the United States Air Force, Department of Defense, or the U.S. Government.
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acceptable performance, does in fact exist. These so-called aspiration and reserva-
tion levels respectively can be used to determine a region of interest. Thus, in this
research, this type of preference information is assumed to exist.

3. General Purpose. An algorithm applicable to a wide range of problems, with any
combination of variable types, is desired. Additionally, such algorithms should be
indifferent or robust to the source of the function evaluations,i.e. the algorithm is
able to treat function evaluations as a “black-box.”

4. Efficient. To be practical and useful for real-world design problems, an algorithm
should perform well with respect to the number of function evaluations required.
In many design applications, such function evaluations will be obtained via costly
simulation runs and should therefore be used as parsimoniously as possible.

Therefore, the purpose of this research is to develop a general-purpose class of meth-
ods for solving multi-objective, stochastic optimization problems that apply to the mixed-
variable case and are indifferent to the source of function evaluations. Such methods
should be provably convergent to Pareto optimal solutions in the region of interest. Each
of these desired properties presents specific challenges (discussed in sections 1.2, 1.3, and
1.4). In response to these unique challenges, a method is proposed that would extend the
applicability of generalized pattern search with ranking and selection—developed by Tor-
czon and later extended by Audet, Dennis, Abramson, and Sriver [10]—and Mesh Adap-
tive Direct Search—developed by Abramson, Audet, and Dennis [11]—to multi-objective
problems through the use of interactive specification of aspiration/reservation levels [12],
scalarization functions [13], and multi-objective ranking and selection methods [14].

1.2 Modeling Uncertainty

Given a classical optimization problem, a myriad of classic solution methods are available
to the analyst (linear programming, steepest descent, etc.). But if parameters of the op-
timization problem are random, what changes to classical optimization must the analyst
make in order to smartly optimize this random system? The answer to this question is
class of solution methods called stochastic optimization and, as the name implies, deals
with systems in which one or more of the problem components—objective function(s)
and/or constraints—contain a random element. Similar to classic statistical modeling in
that one seeks to model a function by repeated sampling of a population; however, in this
case, the function is dependent not only on a random element, but also on controllable
design variables.

Such a problem can be formulated as shown in equations (1a)-(1d) wherex andω rep-
resent the controllable design variables and random environment-determining variables,
respectively. Thus, the task becomes findingx so that equation (1a) is minimized in
a certain sense over all feasiblex and all possible values ofω. Notions of feasibility
and optimality for stochastic systems are highly dependent on the specific problem under
study and must be precisely defined [15].

In this research, it is assumed that all constraints are deterministic and that the systems
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under study are those in which the objective function value cannot be explicitly evalu-
ated and must be estimated through some kind of simulation. Heresimulationrefers to
a generic numerical method by which input (control) variables are used to produce an
output measure of interest (response) [16, 10]. Therefore, in thissimulation-based opti-
mization, the observed system responseF (x, ω) is a function of both the design variables
and the random error associated with the simulation model. The problem is to minimize,
in a certain sense [15]

F (x, ω) (1a)

subject to

gi(x, ω) ≤ 0, i ∈ {1, . . . ,M} (1b)

x ∈ (<n1) (1c)

ω ∈ (<n2) (1d)

For example, for simulation-based optimization, it is typical to replace the general
form of the stochastic objective and constraint functions given in (1) with their mathemat-
ical expectations [15]. With this convention the observed response can be represented by
F (x, ω) = f(x) + ε(x) wheref is the deterministic, ”true” objective function andε(x) is
the random error function associated with the simulation whereE[ε(x)] = 0.

1.3 Optimizing Multiple Objectives

In addition to the complexity of design optimization problems due to the stochastic ele-
ment, often there exists no single criterion for choosing thebestsolution. In fact, even the
notion of “best” is not defined when multiple objectives are present because improvement
to one objective actually degrades the performance of another. Such objectives are called
competing objectives and are the motivation for the study of multi-objective optimiza-
tion; if the objectives were independent, they could be collapsed into a single objective
and classic solution techniques would apply [17]. The multi-objective optimization prob-
lem requires an order relation (or dominance relation) between potential solutions [18].
Though many different dominance relations have been proposed [18, 19], consider the
notion ofPareto dominanceor Pareto optimality. To find a Pareto optimal solution is to
find a solution corresponding to an objective function vector, to which no other solution is
superior in all objectives [20, 21]. There are several equivalent definitions of Pareto op-
timal solutions—also called non-dominated or efficient solutions—in the literature. For
the purpose of this research, considerDefinition 1.1[19].

Definition 1.1. A solution to a multi-objective optimization problem of the formmin
x∈Θ

F (x),

F (x) : (<nc ×Znd) → <J is said to Pareto Optimal at the point̂x if there is nox ∈ Θ
such thatFk(x) ≤ Fk(x̂) for k = 1, . . . , J andFi(x) < Fi(x̂) for somei ∈ {1, . . . , J}
[19].

1.4 Optimizing Over a Non-Continuous Decision Space

The complexity of these problems is further increased when the decision space is non-
continuous,i.e. there exist decision variables that are either discrete (e.g. integer valued)
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or categorical. Categorical variables are those which can only take on predetermined val-
ues that do not necessarily have an ordinal relationship to each other. However, categori-
cal variables can be mapped to discrete-numeric values, thus these two types of variables
are grouped and considered as a single variable type.

