

PROCEEDINGS OF A WORKSHOP ON
NATURAL LANGUAGE FOR INTERACTION
WITH DATA BASES

January 10-14, 1977
G. Rahmstorf and M. Ferguson, editors

CP-789
October 1978

Views expressed herein are those of the contributors and not neces-
sarily those of the International Institute for Applied Systems Analysis.

The Institute assumes full responsibility for minor editorial changes,
and trusts that these modifications have not abused the sense of the
writers’ ideas.

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria

Copyright ©1979 11ASA

All rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without
permission in writing from the publisher.

PREFACE

ITASA is pursuing international cooperative research in several fields of
applied systems analysis such as energy development strategies, regional
development, and water systems research. This cooperation is dependent
on a high quality of communication and documentation. Tools and tech-
niques such as computer networks, data bases, and high-level interactive
languages have an increasing impact on the efficiency of scientific work.

The Workshop on “Natural Language for Interaction with Data Bases”
was a forum for discussions on the advantages and limitations of natural
language as a man-machine communication tool. A special feature of the
Workshop was that many of the speakers took the occasion to demonstrate
software systems they had developed. In order to help assess the appropri-
ateness of the various systems for IIASA a small, rather simple relational
data base on energy resources was supplied before the Workshop to those
interested in demonstrations. Sample outputs from this data base are
included in several papers.

-iil-

SUMMARY

This Report is a collection of papers presented at the ‘“Workshop
on Natural Language for Interaction with Data Bases™ held at IIASA in
Laxenburg, Austria from January 10 to 14, 1977.

The papers describe the research and results in attempting to produce a
viable, useful, and flexible interface to various systems in Europe (acronym-
ically AQL, PLIDIS, USL, DONAU, DILOS, KAIFAS, etc.) and in North
America (OWL, INGRES, and LIFER). Most of these interfaces present to
the user the feeling of working in an environment of relatively free and for-
giving syntax. This is in marked contrast to the rather rigid syntax required
by most commercial data base systems in their natural (mostly English)
query languages. In addition there are discussions of the categorization of
the semantic relationships within some natural languages as an aid to both
understanding and knowledge representation.

CONTENTS

Introduction
G. Rahmstorf and M. Ferguson

NATURAL LANGUAGE INTERFACING
TO DATA BASE SYSTEMS

Access to a Data Base System Via Natural Language
K.-D. Krigeloh

Catering for the Experienced and the Naive User
M. King, P. Dell’Orco, and V.N. Spadavecchia

The USL System for Data Analysis
H. Lehmann

A Natural Language Interface Facility and its
Application to a IIASA Data Base
G.G. Hendrix

Natural Language Processing within a Restricted Context
V. Briabrin and G. Senin

INGRES—A Relational Data Base System
M. Stonebraker

NATURAL LANGUAGE AND KNOWLEDGE
REPRESENTATION IN DATA BASE

An Overview of PLIDIS—A Problem Solving Information
System with German as Query Language
G.L. Berry-Rogghe and H. Wulz

An Overview of OWL, A Language for Knowledge
Representation
P. Szolovits, L.B. Hawkinson, and W.A. Martin

17

49

69

87

95

112

117

140

Progress in the Development of a Multipurpose German
Language Question Answering System
E. Lehmann

Use of Semantic Networks for Information Retrieval
G. Rahmstorf

Use of a Problem Solver for Data Base Handling
E. Tyugu

QUESTIONS ON NATURAL LANGUAGE
UNDERSTANDING AND INTERFACES

A Dictionary as a Data Base
G. Guckler

The Role of Prepositions in Understanding Relations
of Causality
G. Lau

SYSTEM ASPECTS AND CONSIDERATIONS
A Domain Oriented Natural Language Understanding (DONAU)
System for Man-Machine Interaction with Dynamic Data Bases
M. Bernorio, M. Bertoni, A. Dabbene, and M. Somalvico
Ideas About the Design of Natural Language
Interfaces to Query Systems
G. Guida
Two Paradigms for Natural Language and Data Bases
R. Stamper

