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FOREWORD

The development of optimization methods has a significant meaning

for systems analysis. Optimization methods provide working tools

for quantitative decision making based on correct specification

of the problem and appropriately chosen solution methods. Not all

problems of systems analysis are optimization problems, of course,

but in any systems problem optimization methods are useful and im­

portant tools. The power of these methods and their ability to

handle different problems makes it possible to analize and con­

struct very complicated systems. Economic planning for instance

would be much more limited without linear programming techniques

which are very specific optimization methods. LP methods had a

great impact on the theory and practice of systems analysis not

only as a computing aid but also in providing a general model or

structure for the systems problems.

LP techniques, however, are not the only possible optimization

methods. The consideration of uncertainty, partial knowledge of

the systems structure and characteristics, conflicting goals and

unknown exogeneous models and consequently more sophisticated

methods to work with these models.

Nondifferentiable optimization methods seem better suited to handle

these features than other techniques at the present time. The theo­

ry of nondifferentiable optimization studies extremum problems of

complex structure involving interactions of subproblems, stochastic

factors, multi-stage decisions and other difficulties.

This publication covers one particular, but unfortunately common,

situation when an estimatio~of the outcome from some definite deci­

sion needs a solution of a difficult auxiliary, internal, extremum

problem. Solution of this auxiliary problem may be very time­

consuming and so may hinder the wide analysis of different decisions.

The aim of the author is to develop methods of optimal decision

making which avoid direct comparison of different decisions and use

only easily accessible information from the computational point of

view.
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1. Introduction

This paper deals with the finite-dimensional unconditional

extremum problem

min f (xl

xEE
n (1)

where the objective function has no continuous derivatives with

respect to the variable x = (x1 , ••• ,x ). Various methods were- n
discussed and suggested in relevant literature to solve problem

(1) with many types of non-differentiable objective functions.

Bibliography published in [1] gives a fairly good notion of

these works. It should be emphasized, that the non-differenti­

ability of objective function in problem (1) is, as a rule, due

to complexity of the function's structure. A representative

example is minimax problems where the objective function f(x)

is a result of maximization of some function g(x,y) with respect

to variables y:

f(x) = max g(x,y)

yEY
(2)

In this case even a simple computation of the value of f

in some fixed point may be quite a time-consuming task which

requires, strictly speaking, an infinite number of operations.

With this in mind, it seems to be interesting from the stand­

point of theory and practice to investigate the feasibility of

solution of problem (1) with an approximate computation of the

function f(x) and of its subgradients (if the latter are deter­

mind for a given type of nondifferentiability). To the best of

our understanding, e: - sUbgradients of functions of the form (2),

introduced by R.T. Rockafellar [2], are quite a convenient

object for constructing numerical methods, and so we offer here

some results generalizing efforts in this direction [3-5].
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2. Weakly Convex Functions

The discussion of a class of the non-differentiable func­

tions broader than the convex functions enables us to gain sub­

stantially in generality at the expense of a minor increase in

complexity. Properties of the class which will be treated of

are described by the following definition [6]:

Definition The continuous function f(x) is called the

weakly convex function if for each x there exists at least one

vector g such that

f (y) 2. f (x) + (g, y - x) + r (x, y ) (3)

for all y, and the residual term r(x,y) satisfies the condition

of uniform smallness with respect to IIx - yU in each compact sub­

set of En, i. e ., in any compact set KeEn for any E: > 0 there

exists ok > 0 such that for Ilx - yll 2. ok' x,y E K

I -1
r (x, y) III x-y II 2 E:

Notice that no constraints are imposed on a sign of the

residual term r(x,y}. Furthermore, strengthening (3) it is pos­

sible to add to r (x,y) any expression of the form ep (~Ix - y~) ,

where

ep It} < 0 for t ~ + 0

The term weakly convex functions is suggested by analogy

to the strongly convex functions studied by B.T. Polyak [7].

We will call the vector g, satisfying (3), the subgradient

of the function f(x} and will denote a set of subgradients at

the point x by G(x) .

Describe some simple properties of weakly convex functions

and of their subgradients.
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Lemma 1. G(x) is convex, closed, bounded and upper semi­

continuous with respect to x.

The proof of these properties presents no special problems.

Lemma 2. Let f(x,a) be continuous with respect to a and

weakly convex with respect to x for each a belonging to the

compact topological space A. That is,

f(y,a) - f(x,a} .::. (ga' y-x) + ra(x,y} (4)

for all y, and here ra(x,y) satisfies the condition of uniform

smallness uniformally with respect to a EA. Then

f (x) = max f (x , a)

aEA

is a weakly convex function.