This characteristic of the decision space as non-continuous is common in engineering
design problems. For example, in the design of aircraft, certain design variables are
non-continuous. The number of engines is integer valued and the type (turboprop, turbo-
fan, etc.) and placement (wing, aft, or combination) of the engine are categorical. Other
non-continuous variables include airfoil type, wing configuration, and cabin layout. The
class of optimization problems that contains continuous, discrete-numeric, and categori-
cal variables is known asmixed variable programming(MVP) problems [10, 22].

In this research, the mixed variables are included as follows. The decision space is parti-
tioned into continuous and discrete variables,Ωc andΩd respectively, where the discrete
variables may include categorical variables as described previously. By further mapping
the discrete values to the integers, the discrete part of the decision space can be repre-
sented as a subset of the integers,i.e. Ωd ⊆ Znd wherend is the dimension of the discrete
partition. A solutionx ∈ Ω is denoted asx = (xc, xd) wherexc ∈ <nc andxd ∈Znd and
n = nc + nd is the dimension of the decision space [10][22].

1.5 Problem Formulation

Thus, with the inclusion of stochastic and multi-objective elements to the classic opti-
mization problem formulation, the problem can be formulated as:

minE[F (x, ω)] = E[f(x) + ε(x)] (2a)

subject to

gi(x) ≤ 0, i ∈ {1, . . . ,M} (2b)

x ∈ (<nc ×Znd) (2c)

f(x) : (<nc ×Znd)→ <J (2d)

1.6 Overview

The remainder of this paper is organized as follows. Section 2 briefly reviews several
existing solution methods for both stochastic and multi-objective problems, as well as the
few that exist for problems with both characteristics. Section 3 presents specific ele-
ments of the proposed methodology before the actual methodology is outlined in section
4. Results of a prototype algorithmic implementation of the method tested against a multi-
objective test problem with known results are presented in section 5. Finally, section 6
suggests areas for further research.
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2 Existing Methods

Though much research has been conducted in the individual areas of stochastic, multi-
objective, and mixed-variable programming, no single method encapsulates all of the
characteristics listed in section 1.5. Typically, solution methods are either applicable to
stochastic optimization or multi-objective optimization.

2.1 Stochastic Optimization Methods

Various solution techniques exist for stochastic optimization [15]. When a closed form
of the objective function is known, the optimization problem can be solved via standard
non-linear programming techniques like steepest descent, gradient projection methods,
and linearization methods. But if the closed form is not known, or it is difficult to obtain
values for the pdf, other methods must be used. Types of solution methods that estimate
the value of the objective function using simulation are aptly called simulation-based op-
timization. Simulation, though not an optimization technique per se, can be used in
conjunction with numerical methods of optimization to solve difficult optimization prob-
lems [15, 23]. Typical methods to solve simulation-based optimization problems include
response surface methodology [24, 10, 23]; the gradient-based finite difference stochastic
approximation [25, 26, 27, 28], stochastic quasi-gradient methods [15], and simultaneous
perturbation [29, 23]; gradient-free methods (also called direct search methods [9]) like
the pattern search method of Hooke and Jeeves [30], the Nelder-Mead method (also called
the downhill simplex method and flexible polygon search), [23, 31, 32, 33, 34], and gen-
eralized pattern search (GPS) [35]; and discrete optimization techniques like ranking and
selection techniques [36, 37, 23], meta-heuristics like simulated annealing [38, 39, 29],
genetic algorithms [38, 29, 39], and tabu search [40, 41, 39].

2.2 Multi-Objective Optimization Methods

Similarly, many solution methods also exist for multi-objective optimization. These
methods can also be sorted into 3 families:a priori methods, progressive methods, and
a posteriorimethods as well as into five sets: scalar methods, interactive methods, fuzzy
methods, methods that use a meta-heuristic, and decision aid methods. The scalar meth-
ods attempt to transform the multi-objective problem into a single-objective one so that
classic optimization techniques can then be used. Many examples exist including the
weighted sum of the objective functions method, Keeney-Raiffa method, distance-to-a-
reference-point method, and the lexicographic method [42]. Interactive methods, like
the surrogate-worth tradeoff method and the aspiration/reservation-based methods [12],
belong to the progressive methods family and thus allow the decision maker to tune pref-
erences with regard to tradeoffs as the methods progress [42]. The fuzzy methods, like
the Sakawa and Reardon methods, allow the modeler to deal with uncertainty and the im-
precision of human knowledge by allowing a progressive transition between states via the
membership function [42]. The meta-heuristics used for multi-objective optimization are
typically adapted versions of those used for single objective problems. Examples include
genetic algorithms [43], simulated annealing [38], and scatter search [44]. Decision aid
methods, like theELECTRE and PROMETHEE methods, are different from the other ap-
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proaches in that they set up an order relation between a given set of discrete alternatives
and thus provide a ranking (order) of solutions with respect to a set of criteria.