APPENDIXES

A. The IIASA Energy Resources Sample Data Base

B. List of Participants

-viii-

157

178

197

205

223

239

265

280

289
295

Introduction

G. Rahmstorf and M. Ferguson

THE WORKSHOP FORMAT AND OBJECTIVES

The Workshop "Natural Language for Interaction with Data
Bases"” was a forum for discussions and demonstrations of systems
attempting to use "natural” language as an interface tool to
specific data bases. The artificial intelligence community
along with linguists has been studying the automatic analysis
of natural language for more than a decade. It is probably fair
to say that the general language processor, for reasons that are
discussed in this introduction and many papers in this volume,
is still elusive. These difficulties have led to applications
of natural language processors in limited contexts such as spe-
cific data bases where the chance of successfully demonstrating
a natural language access is much greater. However, the desire
in most cases is to produce a natural language system that has
potential for very wide usage.

At the same time the natural language systems were being
developed, there was tremendous activity in data base system
analysis and design. Data bases were first interfaced with
formal programming languages but it has recently become obvious
that there is a need to provide service for a casual user who
has little programming knowledge. Thus, quite independently of
the artificial intelligence community, the data base designers
have been developing and marketing interactive (query) data base
access languages. In most cases these are quite rigidly struc-
tured but, it is claimed, quite easy to learn. This naturally
has led to a certain level of disagreement between these com-
munities as to the need and usefulness of natural language
interfaces to data bases.

The Workshop, during which the following papers were dis-
cussed, was to bring together the two communities to determine
the art and need in natural language processing especially with
respect to data base interfacing, to compare various systems
that actually have been implemented, and to discuss where natural
language interfaces might prove useful and whether there were
reasonable alternatives. The latter objectives were difficult
to attain as the great majority of the Workshop participants were
primarily interested in the various aspects of natural language
processing. The applications, although both real and interesting,
tended to be with data bases that were sufficiently small that
the implementation of the data base was rather straightforward.
Questions relating to the access to already existing, relatively

large data bases, and the matching of the information contained
in the data base with that required by the natural language
interface processor remain largely unanswered.

All the authors were requested to describe their approaches,
systems, and problems with implementing computer based natural
language understanding systems in the context of data base access.
The invited papers represent the distillation of the thoughts of
the participants on their systems and the problems of automatic
analysis of natural language in general. A complete discussion
of natural language and data base technology involves vast quan-
tities of detail where the implementation considerations usually
have strong impact on what one would like to consider general
principles. In order that the reader not be deluged in detail
most authors have naturally concentrated on those aspects that
they consider both peculiar and important. This shows up in
considerably different data world views and allows only a loose
grouping of the papers in this volume.

In addition to the papers, several of the authors responded
to IIASA's invitation to demonstrate their systems. To facilitate
a comparison IIASA provided a small relational data base of energy
resource data. Details of the 11 relations involved are given in
the Appendix. Some of the authors also responded to IIASA's re-
quest to use the sample data base as examples in their papers.
This allows some consistency in the comparison of approaches from
paper to paper.

Figure 1 shows a very general information system consisting
of a user interacting with a natural language processor eventually
wishing to get to a data base. The system interprets the natural
language input with respect to a "language world model” and then
translates it to a data base access sequence being restricted to
one of the views supported by the "data model" of the data base
system. The data interrelations as described by the "data base
access model” are the simplest of the world models in the system
and its language can be looked upon as providing the primitives
into which the information requests must be translated in order
to obtain the correct data from the data base. A major difference
in approach in the papers is the relative importance of each model
and the degree to which the various models are assumed to be inte-
grated both conceptually in reality and in their system implemen-
tation.