The proof is rather simple.

Let

A(x} = {a f(x,a) = f(x)}

Then, considering (4) for a E A (x), we obtain

fey} - f(x) > f(y,a) - f(x,a} >

> (ga' y - x) + r a (x,y) >

> (ga' y - x) + r (x, y)

where

- r (x, y ) = s up Ira (x , y) I

aEA

(S)

It is easily seen that r(x,y} satisfies necessary conditions and

the lemma is proved.
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The proof of Lernm 2 helps in understanding the procedure of

calculation of subgradients of the weakly convex functions.

Specifically, for functions of the form (5) the vector

ga. EGa. (x) , a. E A (x) is the subgradient of the function f (x) at

the point x. It follows from Lemma 1 that an arbitrary vector

9ECO{ga.,a.EA(X}} = G(x)

is also the subgradient.

The finding of even one element of the set G(x) may be a

non-trivial problem and, ignoring efforts spent to calculate

the subgradient 9 E G (x), it can be said that problems of com­a. a.
puting f (x) and of its subgradient 9 E G (x) are equal in corrple.xity.

In establishing necessary extremum conditions for weakly

convex functions of great importance is the existence of direc­

tional derivatives and a formula for their computation in terms

of subgradients.

Lemma 3. The weakly convex function f(x) is differentiable

in any direction, and

af(x) = lim
ae

h~+ 0

Proof. Let

f (x+he) - f (x)
h = max (g,e)

9 E G (x)

<P(h) = f(x+he) - f(x)

It is easily seen that <P(h) as a function of h is weakly

convex. Denote the set of subgradients of <P(h) by G<P(h). Assume

the contrary of what the lemma asserts:

a = lim <P(h) <

h~+ 0 h

lim <p (h)

h-~ + 0 h
= -a
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and let {T k } = T and {ok} = ° be sequences of values of h such

that

lim
¢ (T

k
)

k+oo
Lk

<P(ok)
lim

k-+ 00 ok

= a t

= a t

Furthermore, we have:

where

(6)

Without loss of generality it may be assumed that

lim

k-+oo

Dividing (6) by T k and passing to the limit for k -+00 we

obtain

-a

T <PBy virtue of Lemma 1 g E G (O) , therefore

(7)

Dividing (7) by ok and passing to the limit when k-+ 00 we

have a contradiction that proves the differentiablility in any

direction. By virtue of the weak convexity of f it is easy to

obtain

of (x)

ae
> max (g,e)

g E G (x)
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Now let

and

Then

The division of the above inequality by t k and the pass to the

limit when k ~ ClO yield:

af(x) < (g,e) <
ae

max (g ,e)
g E G (x)

and thus the proof is completed.

Lemma 3 implies that the necessary condition for the point

be extremal is

o E G(x*) ( 8)

however, unlike the case with the convex function, this condition

is insufficient.

Local 9roperties of the weakly convex functions do not

differ from these of the convex functions but their global pro­

perties are radically dissimilar. Specifically, the weakly con­

vex functions lack the salien feature of subgradients that enables

us.to prove the convergence of subgradient method, i.e., the

positivity of scalar product of an arbitrary subgradient at some

point X in the direction from the extremum point x*:

*(g, x - x ) ~ a

for an arbitrary g E G (x) .

This and the fact, that a shift in the direction of the

antigradient does not assure a decrease in value of a function



- 7 -

being optimized both for the weakly convex objective functions and

the convex functions, complicate tangibly the proof of the sub­

gradient method convergence.

All said above about the complexity of the proof of conver­

gence applies also to the £ - subgradient method of solution of
problem (1).

Definition. The vector g£ E G£ (x) is called the £ - subgradi­

ent of the weakly convex function f(x) if

f (y1 - f (x) > (g £ ' Y - x) + r (x, y) - £ (9)

for all y and £ > 0 •

In (9) it is meant that r(x,y) satisfies the condition of

uniform smallness described above.