2.3 Stochastic Multi-Objective Optimization Methods

The few exceptions that apply to both types are limited in their applicability by simpli-
fying assumptions. Specifically, three methods were proposed by Baba and Morimoto
for the solution of multi-objective programming problems subject to noise: learning au-
tomata, random optimization, and stochastic approximation [45, 46]. Learning automata
is a reinforcement (or feedback) learning scheme where actions by the automaton pro-
duce results for which either a reward or punishment result. The feedback then changes
the probability of choosing that action. Baba and Morimoto show that an appropriately
chosen learning scheme ensures convergence to a ”reasonable solution” for a finite num-
ber of candidate solutions [45]. Additionally, they showed that a random optimization
algorithm ensures convergence to the Pareto-Optimal solutions. However, it is ensured to
converge only under strict assumptions on the decision space, solution space, and error.
They suggest further study to find a less restrictive result. Finally, Baba and Morimoto
propose a stochastic quasigradient method to solve the stochastic multi-objective opti-
mization problem. Under assumptions of continuity, compactness, and bounded error,
they show that the algorithm converges with probability one to the global solution [46].

3 Research Methodology

3.1 Method Integration and Extension

Given the number of previous methods for either multi-objective or stochastic optimiza-
tion that exist, it is reasonable to hypothesize that an appropriate combination of meth-
ods exists to address stochastic multi-objective optimization problems with mixed vari-
ables. Particularly, consider the following observations. Generalized Pattern Search
with Ranking and Selection (GPS/R&S) has been successfully developed for single ob-
jective, stochastic, linearly constrained problems and has been applied to a multi-echelon
repair system [47]. Additionally, GPS/R&S has been further extended (or generalized)
to include problems that are not linearly constrained. The extended method is called
Mesh Adaptive Direct Search. However, GPS/R&S and MADS in their current forms
apply to only single objective problems. Alternatively, interactive techniques using as-
piration/reservation levels and scalarization functions have been used successfully to find
Pareto optimal solutions to deterministic multi-objective problems [12]. Finally, a multi-
objective ranking and selection technique called multi-objective optimal computing bud-
get allocation (MOCBA), developed by Lee et al. [14] has been applied to selecting the
non-dominated set of inventory policies for aircraft maintenance, a discrete variable prob-
lem [48]. A brief description of each method follows.

3.1.1 GPS/R&S

Pattern search algorithms are defined through a finite set of directions used at each itera-
tion. The direction set and a step length parameter are used to construct a discrete set of
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points, or mesh, around the current iterate. The mesh at iterationk is defined to be

Mk =
⋃
x∈Sk

{x+ ∆m
k Dz : z ∈ NnD} , (3)

whereSk is the set of points where the objective functionf has been evaluated by the start
of iterationk, ∆m

k is called themesh size parameter, andD is a positive set that spansRn.
An additional restriction onD is that each directiond ∈ D, j = 1, 2, . . . , nD, must be
the product of some fixed nonsingular generating matrixG ∈ Rn×n by an integer vector
zj ∈Zn [49]. A finite set of trial points called thepoll setare then chosen from the mesh,
evaluated, and compared to the incumbent solution. If improvement is found, the incum-
bent is replaced and the mesh is retained or coarsened via the mesh size parameter∆m

k .
If not, the mesh is refined and a new set of trial points is selected. Initially developed by
Torczon, GPS was extended by Audet and Dennis to include non-linear constraints and
then by Abramson to the mixed-variable case.

The GPS framework, in conjunction with ranking and selection, was used by Sriver to
address the random response case. In this case, the poll set at each iteration is given by
Pk(xk)

⋃
N (xk) whereN (xk) is a user-defined set of discrete neighbors aroundxk and

Pk =
{
xk + ∆k(d, 0) : d ∈ Di

k

}
, (4)

where(d, 0) denotes that continuous variables have been partitioned and that the discrete
variables remain unchanged. A generic indifference-zone ranking and selection proce-
dureRS(Pk, α, δ), with indifference-zone parameterδ andsignificance levelα, is used
to select among points in the poll set for improved solutions,i.e. δ-near-best mean. If no
improvement can be found, an extended poll step is conducted to search amongst the dis-
crete neighbors of points in the poll set. Sriver showed that this solution algorithm has an
iteration subsequence with almost sure convergence to a stationary point “appropriately
defined” in the mixed-variable domain [10]. The mixed-variable GPS/R&S Algorithm is
shown in figure 1.

3.1.2 Mesh Adaptive Direct Search

Mesh Adaptive Direct Search (MADS) is a class of algorithms developed by Audet and
Dennis for minimization of nonsmooth functions of the typef : Rn← R

⋃
{+∞} under

general constraintsx ∈ Ω 6= ∅ ⊆ Rn. The feasible regionΩ may be defined by blackbox
constraints,e.g.computer code that returns a yes/no answer to wether a trial point is fea-
sible [49]. Thus, this class of algorithms is applicable to a wider range of problems than
GPS/R&S, such as non-linearly constrained problems.

MADS is similar to GPS/R&S in the generation of the Mesh and Poll sets (see equa-
tions 3 and 4 in section 3.1.1). However, though similar, the key difference is in the
generation of the poll set and the poll step. In MADS a separatepoll size parameter∆k

p

is introduced which controls the magnitude of the distance between the incumbent solu-
tion and trial points generated for the poll step. In GPS, only one value∆k = ∆p

k = ∆m
k

is used. In the poll step of MADS, the MADS frame (analogous to the poll set in GPS)
is defined to be

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk (5)
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• INITIALIZATION: Let X0 ∈ Ω, ∆0 > 0, ξ > 0, α0 ∈ (0, 1) andδ0 > 0.
Set the iteration and R&S countersk = 0 andr = 0 respectively.