The first group of papers suggests that there is a "clear
and clean interface" (H. Lehmann) between the data base and the
natural language processor. Thus the data base has a formal
well defined access language and associated data model. Most
systems of this group include a data base component that is
either a standard software product or an experimental data base
developed before and independently of the natural language pro-
cessor (see, for example, H. Lehmann, M. King et al.).

The second group of papers tends to integrate the data and
language models into one powerful structure the main purpose of
which is representing knowledge in as wide a context as possible.

‘wias£s oseq EJEp B 0} 20ejIajul ofenFue| [eimeu e 10§ weiderp yoo[q [e1ouel y T a1ndyj

1300 V1va 130N
— aT4OM
IMIIA © GMAIA Y MIIA 39NNV
130N ¥0SS320ud
vivg $$320V 39YNONY1 ¥asn
35vd V1va ~VUNLYN.,
W3LSAS NOILYWHOINI

The interaction with the data base is usually viewed as one
possible application of such a system. The authors in this group
usually come from the artificial intelligence community and favor
complex structures such as semantic networks as the basis of their
language models.

The third group of papers is concerned with some specific
problems of natural language analysis whose solution would greatly
enhance the ease of automatic natural language processing. It is
noteworthy that, although most of the difficulties exist in many
natural languages, some of the troublesome points raised by the
authors in this group are peculiarly vexing in only some languages.

The last group of papers discuss selected problems in the
conceptual design of natural language systems and attempts to
look for guidance in the relation between natural language pro-
cessing and application fields such as information retrieval
systems or robot controlling.

AN INTRODUCTION TO THE WORKSHOP PAPERS

Although each paper presented has a particular view and
emphasis, they all attempt to deal with many aspects of natural
language understanding and the data base interface. The purpose
of this part of the introduction is to discuss the contributions
of the papers with respect to the scheme indicated in Figure 2.
This should allow the interested reader to access via subject
the positions expressed in most of the papers.

The Natural Language Interface

Advantages

One of the major advantages of a natural language interface
is its availability to a large number of users without (much)
special training or the learning of a formal programming language.
"A user who is not a computer specialist finds input in a formal
language, however well designed, sufficiently repugnant to dis-
courage him from using the system. The amount of effort required
to develop a large data base system is only worthwhile if the
resulting system can be used by a wide variety of nonspecialist
users, who must therefore be specially catered for by the pro-
vision of facilities that will accept as wide a range of natural
language input as possible " (King et al.).

A second major advantage is the potential universality of
the natural language ability to express any kind of information
--true or false, real or hypothetical, general or specific.
Natural language is in a very real way the ultimate meta-language
for any formal language. "Native speakers of English can usually
communicate their knowledge of any domain of interest in English,
perhaps augmented by specialized notations and vocabularies par-
ticular to their domain" (Szolovits). Guida argues that a natural

-a1mgonyys 109{qns L10)onponuy -z amdg

Aduapuadaq 1xa1u0)

Anjiqedniddy waiqoly
Aluepunpay @
uoisIdald R Adeinday © uoneuasaiday Muewag &
uoneydepy utewoq e uodXa] e uoissaidx3 ajajdwodu|
sisAjeuy Asand) © XBJuAg © ssauanbep/Alnbiquy @ Anjigejieay ®
amanng B abelols ejeq @ Abojoydioy © Axadwo) ® Aesianupn ©
JONYNHOJYId '8 SL1I3dSY WILSAS SISATYNY 3I9VNONYT IVHNLYN SIYVINVAAYSIA SIOVINVAAY

B

JIVIYILNI IDOVNONYI TVHNLYN

abenbupy Asand) jeuiod e
|3pOp aseg eleq
3sva viva

$3Sv8 V1va HLIM NOILIVHYILNI HOd 3OVNINVT IVHNLYN

language will allow a user to start work on a problem in spite
of uncertainties about the content and use of the system. A two
way natural language dialogue would allow a user to start a
terminal session and learn the operative characteristics of the
system. Although two way natural language dialogue is consider-
ably more difficult than just understanding, Szolovits specifi-
cally structures his knowledge representation to facilitate such
a dialogue.