Properties of G£(x) are obvious:

(i)

(ii)

G£(x) :> G(x)

G (x) is convex, closed and bounded.
£

The property (i) holds out a hope of the definition of

£ - subgradient being an easier task than the calculation of sub­

gradient. Indeed, for functions of the type (5) the £ - subgradi­

ent of function f(x} is an arbitrary vector

where

ct E A (x) = {ct: f(x,ct) > f(x) - £}
£ . -

or an arbitrary vector from the convex hull co{G , ct E A (x)}.
ct £

The proof is a standard one: for ct E A£ (x)

f (y ) - f (x) > f (y , ct ) - f (x , ct ) - £ >

> (g ,y - x) + r (x,y) - £- ct

where notations used in Lemma 2 are preserved.
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The demonstrated procedure of computing E: - subgradients

also implies that it is inconsistent to employ simultaneously

exact computation of the objective function, one-dimensional
_., -_.-

optimization, etc. Thus, it is safe to say, that the 'f: - subgradi-

ent methods will be the non-relaxation ones for reasons of

principles.

Difficulties that present themselves in proving the conver­

gence of non-relaxation algorithms are of cornmon knowledge. H.ow­

ever, in a number of cases they pay, opening new possibilities.

In the following chapter we will describe certain criteria of

convergence of iterative algorithms which made it possible to

prove convergence of a number of algorithms whose behaviour is

substantially non-monotonic.

3. Convergence of Iterative Methods Of Non-Linear Prgoramming

General conditions of convergence of iterative procedures

received attention of a lot of researchers. The most fundamental

results appear to belong to W.I. Zangwill who suggested necessary

and sufficient conditions of convergence of iterative methods of

the mathematical programming [7]. However, the convergence theo­

rems derived by W.I. Zangwill do not exhaust investigations con­

ducted in this field, and many authors formulated other conditions

that characterize convergence of iterative procedures. In spite

of the fact that the later approaches are less general and

universal they proved to be more helpful in investigations of

specific algorithms. Take [7-9] as an example. It should be

emphasized that in the majority of cases these works deal with

convergence of algorithms whose objective function decreases

monotonically as a process goes and, therefore, they are not

applicable, in principle, to the case in hand. These and other

reasons served as the starting point in the elaboration of condi­

tions of convergence of iterative procedures with weakened proper­

ties of a monotonous variation of the objective function in the

progress of the solution of an extremum problem. The approach

set forth below is based on author's paper [12].

We will consider an algorithm of the mathematical programming

as a certain rule of construction of a sequence {xs } of points of



- 9 -

an n-dimensional Euclidean space En. Conditions of convergence

of this sequence will be formulated in terms of properties of

this sequence and of a certain subset X* of the space En which

we will call the solution set. The algorithm will be thought

of as the convergent algorithm if each limit point of a sequence

generated by it belongs to the set X*.

The basic convergence theorem is formulated as follows:

Theorem 1. Let the sequence {xs } and the set X* be such t.hat

A1) If then

A2) There exists a compact set K such that

all £ < £
- 0

such that

A3)
sk _ *

If x ~ x' F X , then there exists £0 > 0 such

tk
and any k's there exists a point x ,

He will assume

that for

min > £

A4) There exists a continuous function W(x) such that

t
lim W(x k) <

s
lim W(x k) = W(x l

)

for arbitrary sequences {sk}' {tk } satisfying condition

A3.
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AS) The function W assumes on x* an everywhere incomplete set

of values.

Then all limit points of the sequence {xs } belong to

*the set X .

This theorem is proved in [12]. A version of conditions

given there varies to some extent from the given above, however,

proofs of both theorems are practically similar. An assertion

weaker that Theorem 1 is also of interest.

Theorem 2. under the conditions of Theorem 1 Al-A4 there

exists a limit point of the sequence {xs } which belongs to the set

x*. The proof of this theorem employs the same arguments than

those of the proof of Theorem 1.

4. Minimization Of Weakly Convex Functions

In this chapter we shall study convergence of the recurrent

procedure

s+1x s= x s=O,l, ... ( 10)

for finding the unconditional minimum of the weakly convex func­

tion f. In the above relation p > 0 are step multipliers,s
gS E G£s (x

s
) is the E s - subgradient of the objectiv function f

at the point x S , {E } is some sequence of positive numbers.s
Requirements placed upon this sequence will be stipulated in

what follows.

To prove convergence of procedure (10) requires an auxiliary

geometrical lemma. In a simplified form such lemma was first

proved in [6].