• POLL STEP: Set extended poll triggerξk ≥ ξ. Use R&S procedure
RS(Pk(Xk)

⋃
N (Xk), αr, δr) to return the estimated best solutionŶ . Up-

dateαr+1 < αr, δr+1 < δr, andr = r+ 1. If Ŷ 6= Xk, the step issuccess-
ful, updateXk+1 = Ŷ , ∆k+1 ≥ ∆k, andk = k + 1 and return to POLL
STEP. Otherwise, proceed to EXTENDED POLL STEP.

• EXTENDED POLL STEP: For each discrete neighborY ∈ N (Xk) that
satisfies the extended poll trigger conditionF (Y ) < F (Xk)+ξk, setj = 1
andY j

k = Y and do the following.

– Use R&S procedureRS(Pk(Y
j
k ), αr, δr) to return the estimated best

solution Ŷ . Updateαr+1 < αr, δr+1 < δr, andr = r + 1. If
Ŷ 6= Y j

k , setY j+1
k = Ŷ andj = j+1 and repeat this step. Otherwise,

setZk = Y j
k and go to the next step.

– Use R&S procedureRS(Xk

⋃
Zk), αr, δr) to return the estimated

best solutionŶ . Updateαr+1 < αr, δr+1 < δr, andr = r + 1.
If Ŷ = Zk, the step is successful, updateXk+1 = Ŷ , ∆k+1 ≥ ∆k,
andk = k + 1 and return to the POLL STEP. Otherwise, repeat the
EXTENDED POLL STEP for another discrete neighbor that satisfies
the extended poll trigger condition. If no such discrete neighbors re-
main inN (Xk), setXk+1 = Xk, ∆k+1 < ∆k, andk = k + 1 and
return to the POLL STEP.

Figure 1: The Mixed-variable GPS Ranking and Selection (MGPS-RS) algorithm Algo-
rithm [10]
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• INITIALIZATION: Let x0 ∈ Ω, ∆m
0 ≤ ∆p

0, D, G, τ , w−, andw+ satisfy
the requirements of a MADS frame set given in Definition 2.2 of [49].
Set the iteration counterk← 0.

• SEARCH AND POLL STEP: Perform the SEARCH and possibly the
POLL steps (or part of them) until an improved mesh pointxk+1 is found
on the meshMk (whereMk is defined as for GPS in equation 3 in section
3.1.1).

– OPTIONAL SEARCH: EvaluatefΩ on a finite subset of trial points
on the meshMk.

– LOCAL POLL: EvaluatefΩ on the framePk (wherePk is as given
in equation 4 in section 3.1.1).

• PARAMETER UPDATE: Update∆m
k+1 according to definition 2.1 of [49]

and∆p
k+1 so that definition 2.2 of [49] is satisfied.

Setk ← k + 1 and go back to the SEARCH AND POLL step.

Figure 2: A General MADS Algorithm [49]

whereDk is a positive spanning set such that0 6∈ Dk and for eachd ∈ Dk the following
conditions must be met [49]:

• d can be written as a nonnegative integer combination of the directions inD : d =
Du for some vectoru ∈ NnDk that may depend on the iteration numberk,

• the distance from the frame centerxk to a frame pointxk + ∆m
k d ∈ Pk is bounded

above by a constant times the poll size parameter:∆m
k ‖ d ‖≤ ∆p

k max {‖ d′ ‖: d′ ∈ D},

• limits of the normalized setsDk =
{

d
‖d‖ : d ∈ Dk

}
are positive spanning sets.

The general MADS algorithm, as developed by Audet and Dennis, is shown in figure 2.

3.1.3 Interactive Specification of Aspiration/Reservation Levels and Scalarization
Functions

As shown in Figure 3(b), points on the Pareto front can be found by varying the relative
importance of the distance to a given point. Using the utopia pointU, any point between
pointsD andE can be found. By using aspiration pointA and varying the slope of the
ray emanating from it, points betweenB andC can be found. There are many methods
for determining which ray to use [51]. This particular method uses the reservation point
R as the second point in determining the direction of the ray [50]. This technique is
based on the assumption that the decision maker has an idea of what is desired for each
objective, as well as what minimum, or maximum, values are acceptable. These values
are referred to as the aspiration and reservation values, respectively;i.e. pointsA andR
discussed previously and shown in Figure 3(b). These values are then used inside of an
achievement scalarization function of the form shown in equation 6. The functionui is
called a component achievement function,i.e. a strictly monotone function of the objec-
tive vector componentsqi. An example of such a function is shown in equation 7 and
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(a) Component achievement functions for a
minimized criterion (figure 4 in [50]).

(b) Pareto solutions corresponding to different
component achievement functions (figure 3 in
[50]).

Figure 3: Graphical illustrations of functions used for analysis of Pareto optimal solutions

Figure 3(a). The maximization ofS(·) provides proper Pareto optimal solutions nearest
to the aspiration level.

