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INTRODUCTION

Optimization methods are of a great practical importance

in systems analysis. They allow us to find the best behavior

of a system, determine the optimal structure and compute the

optimal parameters of the control system etc. The development

of nondifferentiable optimization, differentiable and nondiffer­

entiable stochastic optimization allows us to state and effec­

tively solve new complex optimization problems which were im­

possible to solve by classical optimization methods, for instance

optimization problems with numbers of variables in the order of

100
100

•

The term nondifferentiable optimization (NDO) was introduced

by Balinski and Wolfe [1] for extremum problems with an objective

function and constraints that are continuous but have no contin­

uous derivatives. Now this term is used also for problems with

discontinuous functions though it might be better to use for

them the terms nonsmooth optimization (NSO) or, in particular,

discontinuous optimization (DCO).

The term stochastic optimization (STO) is used for stoch­

astic extremum problems or for stochastic methods that solve

deterministic or stochastic extremum problems.

Nondifferentiable and stochastic optimization are natural

developments of classic optimization methods. The interest in

nondifferentiable optimization and stochastic optimization is

based on two reasons: first, as has been mentioned above a wide

range of new applied problems cannot be solved by the classic

methods; secondly, the possibility of reducing known difficult

problems to nondifferentiable or stochastic optimization prob­

lems that permit obtaining their solutions.

For example, from the conventional viewpoint, there is no

principal difference between functions with continuous gradients

which change rapidly and functions with discontinuous gradients.

Some important classes of nondifferentiable and stochastic

optimization problems are well-known and have been investigated
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long ago: problems of Chebyshev approximations, game theory

and mathematical statistics. However, each of these classes

was investigated by its own "homemade" methods. General ap­

proaches (extremum conditions, numerical methods) were developed

at the beginnning of the 1960's. The main purpose of this

article is to review briefly some important applications of non­

differentiable and stochastic optimization and to characterize

principal directions of research. Clearly, the interests of

the author have influenced the content of this article.

1. APPLICATIONS OF NDO & STO

Let us consider some applied problems which require non­

differentiable optimization and stochastic optimization methods.

Optimization of Large-Scale Systems

Many applied problems lead to complex extremum problems

with a great number of variables and constraints. For example,

there are linear programming problems with a number of vari­

ables or constraints in the order of 100 100 . Formally such

problems have one of the following forms:

n
L a Oj x j = min (1)

j=1

n
L a .. (8) x. > b i (8) 8 E e, i = 1 ,m (2 )1) )

,
j=1

x. > 0 j = 1 ,n (3))

or

L d O(8) x(8) = min
8E e

L d i (8) x(8) > S. i = 1,m
8Ee

1

x (8) > 0 8Ee

(4)

(5 )

(6 )
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Here 8 is a given discrete set, for example

a· .( e) =
1)

r ~L d ..8 n + ex ..
~=1 1J IV 1J

r

L
~=1

. 8 n + S·
1 IV 1

r
8= {8=(8 1 ,···,8 r ): L y~8~2.y,8~=+1,~=1,r}

~=1

Clearly that for this case the total number of constraints
ris equal to 2 • m.

On the other hand these constraints have a form which does not

impose heavy demands on the computer core and one can try to

find their solution with the known methods of linear programming

[2]. However, the number of vertices of the feasible polyhedral

set for such problems is so large that the application of the

conventional Simplex method or its variants yield very small

steps at each iteration and consequently very slow convergence.

Moreover the known finite methods are not robust computational

errors. The reduction of these problems to problems of nondiffer­

entiable or stochastic optimization made it possible to develop

easily implemented iterative decomposition schemes of the gradient

type. These approaches do not use the basic solution of the

linear programming problem which enables to start the computa­

tional process from any point and leads to computational stabi­

lity. Furthermore, these methods converge faster in practice.

Consider the problem (1) - (3). It can be reduced to the

nondifferentiable optimization problem

fO(x)
n

= L a Oj x j = min (7)
j=1

fi(x) C - b j (0l)= max L a .. (8) x. > 0, i = 1 , m (8 )
8E8 j=1 1J J

x. > 0
J

j = 1,n ( 9 )
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which has only m constraints.

We consider now some schemes of decomposition which are

described in [3]. Let the linear programming problem have the

form

(c,x) + (d,y) = min

Ax + Dy ~ b

x > 0 y > 0

We assume that for fixed X it is easy to find its solution

y(x) with respect to y. For example the matrix D may have a

block diagonal structure, with x being the connecting variables.

The main difficulty here is to find the value x* of the optimal

solution (x*,y(x*». The search for x* is equivalent to the

minimization of the nonsmooth function

where

f(x) = (c,x) + min (d,y) = (c,x) + (d,y(x)}
Dy>b-Ax

y>O

Another approach is to consider the dual problem:

(u,b) = max

uD < d

uA < 0

u > 0

Let us examine the Lagrangean function

(u,b) + (c-uA,x) = (c,x) + (u,b-Ax)

( 10)

uD < d u > 0 x > 0

In this case the search of x* is equivalent to the minimi­

zation of the nonsmooth function (the well-known Dantzig-Wolfe-
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decomposition is based on this principle)

f (x) = (c,x) + max (u,b - Ax) for x > 0
uD<d,
u>O

( 11 )

A subproblem of minimization with respect to variables u, subject

to

uD < d u > 0

is solved easily because the matrix D has a special structure

by assumption.