Disadvantages

The fact that natural languages have the advantages indicated
in the previous section almost seems to require that they have a
rather large list of disadvantages when trying to implement them
in the rather unforgiving environment of a computer system. "The
lack of an adequately developed linguistic theory and of a for-
malized corpus of knowledge are the main obstacles for building
a system with general natural language understanding capability
today" (E. Lehmann). The subtlety and range of expression pos-
sible in natural languages lead to syntactic and semantic struc-
tures that are far more complex than any formal language with
consequent computer speed, efficiency, and system problems.
Although questions of this type were not of paramount importance
to most of the authors, most likely because of the relative im-
maturity of the entire field, Hendrix does have some notes on
parsing speeds for his LIFER system.

One of the most difficult problems in natural language
understanding is coping with ambiguity and vagueness. Examples
in the general problem of natural language understanding abound
and are mentioned in several papers. King et al. discuss the
following example:

Give me the name of the employee who works in
the personnel department whose salary is more
than 3000 francs a month.

"It is quite obvious to any person reading this that the 'whose'
refers to the employee and not the personnel department. Yet
there is no syntactic rule [in English] that could be used to
determine this" (King et al.). Another example is given by

H. Lehmann:

Manager of Bill Jones.
Manager of IBM.

In English, it requires a rather deep semantic analysis of
sentences of this type to resolve the ambiguity. The ability
to distinguish classes of this type could be used as a test of
the semantic depth of the processor.

Virtually all ambiguities are resolved by means of semantic
relationships. These relationships may be supplied by a common
sense interpretation of the world or by a narrower context im-
plied by the target subject. Krageloh points to the examples
below as being resolved by common sense:

John jumps higher than Peter.
John jumps higher than the Eiffel Tower.

Hendrix builds the context into his syntactic analyzer to handle
the elliptical (incomplete) inputs as shown:

WHAT IS THE DEPTH OF THE GOLDEN SPIKE DEPOSIT?

then the input:

OF BELL CREEK?

The latter input will be interpreted as

WHAT IS THE DEPTH OF THE BELL CREEK DEPOSIT?

Most authors find it necessary to embed semantic information
in their syntactic analyzers to direct the parsing (H. Lehmann,
G. Hendrix) while Szolovits argues that in a fundamental sense
all parsing is semantically based.

Some of the restrictions simplifying a natural language
interface induced by a data base system are discussed by
Krageloh. He comes to the interesting conclusion that "relative
clauses could be eventually excluded from the query language.
Instead, the possibility of references to queries stated before
is needed involving the well known problem of pronouns".

Redundancy in any system is capable of being either helpful
or harmful. In ordinary conversation the redundancy in natural
language serves with context and common sense as an error and
ambiguity resolver. However the mechanisms of this are either
not well understood or too difficult to implement (or both) and
hence redundancy is more of a problem than a help in automatic
natural language understanding. It is difficult to drop irrele-
vancies. Most formal languages strive for compactness, concise-
ness, and precision. Natural language seems deficient in all
three. This normally leads to an augmentation of several natural
language systems, for example USL (H. Lehmann) with arithmetic
operators.

As a matter of fact, the differences between algorithmic
processes and natural languages seem so severe that it has been
suggested that there are fundamental nonalgorithmic aspects of
natural languages that make the implementation of a true natural
language interface impossible.

Natural Language Analysis

The automatic analysis of natural language reflects the
traditional components of language namely, morphology, lexicon,
syntax, and semantics. As mentioned earlier some natural lan-
guages present problems that are uniquely severe. The inflection
system in German is the most important source of morphological
problems in that language (see Krageloh).