S(q, q̄, q) = min
1≤i≤n

ui(qi, q̄i, qi) + ε

n∑
i=1

ui(qi, q̄i, qi) (6)

ui(qi, q̄i, qi) =

αiwi(q̄i − qi) + 1, qi < q̄i
wi(q̄i − qi) + 1, q̄i ≤ qi ≤ qi
βiwi(qi − qi), q

i
< qi

(7)

3.1.4 Multi-Objective Ranking and Selection

Lee et al. propose a performance index to measure the degree that a point is dominated
in the Pareto sense when the objective function evaluations are subject to noise. This
index can then be used inside of a ranking and selection framework to find the set of
non-dominated points rather than a single best point [20]. This performance index was
then used to develop the Multi-objective Optimal Computing Budget Allocation algo-
rithm (MOCBA). It has been shown that the observed Pareto set determined by MOCBA
approaches the true Pareto set asymptotically with probability 1 [14]. Thus, this method
can be substituted for the single objective ranking and selection method inside of the
GPS/R&S or MADS algorithms to develop multi-objective versions.
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3.2 Considerations

In the determination of the new solution methodology, this research considers the tradeoff
between the proven convergence properties of GPS/R&S and relative simplicity of scalar-
ization techniques. Additional considerations include the computational efficiency and
required CPU processing time of the methods [9, 52].

3.2.1 Convergence of Subproblems using GPS/R&S

The following are assumed:

1. The problem is of the formmin
x∈Θ

E[F (x, ω)], F̄ (x) := E[F (x, ω)].

2. Θ ⊆ (<nc ×Znd) represents the feasible, mixed-variable domain where the contin-
uous variables are restricted by bound and linear constraints.

3. F̄ (x) : (<nc×Znd)→ <J , i.e. there existJ multiple objectives̄Fi(x), i = 1, . . . , J .
Let I = {1, . . . , J}.

Lemma 3.1. Given a global minimizer of a convex combination of theJ objectives, i.e.

x∗ = arg min
x∈Θ

(
J∑
i=1

ciFi(x)

)
, ci ≥ 0 =⇒ x∗ is Pareto optimal.

Proof. Assume to the contrary thatx∗ is not Pareto optimal.
If x∗ is not Pareto optimal, byDefinition 1.1, there exists somex ∈ Θ such thatFk(x) ≤
Fk(x

∗) for k = 1, . . . , J andFi (x) < Fi (x
∗) for somei ∈ {1, . . . , J}. Thus, the

positive sum,
J∑
i=1

ciFi(x) <
J∑
i=1

ciFi(x∗). Which contradicts the assumption thatx∗ =

arg min
x∈Θ

(
J∑
i=1

ciFi(x)

)
. Therefore,x∗ is Pareto optimal.

Lemma 3.2. The sequence of iterates generated by GPS/R&S contains a limit point that
satisfies the first-order necessary conditions for optimality, almost surely (a.s.).

Proof. Follows directly fromTheorem 3.19andTheorem 3.24in the doctoral dissertation
of Sriver [9].1

Theorem 3.3. The sequence of iterates generated by each subproblem of stochastic multi-
objective pattern search (SMOPS) (as defined in section 4.1.1) contains a limit point that
meets the first-order necessary conditions for Pareto optimality, almost surely (a.s.).

Proof. The SMOPS algorithm generates each subproblem as a nonnegative combination

of theJ objectives of the original problem,i.e. Z(x) =

(
J∑
i=1

ciFi(x)

)
, ci ≥ 0. Each

subproblem is then solved using GPS/R&S. Thus, byLemma 3.2, the sequence of iterates

1Convergence in pattern search algorithms is dependent on the existence of bounded error in the selec-
tion of iterates. In GPS/R&S, ranking and selection is used as a means of error control during the search.
As proven by Sriver, with this condition satisfied, GPS/R&S converges almost surely to a stationary point
appropriately defined in the mixed-variable domain [10].
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produced in the subproblem contains a limit pointx∗ satisfying first-order conditions for
optimalitya.s.

By Lemma 3.1, if x∗ is globally optimal, it is also Pareto optimal. Thus, it follows that
the sequence of iterates produced in the subproblem contains a limit point satisfying the
first-order necessary conditions for Pareto optimalitya.s.

3.2.2 Convergence of Subproblems using MADS

The following are assumed:

1. The problem is of the formmin
x∈Ω

E[F (x, ω)], F̄ (x) := E[F (x, ω)].

2. Ω ⊆ (<nc ×Znd) represents the feasible, mixed-variable domain.

3. F̄ (x) : (<nc×Znd)→ <J , i.e. there existJ multiple objectives̄Fi(x), i = 1, . . . , J .
Let I = {1, . . . , J}.

Lemma 3.4. Let f be a single objective subproblem of SMOPS (as defined in section
4.1.1). Suppose that the sequence of iterates produced by the subproblem converges to
the solutionx̂ ∈ Ω. Then the set of refining directions for the entire sequence of iterates
is asymptotically dense inTHΩ (x̂) a.s. and the following hold.

• If f is Lipschitz near̂x, thenx̂ is a Clarke stationary point off on Ω with respect
to the continuous variables.

• If f is strictly differentiable at̂x andTHΩ (x̂) 6= ∅, thenx̂ is a Clarke KKT stationary
point off overΩ with respect to the continuous variables.