A parametric decomposition method [4] reduces linear pro­

gramming problems which do not have block diagonal structure to

nondifferentiable optimization problems by introducing additional

parameters. In this case there is the possibility to split the

linear programming problem into arbitrary parts, in particular

to single out subproblems corresponding to blocks of nonzero

elements in the constraint matrix. An analogous idea was also

used in [5,6].

Let us analyse the general idea of the method using the

concrete example

Y3 = min

a 11 y 1 + a 12Y2 + a 13Y3 < b 1

a 21 Y1 +la22 y 21+ a 23Y3 < b 2

where

b 1 ~ 0 b 2 ~ 0 Y1 ~ 0 i = 1 ,2,3

( 12 )

(13 )

Let it be necessary to cut this problem, for example, into

three parts as it is shown in constraints (13).

Consider the following subproblem: for the given variable

x = (x11,x12,x21,x22,x23) > 0 find Y1 ~ 0, Y2 ~ 0, Y3 > 0 for
which
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Y3 = . min

a 11 y 1 + a 22Y2 < x 11 a 13Y3 < x 12

a 21 Y1 < x 21 a 23Y3 < x 23 ( 1 4)-

a 22Y2 < x 22

This problem comes to the three subproblems with the

desirable structure. If the minimal value of Y3 is denoted as

f(x} then it is easy to show that solving the problem (12) - (13)

is equivalent to solving (14) for such x which minimizes the

nondifferentiable function f(x} under the constraints:

x 11 + x 12 < b 1
( 15)

x 21 + x 22 + x 23 2 b 2

x
Y

> 0 i = 1 ,2; j = 1,2,3

Similar methods are conveniently applied in the linkage of

submodels.

Discrete Programming, Minimax Problems, Problems of Game

Theory

The use of duality theory for solving discrete programming

problems [1,2] of large dimension necessitates the minimization

of nondifferentiable functions of the kind

f(x} = max
yEY

n
( La. (y) x. - b (y) )
j=1 J J

where Y is some discrete set. This problem reduces to problems

of the kind (1) - (3) (if we use methods of classical optimization):
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= min

n
La. (y) x. - b (y) < xn+1

j=1 J J -
yEY

x. > 0
J

j = 1,n

However, solution of this problem by linear programming

methods is out of question and therefore NDO should be used for

minimization of the associated function (16) below.

More general deterministic minimax problems are formulated

in the following manner [7,8]: For a given function

g(x,y},
n

XEX~R

it is necessary to minimize

f(x} = max g(x,y} = g(x,y(x}}
yEY

( 16)

for x EX. Independently of the smoothness of g (x ,y) the function

f(x} as a rule has no continuous derivatives. A particular class

of the minimax problems arises in approximation theory, e.g. in

problems of the best Chebyshev approximation of the function r(y}

by linear combinations of the functions OJ (y) :

g(x,y} = /r(y} - £ x.o.(y}\
j=1 J J

Similar problems arise in mathematical statistics, in game

theory with zero sum games, in filtration theory, identification,

approximation by splines etc.

A solution of systems of inequalities

d i (x) < 0 i = 1,m

for g (x,y) = d y (x), Y E Y = {1, 2, ••. ,m} can be reduced to min­

imization of the function (16). This idea was used in the work
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[9] for computing economic equilibria through nonsmooth optimi­

zation. A solution of the general problem of nonlinear pro­

granuning

min o i{f (x), f (x) < 0 , i = 1 , m , xEX}

can also be reduced to this problem, if it is assumed that

In game theory, and in the theory multiobjective optimi­

zation, more complex problems arise in the minimization of the

function

f(x) = g(x,y(x))

for x E X where y (x) is such that

h(x,y(x)) = max h(x,y)
yEY

( 17)

Independently of the smoothness of the functions g(x,y),

h(x,y) the fun~tion f(x) in the given case will have no. con­

tinuous derivatives and will be discontinuous in general. For

h(x,y) = x .y, g(x,y) = x + y, Y = [1,1], we obtain

__ { 1,
Y (X)

-1 ,

if x > 0

if x < 0

The function h(x,y(x)) = xy(x) = Ixl is continuous but does not

have continuous derivatives at the point x = O. Function f(x) =
x + y(x) is discontinuous. That is why the value of such

models in applications depends on the development of numerical

methods for discontinuous optimization.
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Optimization of Probabilistic Systems

Taking into account the influence of uncertain random

factors even in the simplest extremum problems leads to complex

extremum problems with nonsmooth functions. For example for

deterministic w a set of solutions of the inequality

wx <

where w, x are scalars, defines a semi-axis. If w is a random

variable it is natural to consider the function

f(x) = p{wx < 1}

and to find x which maximizes f(x). If w = ~ 1 with probability

0.5 then f(x) is a discontinuous function (see Figure 1).

(x)

1

I
I

-1 o

Figure 1

Since many complex systems are under the influence of the

uncertain random factors, nonsmooth optimization becomes even

more important.

Health Care Systems: Patients may be sick for random time

intervals, the diagnosis, the results of medical treatments are

partly random, epidemies are similar to random processes, acci­

dents are random as well, and so on.
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Communication and Computer Networks: Unreliability of

facilities and channels, random character of the load etc.

Food and Agriculture: Harvests are strongly dependent upon

weather fluctuations which are essentially random, technological

progress, demands, supply of resources, forecasting investment

for the development of new ideas, for new kinds of products etc.