Lemma 4. Let D be a convex compact set which does not

contain a zero and let {yn} be an arbitrary set of vectors from

D. By means of a sequence of numbers on such that
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n
let us form a sequence of vectors {z } as follows:

o 0z = y

n+1z
n= z ( n+ 1 n)+ an Y - z , n=O,1, •••

Denote by ink} a sequence of indexes such that

Then·for some y > 0 such a sequence exists and

nk +,-1

L as < C < 00

s-n- k

Proof. It is obvious that {zn} CD. Since 0 ~ D, then

constants 0 and ~ exist such that

n
Let us consider now the changes in the length of vectors z

If for all n
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then

Since 0 ~ 0, then for sUfficiently large nn

Sununing the above inequality with respect to n from N to N + M- 1

we obtain

(12 )

02 N+M-1

2 L:
n=N

o
n

2 62 N+M... 1
< 6 - '"--2 LJ

n=N

o
n

The pass to the limit when M~ 00 leads to a contradiction to

the supposition (11). It follows that there exists a sequence

{nk } such that

Further, from (12) it follows for sufficiently large k that

.:s. 6 2 62 n k+ 1-1

0 - - L: 0
2 s

s=nk

Hence

nk+ 1-1
6

2
L Os < 2

02-
s=nk

what complete the proof.

The main result which will be preved here later is the

proposition about convergence of procedure (10). At first the
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solution set will be defined using the necessary extremum

conditions:

X* = {x* o E G(X*)}

The following theorem is valid:

Theorem 3. Let

s
and the sequence {x } be bounded. Then all limit points of

this sequence belong to the set x*.

Proof. In proving this theorem we shall employ the general

conditions of convergence described in Section 3.

The objective function f(x) is chosen as W(x) and it is

demonstrated that conditions A1-A4 will be also satisfied. For

simplicity, we will assume that condition AS is satisfied.

It is obvious, that the satisfaction of conditions A1,A2

follows directly from the assumptions of the proof.

nk dLet {x } be a convergent subsequence an

lim

k~oo

nk _ *
x = x' E X

In this case 0 E G(x') and by virtue of G(x) being upper semi­

continuous it is possible to choose so small a > 0 that

o E CO { G (x), II x - x' II ~ a}

This is also true for the e: - subgradients. It is always possible

to choose so small e:, a > 0 that

oE co {Gy(x), II x - x' II < a, y < e:} = G (x' )
e:,a
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Then, if condition A3 is not satisfied, for k's large enough

and by virtue of separation theorems there exists a vector e

such that

( s ) <-C<O.g ,e_

Therewith

(xs+1 , e) = s s
(x - psg ,e) =

s s s= (x , e) - p s (g , e) ~ (x , e) + CPs

The above inequality implies because of our assumptions an

unlimited growth of the inner product (xs,e). This implication

obviously contradicts to the assumption and, therefore, proves

that condition A3 is satisfied.

Let for some small E > 0

min

Requirements placed on E will be refined later.

We meet the dominant difficulty at the following step of

the proof; an estimation of a decrease in the objective function
n

h . f h . k h d" sw en passlng rom t e pOlnt x . As t e lrectlons - g are,

generally speaking, not the directions of decrease in the function

f(x) the problem of estimation of the function decrease is fairly

difficult and rather unwieldy in view of the large number of com­

putation.



Let us fix a sufficie.ntly large k and examine a difference

m nk m m nk n kf (x ) - f (x ) < (g , x - x ) + E:m - r (x
mx ), m> nk

Estimate with greater precision the addend on the right

side of this inequality.

m m nk
(g ,x - x ) =

m-1
m "" s- (g , L.. psg) =

s=nk

=
m-1
L:

s-n- k

m-1
(L:
s=nk

m-1
= - L

s=nk

m
Vectors zk can be obtained by means of the recurrent

formula:

= s a (k) (gs+1
zk + s

with the initial condition

Z~), s = n
k

, nk + 1, n k + 2, . . . ,

and coefficients a(k) equal to
s

a (k)
s

It is easily seen that a < a~k) < 1

00 ,
(k)a s ~ a for s ~ 00
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Then in virtue of Lemma 4 there exists a sequence
k

{s., i = 1,2, .•. ,} of indexes such that
1

and here

ks.
1(g ,

k
5.-1) >

z 1 y > a

ks. n
kf (x 1) - f (x ) < - Y

k- n s.
+ £ k - rex k, x 1)

S.
1

k5.-1
1

2: p +
5

Choose from the sequence {s ~, i = 1 , .•• ,} a maximum in~ex whose

value does not exceed the index mk and denote it by vi

k k k
v 1 = si < mk < 5 i+1

-From the inequality

k
si+1- 1

L:
k

5=5.
1

(Lenuna 4)