• If f is strictly differentiable at̂x, Ω is regular atx̂, andTHΩ (x̂) 6= ?, thenx̂ is a
contingent KKT stationary point off over Ω with respect to the continuous vari-
ables.

Proof. This lemma follows directly fromTheorem 3.13, Corollary 3.14, Corollary 3.16,
andTheorem 4.4in the work of Audet and Dennis [49].2

Theorem 3.5. Suppose the sequence of iterates generated by a subproblem of SMOPS
converges tôx ∈ Ω. Thenx̂ meets the first-order necessary conditions (in the forms
listed below) for optimality a.s.:

• If f is Lipschitz near̂x, thenx̂ is a Clarke stationary point off onΩ

• If f is strictly differentiable at̂x andTHΩ (x̂) 6= ∅, thenx̂ is a Clarke KKT stationary
point off overΩ.

• If f is strictly differentiable at̂x, Ω is regular at x̂, andTHΩ (x̂) 6= ∅, thenx̂ is a
contingent KKT stationary point off overΩ.

2Convergence in pattern search algorithms is dependent on the existence of bounded error in the selec-
tion of iterates. In GPS/R&S, ranking and selection is used as a means of error control during the search.
As proven by Sriver, with this condition satisfied, GPS/R&S converges almost surely to a stationary point
appropriately defined in the mixed-variable domain [10].
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Further, if x̂ is in fact globally optimal, it is also Pareto optimal.

Proof. The SMOPS algorithm generates each subproblem as a nonnegative combination

of theJ objectives of the original problem,i.e. Z(x) =

(
J∑
i=1

ciFi(x)

)
, ci ≥ 0. Each

subproblem is then solved using MADS. Thus, byLemma 3.4, the limit pointx̂ satisfies
first-order conditions for optimality,i.e. is a stationary point,a.s.

Therefore, byLemma 3.1, if x̂ is optimal, it is also Pareto optimal.

3.2.3 Quality of the Pareto Set Approximation

Though solving the set of subproblems results in a set of Pareto optimal solutions, such a
set is only an approximation of the true, most-likely infinite, set that describes the Pareto
frontier. If this frontier is well-behaved, the given approximation most likely will be
adequate. However in realistic problems, like engineering design optimization, this may
not be the case. As discussed by Collette and Messac et al., under certain conditions, a
distance to a pointmethod like Aspiration/Reservation level analysis will find most Pareto
solutions [42, 53]. However, in general, if the frontier is non-convex or discontinuous, the
aforementioned approximation to the Pareto front may still be missing points of potential
interest. Thus further investigation is required to determine if other Pareto points exist
outside the approximated set.

4 Proposed Method

To extend/integrate these solution methodologies into something that applies to multi-
objective, stochastic, and mixed-variable cases, a two-stage method is proposed. In the
first stage, a convex combination of objectives, via scalarization functions and aspira-
tion/reservation levels of the decision maker, is used to determine an approximation of
the Pareto front in a region of interest. For each single objective sub-problem, GPS/R&S
or MADS can be used to determine a Pareto solution. However, since the actual Pareto
frontiers of typical design optimization problems are not likely convex [53], some points
in the Pareto frontier may not be found from a combination of objectives (see note in
Section 3.2.3). Thus, a second stage is added to further investigate the region of interest.
In this stage, the single-objective ranking and selection routine inside of GPS/R&S is re-
placed with MOCBA, so that the discrete points in the mesh can be evaluated with respect
to multiple objectives. A graphical representation is shown in figure 4 and descriptions
of each step follow.

4.1 Stage One

4.1.1 Aspiration and Reservation Level Analysis

As discussed in section 3.1.3, the multiple objectives are combined into a single objective
problem of the form shown in equation 6. Each subproblem, or choice of aspiration and
reservation levels, produces a point on the Pareto front approximation. There are many
ways to produce test points. Historically, in interactive specification of aspiration and
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Figure 4: Stochastic Multi-objective Pattern Search (SMOPS)

reservation levels, a decision maker was actively involved in choosing these points [12].
However, if this interaction is not possible or if the decision maker has only specified a
range of values for aspiration and reservation levels, some other method must be used. In
the case where a range of values has been specified, the problem is that of determining
an approximation to the Pareto frontier within a region of interest. Such a problem is
similar to that of approximating a response surface with aspiration and reservation levels
as the decision variables. Thus, experimental design methods from response surface
methodology should apply. Three methods were chosen to include in this method.

1. Full Factorial Design. The full factorial design has as a design point every possible
combination of decision variables (aspiration and reservation levels) and levels of
those variables. Though full factorial designs provide information about linear,
interaction, and quadratic effects, designs become impractically large for relatively
few numbers of design variables and levels. Particularly, in this method, the number
of design variables grows twice as fast as the number of objective functions, so the
full factorial design is only practical for very small problems.

2. Central Composite Design. The central composite design is a variance optimal
design used to fit second order models. It is considered quite useful for sequen-
tial experimentation. With this model, information about linear, interaction, and
quadratic terms of the response model can be determined with relatively few design
points [54].