Syntax analysis is probably the best developed part of
natural language analysis. Most authors prefer Wood's Augmented
Transition Network (ATN) as the basis of their parser. "This
technique was chosen as it seemed to be the best studied of
parsing techniques and at the same time it may be handled easily
by linguists without any special training in programming. The
advantage of the ATN is its open-endedness, allowing the defini-
tion of new arcs, tests, and actions as required for the analysis
of special natural languages” (Berry-Rogghe and Wulz). There
are some example diagrams of an ATN parser in E. Lehmann while
Berry-Rogghe and Wulz discuss the syntactic capacity of their
parser with an example showing the actual and desired phrase
structure.

The beginning of any language analysis is a recognition of
the words or symbols that form the basis of the language. The
words, along with information regarding their usage are carried
in a lexicon or dictionary. Some authors (Briabrin and Senin)
claim that different applications are only distinguished by
their lexicon and not necessarily in ways involving different
syntax or semantic structures. They distinguish between a
"general context" independent of the data base and primarily
syntactical, and a "local context" dependent on the information
in the data base. A particular vocabulary of their system serves
as a "physical embodiment of some local context"”. The syntax
rules must be changed only when the general context is changed.
The information actually carried in the lexicon varies consider-
ably from system to system. Berry-Rogghe and Wulz in fact have
two lexicons, a morpho-syntactic lexicon containing word forms
with information on tense, number, gender, etc. and a semantic
lexicon containing information about a word's equivalent internal
representation such as its "sort", and number and type of argu-
ments for each predicate.

There is some disagreement as to the size required for a
lexicon in specialized systems but most authors agree with
H. Lehmann that the miniworld represented by the data base needs
only those words which express the contents of the files. PLIDIS
has 10,000 nonlemmetized entries, King et al. has 4000 items,
Krdgeloh in KAIFAS plans to use 50,000 pharmaceutical terms, and

E. Lehmann has a core of 1500 German words deemed most important.
Lehmann's dictionary contains mainly the structural or functional
words (articles, pronouns, prepositions, conjunctions, and some
adverbs) along with the most important content words.

In contrast to the above systems, which are trying to
develop lexicons for specific cases, Guckler presented a system
that was entirely lexicon. This was developed from a large
German dictionary edited by G. Wahrig and implemented using the
IBM information retrieval system STAIRS. It contains 17,000
German words with 50,000 units of meaning and associated lexi-
cographic information. One of the most interesting objectives
of this project is the identification of the very general con-
cepts that are used in word definitions but cannot be defined
by other concepts. These very general concepts are referred to
in many of the papers by such names as semantic primitives, sorts,
semantic markers, or basic concepts. In addition to the identi-
fication of basic concepts, it is hoped that the data base will
help identify basic relations between concepts. This set of
relations will also be of interest for the further development
of information retrieval systems (see Rahmstorf).

Historically, most linguists, according to several language
theories have distinguished sharply between semantics and syntax.
Most contributions understand syntax to mean a system of rules
defining how language expressions can be generated by such clas-
sical word and grammar categories as noun phrase, verb phrase,
noun, adjective, and terminal symbols such as "house”, "computer",
or “good". Several systems (Kr3geloh, H. Lehmann) use context
free grammar rules to define the language syntax. However it
has been long noted that many language expressions generated
according to just the syntactic rules and categories lead to
meaningless expressions. In addition, the syntactic structure
(phrase structure diagrams) of a meaningful expression does not
represent the logical relations between its meaningful components
and does not represent synonymity or quasi-synonymity with other
expressions of different syntactic structure that have the same
or similar meaning. Thus new categories and structures based on
word meanings and relationships have been introduced to restrict
the range of expressions that can be generated to, hopefully,
only meaningful expressions. These additional rules, relations,
and concepts comprise the semantic part of the processor. Struc-
tures of meaning are called by such names as logical representa-
tions, conceptual networks, or semantic networks. Various
abstractions and simplifications, with little common agreement,
are made by various authors to limit the size of the semantic
processor. The "template" analysis of some processors (Hendrix,
H. Lehmann) are examples of systems that blur the historical
semantic and syntactic distinction.