< C

it follows that for sUfficiently large k's

1 > (1 - a (k» > p > 0
5

what implies that
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The above inequality may be put in another form:

s-n- k

where q = 1 - p < 1

( 12 )

kn \)1
Ps + £ k - r (x k, x )

\)1

that

k
\)1- 1

L:- y
n

f(x k) <

Summing up it is possible to say that we have constructed
\)k

as a result the point x 1 such

s=n
k

and therewith

~-1 ~-1

L: Ps < q L: Ps
k

-
s=\)1 s=n

k

( 13)

P +s

k
\) -1

2

L:
ks=\)
1

- y

\)k \)k

f(x 2) - f(x 1} <

k
\)1

If in a similar reasoning the point x is considered as the

initial one, than it is possible to show the existence of a point
\)k

x 2 such that

and

m -1 m -1 m -1·k k

L 1: 2 k
Ps ~ q Ps < q L Ps-

k ks=\) s=\)1 s=n2 k
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Let us fix an arbitrary small t > 0 and repeat this process

a required number of times in order to construct a sequence of
kv.

points {x 1, i = 1 ,2, •.• ,M} such that for each i inequalities

similar to (13)-(14) be satisfied:

k k

f(x
vi

+ 1 ) _ f(X
vi

) < y

k vkv·
+ € k r(x 1 x i+ 1)-v.1

~-1 ~-1

L i L:Ps < q Ps-
k s=nks=v.1

p +s

(1 5)

mand q ~ t. It obviously suffices to repeat the above reason-

ings no more than M = [logqt] + 1

respect to i from zero to M-.1 we

d . k )enot1ng vM= t k :

times. Summing (15) with

b . ( . k do ta1n assunung v 0 = nk an

n
f(x k) < _ Y

t -1
k

L
s-n- k

P +s

M

L:
i::::l1

€ k
v.

1

M-1

~
i=O

k k
v, v. 1

( 1 1+)r x ,x

Addends in the right part of the inequality are evaluated

separately:

M
r E: < M sup €m = M €k --l' 0 for k-+ oo

i=1 v~
1 m>n- k

M-1 k k
M-1

k k
Vi

x
Vi

+ 1 ) I Irex
vi

, x Vi+1 )I r r (x , < r <
i=O i=O
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Ir(x,y)!
.... n k

< M sup = M r £ (x )

IIx
nk- x II < £-
n

lIy - x kll < £
n

For the k's t.hat are large enough Ilx k - x" II < £ therefore-

sup Ir (x , y) I < £ 0 (E)

IIx - xli < 2 £

lIy-x'll < 2 £

where 0 (£) -+- 0 for £-+- 0

Finally we obtain:

~ n t nkf (x ) - f (x k) < f (x k) - f (x ) +

t -1
m t k

+1 f(x k) .... f (x k) I < - Y L Ps + M £k + £ 0 (E) +-
s=nk

~
t ~-1 ~-1

+ C IIx - x k ll < - Y L P + yT L Ps + M £k +- ss-n- k s=nk

~-1

+ £0(£) + C' 2: P s < .... (Y-YT)

s=tk

~""1

E Ps + M £k +
s=nk

~-1

+ £ 0 (.£) + C' T L
s=nk

~-1

Ps < - (y .... Y T -- C' T) 1:
s=nk

P +s

where T may be assumed to be so small that

~.
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In doing so we obtain:

n
f (x k 1 < y- ......

2
Ps + ME k +£ 0(e:1 (15 )

Furthermore,

~ -1

E
s=n

k

Substituting this estimate into (151 we obtain:

~ nkf (x ) - f ex L < - .Y£2C + M e: k + e: 0 (e:)

It may be always assumed that

hence

IS (e:) <

f(x~1

y

4C

n
f (x k 1 <: - ye: + M £k

4C

Passing to the limit when k rl (Xl we obtain;

m n
klim W(x k) < lim wCx 1

k~ (Xl

......

k~ 00

which is what it was required to prove.

As a result the convergence of algorithm (101 is a sequence

of the satisfaction of conditions Al-A5 of Theorem 1.
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5. Convex Case

To solve the problem of convex minimization some results

can be obtain describing the behaviour of process (10) in the

case when £s = £ = const.