A rather general problem of the stochastic programming can

be formulated [10] as follows

min o i
{ F (x): F (x) 2. 0 , i = 1 , m, XEX} ( 1 8)

where
\)= Ef (x,w) = Jf\)(x,W)P(dW) \) = O,m (19)

Here f\)(x,w), \) = O,m are random functions, and w is a

random factor which we shall consider as an element of the

probability space (Q,A,P). For example conditions like

i
P{g (x,w) 2.p} ~ Pi i = 1,m

become constraints of the type (18) - (19) if we assume that

p. - 1, if i 0g (x,w) <
i 1

f (x,w) = ip. if g (x,w) > 0
1

The problem is more difficult than the conventional nonlinear

programming problem.

It has been noted above that taking into account random

parameters even in simple linear programming.problems leads to

nondifferentiable optimization problems. The main difficulty

of the problem (18) - (19), besides the nondifferentiability, is

connected with the condition (19). The examples considered

below show that as a rule it is practically impossible to compute

the precise values of the integrals (19) and therefore one can

not calculate the precise values of the functions F\)(X).
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Usually only values of the random quantities fV(x,w) are avail­

able instead of FV(x). To determine whether the point x satis­

fies the constraints

i= E:,f (x,w) < 0 i = 1,m

is then a complicated problem of verifying the statistical hypo­

thesis that the mathematical expectation of the random quantities

fi(x,w) is nonpositive.

Other applications

Many applied problems reduce to problems of optimal control

with discontinuous trajectories (in state space), for example in

impulse control, and in the control of systems with varying

structure. In inventory control theory a trajectory of the sys­

tem is discontinuous at the instances of deliveries, and (Fig. 2)

here the value of the discontinuity can serve as control variable.

storew

:\

'------------------.:::.t

stor

insur- r------..JL------~--__~L__
ance
store

Figure 2 Figure 3

In static inventory problems the cost function has a graph

as shown in Figure 3, wherew is demand, d, S are the store

expenditures and losses respectively.

Very important applications which lead to nondifferentiable

and stochastic optimization problems are the problems of long
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term planning. In these problems a typical cost function versus

the output is given in Figure 4.

cost '1'

output

Figure 4

The steps of this function correspond to additional recon­

struction investments for larger-scale plants.

Let us consider a model of long-term planning

composition of an agriculture machinery park [10].

be a quantity of work of the ith kind (harvesting,

at the kth period, xij(k) is the number of machines

type for the ith kind of work; W, ,(k) is a shift in
1J

ance of the machines. It is required to minimize

for optimal

Let b i (k)

planting etc.)

of the jth

the perform-

I C., (k) x' ,(k) + I
, , k 1J 1J J'1,J,

max
k

I x .. (k) Ak
i, j 1J

I w, , (k) x' ,(k) > b, (k) x' ,(k) > 0
j 1J 1J - 1 1J

where Cij(k) are shift expenses, Ak are annual depreciations.

If we take into account that b. (k) are usually random values
1

we obtain a stochastic minimax problem.
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2. ON EXTREMUM CONDITIONS

The peculiarity of nondifferentiable and stochastic optimi­

zation problems in comparison with the classic problem of de­

terministic optimization becomes apparent already in optimality

conditions. If f(x) is a convex differentiable function then

the necessary and sufficient conditions of the minimum have the

form:

where

(20)

f =x
af af

ax 1 , ••• , aX
n

In the nondifferentiable case this condition transforms into

requirement (Figure 5)

(21)

where

is a set (the subdifferential) of generalized gradients (the
'"subgradients). These vectors f (x) satisfy the inequalityx

f(y) - f(x) > Vy (22)

It should be noted that the notation fx(x) for a subgradient

used here is convenient in cases where a function depends on
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several groups of variables and the subgradient is to be taken

with respect to one of them. (This occurs in minimax problems,

problems of two-stage stochastic programming etc. which are con­

sidered below.)

The complexity of nondifferentiable optimization problems

results from the impossibility of practical usage of (21) for

the answer to the question whether a specific point x may be a

point of the minimum of f(x).

This discussion requires testing whether the O-vector

belongs to the set {fx(x)} which usually has no constructive

description. A further complication is checking the conditions

(20), (21) by statistical methods. For example verifying the

statistical hypothesis that for fixed x the mathematical expec­

tation of the random vector fx(x,w) is 0, that is, whether

Ff (x,w)- x = 0

Deterministic Methods of Nondifferentiable Optimization

There are two different classes of nondifferentiable opti­

mization methods: the non-descent methods which started their

development in the early 60's at the Institute of Cybernetics in

Kiev [11,12] and the descent ones which appeared in the '70's in

the western scientific literature (see [1] for a bibliography).

Let us discuss briefly the basic ideas of these two ap­

proaches.

An attempt to generalize the known gradient methods of the

kind

s+1
x = s=0,1, ...

where X
s is an approximate solution at the s-th iteration, and

ps are step-size multipliers, for functions f(x) with a discon­

tinuous gradient requires definition of an analogue of the

gradient at points where the usual gradient does not exist.

For almost differentiable functions the definition is made by
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limit transfer. A generalized gradient (almost gradient) of

the almost differentiable function f(x) at point x is a vector
A

fx(x) belonging to the convex hull of the limit points of all

sequences {f (xs )} where {x
s

} is a sequence of points at whichx
the gradients fx(x

s
) exist and whose limit point is x.