3. Box-Behnken Design. The Box-Behnken design was developed as a three level
alternative to the central composite design. It is a spherical design that provides
good coverage of the design space in general. However, because it is spherical, vice
cuboidal, it should not be used if the decision maker is particular concerned with
the extreme points of the given range of aspiration and reservation levels [54].
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4.1.2 GPS/R&S for Problems with Linear Constraints

This step of SMOPS uses the NOMADm implementation of GPS/R&S [55] to solve each
single objective subproblem of the form discussed in section 3.1.3. GPS/R&S is dis-
cussed in detail in section 3.1.1 and has been shown to have good convergence properties.
(See section 3.2.1 and [9].)

4.1.3 MADS for Problems with Non-Linear Constraints

Similarly, this step of SMOPS uses the NOMADm implementation of MADS [55] to
solve each single objective subproblem of the form discussed in section 3.1.3. MADS
is discussed in detail in section 3.1.2 and has also been shown to have good convergence
properties. (See section 3.2.2 and [49].)

4.1.4 Adding Points to the Efficient Set

Each subproblem by design, should produce an efficient point. In deterministic prob-
lems this is always the case (seeLemma 3.1). In stochastic problems, as the number
of iterations of the single objective solver is allowed to approach infinity, the solution
converges to an efficient point with probability one (seeTheorem 3.2.1). However, in
practice, the number of iterations is finite. Thus, the addition of dominated points is
possible. Therefore, in future research, a filter will be added to ensure that a point is
non-dominated before it is added to the efficient set. Additionally, the filter will check
to see if the new point dominates other points in the current efficient set. Multi-objective
ranking and selection [14] will be used to determine if a point is dominated (see sections
3.1.4 and 4.2.2).

4.1.5 Tests for Quality of the Pareto Set

An exact Pareto set may have an infinite number of efficient points. Any multi-objective
solver will provide only an approximation of that set. Thus, an item of interest to users
of a solver is the quality of its approximation of the Pareto set. Relatively few papers
in the literature focus on quality metrics for Pareto set approximations and most make
the assumption that the true set is knowna priori. Because this research is intended for
applications like engineering design optimization, assumptions of this type are likely to
be invalid. Thus, the quality metrics introduced by Wu and Azarm will be used in future
research to assess the quality of the Pareto set because these metrics measure the quality
(accuracy, spread, cluster, etc.) of points in the approximated set without any knowledge
of the true Pareto set [56].

4.2 Stage Two

As discussed in section 3.2.3, some efficient points may not be found via interactive spec-
ification of aspiration/reservation levels and scalarization functions of the type discussed
in section 3.1.3. Therefore, a second (optional) stage will be added in future research
for those cases in which missing points may pose a particular problem. In this stage, a
discrete mesh (similar to that used for GPS/R&S and MADS) around the current efficient
points will be determined and then a multi-objective ranking and selection algorithm will
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(a) Objective Space (b) Design Space Showing Mesh

Figure 5: Notional Approximated Pareto Set and Mesh for a Two-Objective Problem with
Two Design Variables

be used to check for new efficient points on the mesh. A graphical representation of a
notional problem is shown in Figure 5.

4.2.1 Creation of the Mesh

The discrete mesh determined for this step is similar to the frame used by MADS (see
section 3.1.2). The mesh is given by

Me =
⋃
x∈Se

{x+ ∆m
e Dz : z ∈ NnD} , (8)

whereSe is the set of efficient points found in stage one,∆m
e is the mesh size parameter,

andD is a positive set that spansRn.

4.2.2 Multi-Objective Ranking and Selection

A version of Multi-objective Optimal Computing Budget Allocation algorithm (MOCBA),
developed by Lee et al. will be used to check for new efficient points on the mesh. As dis-
cussed in section 3.1.4, MOCBA has been used successfully for multi-objective ranking
and selection problems [20, 48] and that the observed Pareto set determined by MOCBA
approaches the true Pareto set asymptotically with probability 1 [14].

5 Implementation of the Solution Methodology

There exists single objective GPS/R&S and MADS software, called NOMADm, designed
to run inside of the MATLABr computing environment [55]. This software has been
verified on several single objective stochastic test problems [9] and has been used in a
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multi-echelon repair system optimization application [47]. This software will be ex-
tended to include the multi-objective case by embedding it as the single-objective sub-
problem solver as described in section 4. Though interactive decision aid software exists
for deterministic optimization problems [12, 50], such code is not written in MATLABr
and would have to be integrated. Thus, existing multi-objective code will not be used in
this research and the required code will be written in MATLABr during future research
(see section 6.1). As an initial proof of concept prototype, NOMADm was manually
connected (analyst in the loop) with scalarization/Aspiration/Reservation logic to test the
performance of stage one of the algorithm. Stage two requires internal modification of
NOMADm software and will be developed in further research. Results of the test are
given in section 5.1.1.