Theorem 4. Let the objective function f(x) be convex

Then, if the sequence {xs } is bounded, there exists if only one
sk

convergent subsequence {x } ~uch that

lim

k-+-oo

and

f(x) < min f(x) + £

XEE n

Proof. The proof will be based on the same formalism as in

Theorem 3. Let

x* = {x* : f(x*) = min f(x), XEE
n }

and

x* -- {x*
£

Denote

f(x*) < min f(x) + £}

XE~

W(x) = min Ifx- x*1I 2

X*EX*
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In our case the role of a set of solutions will be played

by X*. Let us verify whether conditions A1-A4 from Section 2
£

can be satisfied. It is obvious, that on no account condition

AS can be satisfied in this case and, therefore, it is possible

to prove only a weakened convergence of pr0cess (10) in the

spirit of Theorem 2.

Conditions A1, A2 are obviously satisfied in assumptions of

this theorem: verify whether condition A3 is satisfied. Let

be some subsequence:

that is,

lim

k-+ 00

nk *x = x' E X
£

f(x') > min f(x) + £

xEEn

Assume the contrary to condition A3, that is,

lim

s~oo

sx = x'

Then for an arbitrary <5 > 0 for a sufficiently large k

Ux
s

- x'" < <5

for s > nk . Choose <5 > 0 in such a way that the set

U4 <5 (x') = {x: II x-x' II < 4 <5 }

d . *oes not lntersect with the set X*£: U4 <5 (x') n X£ = <p. Then in

supposi tions of the proof for an arbi tary x* E X* and s > n
k

:

II s+1 *U 2 n s s *11x - x = x - p g - x =s

( 17)

II s *0 2 2 s 2 s s *= x - x + p IIg II - 2p (g ,x - x ) <s s
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since

then

whence we have for s > n k

Substituting the above inequality into (17) we obtain

or for sufficiently large k

Summing (18) with respect to s from n
k

to m-1 we obtain:

n m-1
W(xm) < W(x k) - Y L Ps

s=n
k

( 1 8)

(19)

Passing in the above inequality to the limit when m -+ co we

have a contradiction to the boundedness of the continuous func­

tion W(x) on U4o (x'). The obtained contradiction proves the

fact that condition A3 is satisfied. Let

~ = min m

m>n
k

n
II ~m _ x k ll > 0
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For k's that are large enough

n
Uo(X k) C U20 (X') C U40 (X')

therfore the estimate of (19) is also valid for m = mk

n In.. -1

W(X~)
.K

< W(x k) - Y r Ps
s=nk

However,

Ilx~
n

k
~-1

0 < - x n < c r Pss=nk

By means of the above estimate we finally obtain:

'Yo
C

and passing to the limit when k -+ 00

m n
lim w(x k) < lim W(x k)

k-+oo k -+00

that by virtue of Theorem 2 proves our preposition.

In all probability the assertion of this theorem cannot be

strengthened unless additional hypotheses concerning the choice

of vectors gS from appropriate sets G (xs ) of E-subgradients
E

are involved.

It is also of interest to estimate a deviation of the limit

points of the sequence {XS } from the set of solutions x* .
E

If we denote

d = sup inf

X*EX* X*EX*
E E

Ilx*-x*n
E

then from geometrical considerations it is easily shown that all
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limit points of the sequence {x
s

} occure in the set

x* + d S
E

where S is a unit ball and the addition is meant in Minkovsky's

sense.

6. Appendices and Generalizations

An essential feature that distinguishes the result of

Theorem 3 as compared to that obtained earlier in [13] is, as

applied to minimax problems of the type

min max f{x,y)

x y
(20)

the possibility to rid oneself of the check of exactness of

the solution of an auxiliary problem of finding the internal

maximum:

~(x) = max f{x,y)

y

This enables us to justify the application of Arrow-Gurwitz'

method

s+1 sx = x (21)

( 22)

in the solution of problem (20) on the basis of broader assump­

tions than cornmon assumptions of strict convexity-concavity or

similar ones. Under some of them concerning the relation between

step multipliers it proves to be possible to consider iterative

relation (2) as the E - subgradient method of minimization of the
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function ¢(x). Convergence of method (21)-(22) is here an implica­

tion of Theorem 3. Results obtained in this field are described

in more detail in [14L Of great practical interest is also the

development of methods for regulating step multipliers in pro­

cedure (10). Basically, Theorem 3 asserts that the E - subgradient

methods converge under the same assumptions as the subgradient

methods. In all likelihood, ideas that underlie the subgradient

methods are applicable to the E - subgradient methods when their

step multipliers are regulated and, furthermore, the computational

effect is also the same.

A non-formal requirement here consists in giving up the

exact computation of the objective function as stated earlier

in the introduction to this paper. For instance, the generaliza­

tion on the case of E - subgradient method of step regulation [11]

presents no difficulties.
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