A

If f(x) is a convex function we get a set of vectors fx(x)

which satisfy (22).

Let us note that a convex function has a gradient almost

everywhere. There are classes of problems however, in which

every point with rational coordinates has no gradient and there­

fore, in any computational process at each iteration, we have

to deal with a point of nondifferentiability.

Principal difficulties are connected with the choice of

step multipliers Ps even for convex functions. It is impossible

in practice to review the whole set of subgradients and to choose

that one in the opposite direction to which leads the domain of

smaller values of the objective function. Usually one can get

only one of the subgradients and therefore there is no guarantee

that a step according to the procedure

s+1 s A s
0, 1 , ...x = x - psfx(x ) s =

or to the more general one

s+1 II (x
s A S

0, 1 , ...x = -Psfx(x)) , s =x

(23)

(24)

(where IIx(o) is a projection operator on the set X), will lead

into the domain of the smaller values of f(x) (Figure 6).

Figure 6
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To avoid this problem procedure (23) was proposed in 1962 by

N.Z. Shor [11] and called the method of generalized gradients.

It allows the use of any subgradient in the subdifferential.

General conditions for its convergence have first been obtained

by Y.M. Ermoliev [12] and independently by B.T. Polyak [13],

where the Ps should satisfy the conditions

00

p t 0s
= 00

These conditions are very natural as (23) is a nondescent

process i.e. the value of the objective function does not

necessarily decrease from iteration to iteration even for ar­

bitrarily small ps.

The influence and close relations of research by 1.1. Eremin

on solutions of systems of inequalities and on nonsmooth penalty

functions [14] to this area of work should be noted.

Since then the method (23) has been further developed (see

review [16]) and rates of convergence have been studied.

E.A. Nurminski [16] studied the convergence of methods of

the type (23) for the functions satisfying the following con­

dition

f(y) - f(x) > (fx(x) ,y-x) + 0 (Ily - x II) (25)

Moreover he proposed a new proof technique for convergence

based on the arguments ad absurdo, i.e. he adapted this technique

for studying the convergence of nondescent methods of non-convex,

non-smooth optimization.

As has already been said the algorithms constructed on the

basis of (23) are simple and require relatively little storage.

Thus let us consider an application of the method (24) to the

development of iterative schemes of decomposition. For the

function (10) one of the generalized gradients at point x S is

=
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s s
where u are dual variables corresponding to y(x ). Therefore

the iterative scheme of decomposition according to the procedure

(24) has the form

X
s +1 -_ max {O,xs - ( sA)} 0p c-u , s= , ...s (26)

The same may be obtained by considering the function (14):

if yS is an approximate solution of the subproblem (15) for
s s s , d' t sx = x = {x " } and u are dual var1ables correspon 1ng 0 y ,

1)

then

s+1x s s= TI (x - p u ), s = 0,1, ...
x s

(27 )

where TI (0) is the projection operator on the set (15). A very
x

sinple algorithm for tne solution to this problem exists.

For the minimax problem (17) in the case when g(x,y) for

each y E yis a convex function with respect to x, the subgradi-

ent is defined as f. (x) = ~ (x,y) I ( ) = gx(x,y(x))
x 'x y=yx

If g(x,y) is continuously differentiable with respect to x then

fX(x)=gX(X,y) =g (x,y(x)).
y = y (x) x

If we use this formula for function (11), we obtain the

following iterative method of decomposition:

x s +1 =max {O,xs_p (c-usA)}, s=O,1. ..
s

where uS is a solution of the subproblem

s
(u, t - Ax ) = max , u D :5.. d, u ~ 0

The iterative methods of decomposition based on the non­

differentiable appro"3ch are effective techniques for the solution

of different complex optimization problems. For example, for

linear problems of optimal control we can use the method consider­

ed above. Consider the following problem: to find a control

X= (x(0), ... ,x(N-1)) and a trajectory z= (z(O), ... ,z(n)), satisfy­
ing the state equations:
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z (k + 1) = A(k) + B(k) + a (k)

z(O) = zO , K = 0,1 ... , N - 1 ,

the constraints

G(k) z (k) + D(k)x(k) < Q.(k) k = o, 1 ... , N - 1,

u(k) > 0-

and minimize the objective function

N-1
(c (N) , z (N) + L [c(k),z(k)) + (d(k) ,x(k)) 1 ,

k=O

where x (k) ERn , z (k) ERr The difficulty of this problem is

connected with the state constraints. If matrice G(t) 0, we

can solve this problem with the help of the Pontzjagin's prin­

ciple.

The dual problem [34] is to find dual control A = (A(N-1) , ... ,

A(O)) and dual trajectory p = (p(N) , •.. p(O)), subject to state

equations

p(k) = p(k+1) A(k) - A(k)G(k) + c(k)

p (oN) = c (N), k = N-1, ... , 0

and constraints

p(k+1) B(k) + A(k) D(k) < d(k)

A(k) > 0

which minimize

N-1
(P(O),zO) L [(p(k+1),a(k))+ (A(k),b(k))]

k=O
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We have the following analog of the iterative scheme of de­

composition considered above (for finding the optimal control):

where >..s(k) (k=N-1, .•• O) , pS(k) , k = N-1, ..• ,O is a solution of

the subproblem minimize the linear function:

°(p(O),zO) + I [(p(k+1),a(k)) + (A(k),b(k) +
k=N-1

s
+ d (k) - P (k+ 1) B (x) - >.. (x) D(x) , x (k))]

under constraints

p(k) = P(k+1)A(k) - A(k)G(k) + c(k)

peN) = c(N) , k = N-1, .•. ,O ,

A(k) > 0 , k = N-1, ... , 0

We may use the well-known Pontzjagin's principle for solving this

problem. Its solution is reduced to the solution of N simple static

linear programming problems.