5.1 Testing

The accuracy of the final version of the algorithm will be verified via a set of test prob-
lems having known solutions. These test problems will be modified (e.g. the Matlabr
RAND function in each objective function evaluation) to introduce random noise into
the objective functions to simulate the algorithm’s use on a stochastic system. Initially,
the prototype was verified by its use on the test problem developed for multi-objective
evolutionary algorithms by Viennet given in equation 9(a-c) [57].

min F1(X1, X2) = (X1−2)2

2
+ (X2+1)2

13
+ 3

F2(X1, X2) = (X1+X2−3)2

175
+ (2X2−X1)2

17
− 13

F3(X1, X2) = (3X1−2X2+4)2

8
+ (X1−X2+1)2

27
+ 15

(9a)

subject to

4X1 +X2 − 4 < 0
−X1 − 1 < 0

X1 −X2 − 2 < 0
(9b)

X1, X2 ∈ [−4,+4]2 (9c)

5.1.1 Test Results

The algorithm was tested over a range of aspiration and reservation levels using three
different experimental designs: central composite design with 59 design points, Box-
Behnken design with 54 design points, and full factorial design with 4,096 design points.
Five replications were used at each design point. Each run took less than a minute (with
500 function evaluations) running in Matlab 7.2.0 on a 2.13GHz Pentium(R)M processor
with 1GB of RAM.

Initial results are quite promising and are shown in Figure 6. The initial runs fall in-
side the published Pareto set (see Figure 6(a)) implying that stage one of the algorithm
is indeed converging to Pareto solutions. The two-dimensional projections of the exper-
imental Pareto front appear to approach a reasonable approximation to the actual Pareto
front. However, it is noticeable that the effect of random noise is more prominent in
objective two. This results from how the test problem was constructed. The Matlabr

RAND function was used in each objective function without scaling. This random noise
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(a) Pareto Set for Deterministic Test Prob-
lem, Figure 7 in [57]

(b) Initial Test Results for Test Problem
with Added Noise using Central Compos-
ite Design

(c) Initial Test Results for Test Problem
with Added Noise using Box-Behnken De-
sign

(d) Initial Test Results for Test Problem
with Added Noise using Full Factorial De-
sign

Figure 6: Comparison of Initial Test Results to Published Solution

is much larger in comparison to objective two than compared to objectives one and three.
In future testing, the noise will be scaled to account for differences in the size of the
objective functions. Additionally, because number of iterations of the algorithm is nec-
essarily finite, the filter as described in section 4.1.4 will be added to prevent potentially
dominated points from entering the efficient set.

6 Future Work

6.1 Integrated Software

This research provided the algorithmic methodology for a two-stage solution process.
However, because the the first stage will converge to an approximation of the Pareto
optimal set, its performance was tested on a simple test problem as an initial proof of
concept exercise. Future research will integrate a multi-objective ranking and selection



– 19 –

algorithm into NOMADm in order to implement the second stage of the algorithm (see
sections 3.1.4 and 4.2). Both stages will then be integrated with NOMADm into a single
graphical user interface so that interactive specification of aspiration/reservation levels
can be accomplished without manual “hand-jamming”of the functions. Additional areas
of future research follow.

6.2 Automated Decision Agent

Section 4.1.1 discusses the experimental design built to investigate a range of values of
aspiration and reservation levels. If instead, an automated decision agent could be de-
veloped, it may provide better insight to the decision maker. In fact, even the decision
strategies of a decision maker could be investigated,e.g. conservative versus intrepid
decision strategies.

6.3 Extensive Testing

After both stages of the algorithm are tested on the simple test problem, the algorithm
will be tested on multi-objective test sets as suggested by Deb [58] and Van Veldhuizen
[59]. These sets are multi-objective but deterministic. Therefore, random noise will be
added to function evaluations to emulate objective function measurement error or the use
of simulation.

6.4 Engineering Design Optimization Application

After thorough testing on standard test problems, the algorithm will be applied to a real-
world optimization problem. As discussed previously aircraft design problems contain
multiple objectives. (Examples of multi-objective aircraft design problems can be found
in [2, 3, 4, 5].) Additionally, these objectives are often subject to measurement error or
must be estimated with simulations. (Examples of simulation used in aircraft design
can be found in [6, 7, 8, 2].) The algorithm should be well suited to solving this type
of problem and thus will be applied to an aeronautical engineering design optimization
problem.

6.5 Algorithm Termination Criteria

Even if an algorithm is known to converge, the reality of imprecision and roundoff errors
make it a necessary to predetermine stopping criteria. Traditionally in pattern search
methods, this is accomplished by stopping the algorithm when the step size is less than
a threshold value,i.e. ∆k ≤ ∆T [30, 9] where∆k is defined as in equations 4 and 5.
However, in a stochastic environment, termination criteria are typically more complex.
Too small a value of∆T may increase the required sample size of the ranking and se-
lection portion of the algorithm to an unacceptable level, whereas too large a value may
induce premature termination [9]. Thus, an in-depth study of appropriate termination
criteria is necessary for practical implementation of the algorithm. Therefore, it is an
objective in future efforts of this research to develop heuristic stopping criteria based on
based on differences in competing responses compared to variations in the responses and
the practically required tolerance of the solution.
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7 Conclusion

In this paper, a research approach is suggested that extends the applicability of GPS/R&S
and MADS single-objective stochastic optimization algorithms to include problems with
multiple objectives via a two-stage algorithm that incorporates the multi-objective opti-
mization methods of interactive specification of aspiration and reservation levels, scalar-
ization functions, and multi-objective ranking and selection. This combination is devised
specifically so as to keep the desirable convergence properties of GPS/R&S and MADS
while extending application to the multi-objective case. Initial testing of stage one has
been conducted on a test problem with known solutions. In further research, stage two
will be tested, integrated software for both stages of the algorithm will be developed,
thoroughly tested, and then applied to an aircraft design optimization problem.
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