Original work by Wolfe and Lemarechal (see [1]) on descent

methods are, on one hand, a generaliza~ion 6f algorithms of E­

steepest descent studied by V.F. Demyanov [8] and on the other

hand they are formally similar to algorithms of conjugate gradients

and coincide with them in the differentiable case.

The set {f (xs )} is required to implement the descent process.
x ~

Since at the point x S it is impossible to get the whole set {f (xs )}
x

an attempt can be made to construct it approximately. In Wolfe

and Lemarechal's works, the following idea is used for this purpose.

If at the point x S the movement in the direction opposite to the

subgradient f (x s ) leads to the decrease of the objective functionx
by not less than E > 0 (this is essential for convergence) the move-

ment to x s + 1 is made in this direction. If not, as trial step to



- 20 -

zS1 is made in this direction, the subgradient f (zs1)
sO s x

point z = x. The con-

certain sense approximates

a point

is calculated and one returns to the
A sO A s1 .

vex hull of f (z ) and f (z ) ln a
A x x

{f (xs )} from which one finds the element of the hull which has
x

the least norm. If it is near zero, it should be excepted,

according to the optimality criterion (21) that X
S is near

optimal. Let the norm of this element be distinct from zero.

If the direction from this point leads to a decrease of the ob­

jective function by not less than E the move from X
S to x s +1

is made in this direction. If this is not true, only a trial
. s2 A s2

step is made to a pOlnt z f (z ) is calculated, then one

returns to x sO The convex hull ~f the vectors f (zsO), f (zs1),
x x

f (zs2) is considered and so on.
x

The further development of subgradient schemes resulted in the

creation of E-subgradient processes. This technique, instead

of subgradients, uses E-subgradients introduced by Rockafellar

[17]. The early results in this direction belong to Rockafellar

[18], D. Bertsecas [19], C. Lemarechal [20], Nurminski and

Zhelikhovski [21]. The recent research unveiled such properties

of E-subgradient mappings as Lipschitz continuity which make E­

subgradient methods attractive both in theoretical and practical

respects.

Stochastic methods of NDQ

Two classes of deterministic methods were discussed: non­

descent and descent ones. The first class of the methods is easy

to use on the computer but it does not result in a monotonic de­

creasing of the objective function. The second class obtains mono­

tonic descent but has a complex logic and is rather difficult for

computer implementation. Both classes have a common short coming,

they require the exact computation of a subgradient (in a differ­

entiable case - the gradient). Often however, there are problems

in which the computation of subgradients is practically impossible.

Random directions of search is a simple alternative method to con­

struct nondifferentiable optimization descent procedures that do

not require an exact computation of a subgradient and which are

easy to use on the computer.
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There are various ideas on how to construct methods of ran­

dom search in deterministic problems which only require the exact

values of objective and constraint functions. One of the simp­

lest methods is as follows: from the point x
S

, the direction of

the descent is chosen at random and the motion in this direction

is made with a certain step. The length of this step may be

chosen in various ways, in particular such that:

co

Such methods are easy to implement on the computer and they can

be made to have a good asymptotic behaviour. As shown in [22],

they can have a geometric rate of convergence which is rare for

the deterministic methods considered above.

Nondescent methods of random search are of prime importance

in the solution of the most difficult problem arising in stoch­

astic programming. In these extremum problems it is impossible

to compute either subgradients or exact values of objective and

constraint functions. The presence of random components in the

search directions of nondescent procedures permits overcoming

local minima, points of discontinuity, etc. Let us analyse first,

in detail, the above mentioned difficulties of stochastic pro­

gramming problems by way of concrete examples and then consider

the general ideas for descent SQMs.

The stochastic programming problem

The problem (18)-(19) represents a general stochastic pro­

gramming problem. It is a model of optimization of a stochastic

system in which the decision (planned values of the system para­

meters x) is considered independent of the random factors. Such

a situation is typical for planning the development of systems

which will work in a random enviroment for a long time. There

are other classes of stochastic systems in which the decisions

are based on the actual knowledge of the random parameters of

the system and thus the decision x becomes a random vector. Such
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situations usually occur in real-time control and short-term

planning. In practice this problem can sometimes (via a deci­

sion rule) be reduced to the problem. (18)-(19).

The main difficulty of problem (18)-(19), as has been noted,

is that the functions FV(x) , v = o,m often have no continuous

derivatives. Another important difficulty is connected with con­

dition (19). Let us consider some examples.

1. The two-stage problem

Problems of this kind often appear in long-term planning.

It is often necessary to choose a production plan or make some

other decision which takes into account possible variations in

the exogenous parameters and which is resistant to random varia­

tions of the initial data. For this purpose the notion of cor­

rection is introduced and the losses connected with this correc­

tion are considered. An optimal long-term plan should minimize

the total expenditures for the realization of the plan and for

its possible correction.

The simplest two-stage stochastic programming problem may

be formulated in the following way:

The decision z consists of two separate parts:

where with every z a certain loss is associated:

(c,x) + d,y)

Every decision variable should satisfy constraints:

Ax + Dy = ~, x .:. 0, y.:. 0

All coefficients w = (d,~,A,D)are random variables and a decision

is chosen in two stages.
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Stage 1. The long-term decision x is made.

Stage 2. The random parameters w = (d,~,A,D) are observed

and a corrective solution y is derived from the known w:

min {(d,y) Dy = B - Ax , y.:. °}
The problem is to find such vector x that the function

(28)

+ E min (d,y) = (c,x) + E(d,y(x,w))
Dy=~-Ax

y.:.O

has a minimum value.

It is evident that FO(x) is a convex, but in the general

case nonsmooth function since the operation of the minimization

is present under the integral sign. The value of the function

°f (x,w) = (c,x) + (d,y (x,w))

can be calculated without difficulty. To calculate FO(x) it is

necessary to find the distribution of the (d,y(x,w)) as a func­

tion of x and then to calculate the corresponding integral (28)

which is possible only in rare cases.

The problem (28) is strongly connected with large scale

linear programming problems. For instance, if w has a discrete

distribution: w E {2,2, ... ,N} and w = k with probability Pk and

N
Pk .:. 0, L Pk = 1

k=1

then the initial problem becomes the following:
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(c, x) + (d(1) ,y(1) + (d(2) ,y(2)+ ... +(d(N) ,y(N) = min (31 )

A(1)x + D(1)y(1) = R, (1)

A(2)x + D(2)y(2) = R, (2) (32)

A(N)x + D(N)y(N) = R, (N)

x > 0, y (1) ~ 0, y(2) ~O, ... ,Y(N) > 0 (33 )

where y(k) is the correction of the plan if w = k. The number

N may be very large. If only the coordinates of the vector

R, =(R,1, ... ,R,m) are random and each of them has two independent

outcomes then N = 2m .

2. The stochastic minimax problems

The objective function of the simplest stochastic minimax

problem looks as follows

N
F

0 (x) = E max [L a. j(w) x. - R, 1 (w) ]
1 < i < M j=1 1 J

or more generally

o
F (x) = E max g (x,y,w)

yEY

(29)

(30)

It should be noted that the two-stage problem (28) and the

stochastic minimax problems generalize the problems (10), (16), (17).

A very important particular class of stochastic minimax

problems arises in inventory controi problems (a stochastic model

of optimal structure of an agricul tural machinery park is also

stochastic minimax problem). Thus the expected expenditures in

planning the stock x 1 , ... ,xn of nonhomogeneous products equal
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n
y . x . -w) , S (w - I y. x . ) }

J J j=1 J J

where w represents demand, a,S are storage expenditures and losses

and y. are the coefficients of substitution.
J

For problems (29), (30) it is again easy to calculate

°f (x,w) = max
1 < i < 1-1

n
[I a .. (w)x.-R.. (w)]
j=1 1J J 1

but FO(x) remains difficult. It is a convex but often a nonsmooth

function.

3. The stochastic problem of optimal control

The same difficulties are inherent in stochastic problems

of the theory of optimal control. Taking into account the dyna­

mics of a complex system leads to the following very general

problem: find x = (x(0),x(2) , ... ,x(N-1)) which minimizes

°F (x) = E ¢(z(0), ... ,z(N),x(0), ... ,x(N-1),w)

under the constraints

(34)

z(k+1) = g(z(k),x(k),w,k),z(O)

x(k) EX(k),k=0,1. .. ,N-1

In particular, one might have

°F (x ) = E max II z (k) - z* (k) II
k

°= z , (35)

(36)

(37)

Thus the solution of even the simplest stochastic programming

problem which we considered above requires the development of

numerical methods of optimization without using exact functional

values. The stochastic quasigradient methods [10,23] allow to

solve successfully the above mentioned problems with the rather
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arbitrary but in practice useful measures P(dw).

The general idea of stochastic quasigradient methods

Consider the problem

min FO (x) f i (x) .:. 0, i = 1 ,ro, x EX}

v -We assume here that F (x),v=O,M are convex functions, i.e. where

;v is a subgradient and the setx

v v ~v
F (z) - F (x) > (F (x) ,z-x)- x

is convex.

In stochastic quasigradient (SQG) methods the sequence of.. ° 1 s. d .th th h 1 fapprox1mat1ons x ,x ... ,x ... , 1S constructe W1 e e p 0

random vectors ;v(s) and random quantities e (s) which are sto-v ~

chastic estim~tes of the values of subgradients F~(Xs) and of

the function pV(xs ) :

v sF (x ) + S/., (s)v
,

Thus in these methods
v

E, (s),6,(s) are used.

a vector, S/.,v(s) is a number depending upon xC,
vusually a (s) -+O.s/" (s) -+0 for s-+oo .

v ~. v s v s1nstead of exact values of F (x ) ,F (x )x
For further understanding it is important

to see that the random values 6v (s) and vectors E,v(s) are easily

where aV(s) is
1 sx , ... , x , ... , where

calculated. For example, if

FV(X) = Efv(x,w)

then 8v (s) = fV(xs,ws ) where the wS result from mutually independ­

ent draws of w.
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We have

v s sE(f (x ,w)/x )

For a two-stage problem

(38)

s swhere u(x ,w ) are dual variables corresponding to the second-

stage optimal plan y(xs,ws ). It can be shown [10] that

where FO(X s ) is a sUbgradient of the function (28). For the
x

objective function (29) of the stochastic minimix problem the

vector ~o(s) = (~~(s) , ... ,~~(S)) is calculated by the formula

~? (s) =
J

(39)

where i is defined by the relations

n

2
j=1

. ( s) S n (s)a. J w x. - N' W =
~s J ~s

max
i

n s s[2 a .. (w )x.-~. (w )]
j=1 ~J J ~

It may be shown [10] that

where ;O(xs ) is a subgradient of the function (29). It shouldx
be noted that stochastic quasigradient methods are also applic-

able to NDD deterministic problems, without requiring values of

subgradients. For example, for the deterministic minimax prob­

lem (17) the vector

o
~ (s) =

s s s s sg(x +6 h ,y(x )) - g(x ,y(x )
s hS

6s
(4 0)
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where ~ > O,h
s

is the result of independent random draws ofs
the random vector h = (h, ... ,h ) whose components are independent­

n
ly and uniformly distributed over [- ,1]. (40) satisfies the

condi tion

where fO(xs ) is a subgradient of the function (17) and IlaO(s)11 < 6
x - s

const, if g(x,y) has uniformly limited second derivatives with

respect to x Ex, Y E Y . For the objective function of the stoch­

astic minimax problem (30) the vector ~O(s) have the same formula

(also see [20]) :

~O (s) =
s s s s s s s s s

g (x +6s h , Y (x , w ), w ) - g (x , y (x , w ), w )

6s

It is remarkable that independent of the dimensionality of the

problem the vectors (40), (41) it can be found by calculating the

functions g(x,y) ,g(x,y,w) at two points only. This is particularly

important for extremum problems of large dimensionality. Let us

consider a number of SQG methods in which 8 (s) ,~v(s) are used
. v s A V S v
lnstead of F (x ), F (x ).x

THE SQG METHODS

1. The stochastic quasigradient projection method

Let is be required to minimize the convex function in x E X,

where X is a convex set.

The method is defined by the relations:

s+1 s 0
x = 7T (x -p ~ (s», s = 0,1, •.. ,

x s (42)

where 7T
X

(·) is a projection operation on X,ps one step multipliers.

o AO s
If ~ (s) = F (x), we obtain the well-known method of gener­x

alized gradients (28). If

o 0 nF (x) = Ef (x,w), X = R ,
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where the function FO(x) has uniformly limited second derivatives,

it can be shown that for

~O (s) =

we have

n
L

j=1 6s

j
s )w -

s sj
f(x,w )

(43)

° so si sn .where Iia (s)ll.2 const 6 s ' w, ..,w, .. ,w result from lndependent draws

over w. Then the method (41)-(42) corresponds to the stochastic

approximation method [24,25]. The method (42) has been proposed

in [23]. The characteristic requirements, under which the

{xs } converges with probability to the solution, are: if

II k II - II ° II 2 ° sX I .2 B, k = 0, s, then E ( ~ ( s ) Ix, . .. , x ) .2 C
B

, where

constants; p are step multipliers which may depend upon° 1 s sx ,x ,x

sequence

B,C
B

are

co
p >O,l: P =cos- ss= 0

with probability 1, (44)

co 2 °l: E(Ps+p s II a (s) II) < co

s=O
(45)

Particularly if P are deterministic and independent of (xO, ... x s )s
then, under (44), (45) we obtain for the method (41) using the

random direction (40)-(41) that

l: P 6 < co
S S

LP <00,s

The methods, which we shall consider below, converge under con­

ditions approximately analogous to those mentioned above.

From (38) and (41) we obtain the following method of solving

two-stage problems:
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sFor given x observe the random realisations of d,A B.Q,

which we note as:

d (s)A (s) ,B (s) ,.Q, (s)

(ii) Solve the problem

(dS,y) = min

B (s ) y <.Q, - A X
S

- s s '

y .:. °
and calculate dual variables us.

(iii) get

t.;0 (s) = s
c(~) + u(s) A(s) and change X

go to (i).

It is worth noticing that this method can be regarded as a

stochastic version of the iterative procedure of decomposition

(28). It is simply implemented on the computer and it permits

to solve extremely large-scale problems of the kind (32)-(33).

2. The stochastic linearization method.

Let the function FO(X) have continuous derivatives. If

F~(Xs) is known then standard linearization is defined by the

relations:

s+1 s -s s
x = x + ps(x -x ), s = 0,1, ... ,
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° sIn the case where F (x ) is unknown, the stochastic variant of
x

this method has been studied in [10,26] and is defined by the

relations

s+1 s -s sx = x + P (x -x ), s = 0, 1 , ... ,
s

(vo(s) ,xs ) = min
xEX

°(v (s) ,x)
(46)

vO(s+1)

where 0 satisfy the conditions of the kind (44)-(45). It iss
worth noting that if instead of vO(s) the vectors ~o(s) are

used that, as simple examples show, the method does not con­

verge. If ~s = 1/s+1 then

°v (s)
1 s

= - L: ~s
k=O

In this method on every iteration the subproblem is to be

solved in the region X. For this problem the well-known methods

of nonlinear programming or linear programming can be applied

and will not require great computational efforts especially as

an initial approximation of is the point i s +1 is chosen.

Consider now the general problem of minimization of the

function

under conditions

i
F (x) < 0, i = i,m

xEX

(47)

(48)

(49)
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where FV(X) are convex functions, X a convex set.

3. The penalty functions stochastic method

Constraints (48) can be taken into account by means of

penalty functions and instead of the general problem we can con­

sider the problem of minimizing the function

F°(x, c) = F°(x) + c L: min
i = 1

on the set X.

i(O,F (x))

iSince it is practically impossible to calculate F (x) in

problems of the stochastic programming i.e. it is impossible to

find min (O,Fi(x)), [27] defined the relations

s+1 s ° ix = TT X (x - p s (~ (s ) + c i ~ 1 mi n (0 , z i (s) ) ~ (s) ) , s = 0, 1 •.• , (: Q)

z. (s+ 1) = z. (s) + 0 (e. (s) - z. (s) ), s = ° , 1 •.. ,
1 1 S 1 1

4. Besides the above mentioned methods there are many others

(see [29]). In particular Gupal &28] has studied the method char­

acterized by the relations:

( 51)

s+1
x

I;;°(s), if zi (s) = max z. (s) < °
S 1

i=1<m

i
I;; S(s), if zi (s) >0,

s

where the values zi(s) are defined by the relations (51).

5. Non-convex functions

In [16] the convergence of the stochastic quasigradient
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methods for the functions pV(x) satisfying the condition (25) was

studied. We also note the investigation of the minimization of

almost-everywhere differentiable functions and discontinuous func­

tions [28,29,30,35]. In this paper the simple and easily imple­

mented methods for the problems (17) and others, appearing in the

theory at multicri±eria optimization were developed. In these

papers the convergence of the following methods have been studied.

-s j -s
s+1 = XS _ L f (x +t:lse ) - f (x )

x Ps j=i t:I
s

(52)

where e j are unit vectors of the point is is randomly chosen in a

neighborhood of the point XS with radius r s -+ O,s-+oo.

The procedures, as (52), are based on the general ideas of

solving limit extremum problems, which have begun to be developed

in [33].

6. The limit extremum problems.

Briefly, the essence of this theory is the following. Let it

be required to minimize the function f(x) without continuous

derivatives. A sequence is considered to be composed of "good"

functions fS(x), e.g., smooth ones which converge at f(x) for

s -+ 00 and the procedures of the following form:

s+1 s s s
x = x - psfx(x ), s=O,1 ... ,

Under rather general conditions it is possible to show that

(53 )

Often "approximate functions have the form of mathematical expect­

ations

(54)
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where the measure P (dw) for s+oo centers at the point x. Hences
instead of the procedure (53) the realization of which requires

exact value of the gradient of the mathematical expectation (54)

the stochastic quasigradient methods are used which employ the

vectors ~s satisfying the condition

s 0 s
E(~ Ix , ... ,x ) sa ,

sh , s=0,1 ... ,
~ s

s+1x

where is(x) -subgradient of the function fS(x). Por example, if
x .

for function (54) we consider random vector (stochastic quasi-

gradient) ~s type (43) then we obtain the method (52); if we

consider random vector type (41), we obtain the following method

f(xs+~ h S ) - f(x s )
s

s (-s -s). . d"'where x = x , .•. ,xn 1S a random p01nt P
s

1str1buted in a

neighborhood of the point x s • If f(x) satisfies the Lipschitz

local condition, then distributions P can be uniformly in ans
,n-dimensional cube with the side r , e.g. x~ are

s )
random values uniformly distributed on intervals

&milar distributions are applicable when f(x) is

function. Then the function

where hS,T s are random vectors with independent components uni­

formly distributed on [- r"l] is smooth, pS(x)+f(x) is uniform

in any bounded domain.

Theseapproaches seem to be very important in nonsmooth and

particularly discontinuous optimization. Thus in [35] it was

shown that general scheme of linearization method may be used

for the optimization of a wide range of nonconvex nonsmooth

functions. Let us examine a problem of minimization of a function

f(x) under constraints xEX, where f(x) satisfies the Lipschitz

local condition, X is a convex compact in R
n

. The following method

is considered



s+1
x

35

s -s s= x + p (:x: -x ), 0 < p < 1, s= 0 , 1 ••• ,s - s-

(v(s) ,xs ) = min (v(s) ,x)"
xEX

v (s+ 1) = v (s ) + 0 (es -v (s) )
s

where xOE,X; Os satisfy the conditions of the kind (44)-(45);

1
8s = r s

r .
-s -s s s -s)] J, ••• , x ) - f (x 1 ' ... , x . --2 ' ••• , x e,n J n

x~ are independent random values uniformly distributed on intervals
J 's r s s r s
[x j -2 x j +"""2 ] •

Some applied NDO, STO problems were briefly discussed in this

work. There are many applications of STO numerical methods in mathe­

matical statistics, complex systems, identification, reliability,

inventory control, production allocation [10]. The deterministic,

stochastic, descent and nondescent methods were considered. Each

one requires some definite information about objective and constraint

functions. Deterministic descent methods use the exact values of

these functions and their subgradients, stochastic descent methods

use only the exact values of functions; deterministic nondescent

methods require only exact values of subgradients; stochastic non­

descent methods do not use values of functions and exact values of

their sUbgradients. Obviously, every method reveals its advantages

in a specific class of extremum problems, for instance, complex

stochastic programming problems are solvable only by stochastic non­

descent methods.