E. Lehmann, as a first example of semantic structuring,
represents natural language statements by a hierarchical semantic
network whose nodes are individual entities of different sorts
(objects, locations, states, and intentions), concepts (classes,
properties, relations, or functions of objects, events), numbers,

10

temporal relationships, quantities, and different quantified
variables. The arcs of his network are basic semantic relations
such as AG (agens), RECIP (receiver), CAUS (causality) and METH
(method) and a good example of this type of semantic network is
in his Figure 4.

A many sorted representation is also used by Krageloh who
calls his entities object types. Berry-Rogghe introduces a set
of "sorts" to the usual symbols of the predicate calculus.
Szolovits discusses several kinds of concept specialization.
His sample memory taxonomy reflects the many-sortal approaches
of several of the other authors.

H. Lehmann uses a limited set of role names for the domains
of the relational structure of his data base structure, which
are then related to deep structures in natural language queries.
He describes how his system, USL, interprets such natural language
structures as {(adjective){noun), {(noun) of {(noun phrase), and
{verb){noun phrase).

King et al. use an adaption of Wilk's preference semantics
system where a verb, for example, may express a preference for
an animate subject, or an adjective a preference for being a
quality of a physical object. Such preferences are extensively
used for semantic interpretation and reference determination.
Their paper describes in greater detail an intermediate semantic
representation and how it develops using a specific natural lan-
guage sample statement in their system.

A very specific semantic problem is addressed by G. Lau.
He attempts to categorize the 50 or so causal prepositions that
exist in German. In so doing he distinguishes several different
subcategories of causal relations. The subcategories can be
added to the prepositions in the lexicon and can be used to dis-
ambiguate prepositional phrases.

Data Base

Most of the systems assume a version of Codd's relational
data base as the conceptual data model. King et al. give a short
and clear description of this model in their paper. The authors
chose "this model because it is well developed theoretically,
semantically complete, and logically transparent". Briabrin
chose a hierarchical model and Kradgeloh chose a set/entity model.
Both use query languages matched to their choice of models. The
only "complete" data base system was described by Stonebreaker
with his relational data model based INGRES system. His paper
indicates a very comfortable implementation on a PDP-11 and he
details both the model and the debate over the Codd model in the
past few years.

All of the natural language systems developed as interfaces
for data base systems rely on an intermediate data base gquery
language that is usually at a higher level than the path access

-11-

language required to actually find a data item. The formal
language is represented in Briabrin's system DILOS by the "phi"
language, in Krd3geloh's system KAIFAS by a set language, in
Stonebraker's system INGRES by QUEL, and in H. Lehmann's system
USL by a formal DB language, and in King's system by the APL
based AQL.

Stonebraker introduces a simplified graphical based language
called CUPID and suggested that there was really no need or place
for a natural language interface for a data base system. He felt
that his language represented a very comfortable, easily learned,
and maybe even forgiving human engineered interface.

System Aspects and Performance Evaluation

Bernorio et al. and Guida discuss some of the basic
considerations that could influence the gross system design of
a natural language system that could be used as an interface to
many different application systems. Bernorio argues that the
robot example in his paper could be a prototype for a data base
system. Both papers argue that it is better to adapt other
systems than to reinvent. They argue very strongly that a
dialogue is absolutely necessary to produce a comfortable inter-
face and suggest that there really is no intrinsic difficulty
to achieve such a dialogue. They also suggest various structures
that could be used to achieve these goals.

It is possible to evaluate the performance of the various
systems presented according to a set of criteria that determine
both the ease and universality of their applicability. Since
the natural language processors must work with data in data bases
and obtain information from the data, they must be concerned with

- the storage and structuring of data and information;

- query analysis, information retrieval, deduction and
problem solving interfaced to the data base;

- adaptation to new data bases or domains;
- accuracy and precision of retrieved information; and
- problem applicability.

Most of the systems described, with the possible exception
of INGRES (Stonebraker), have either minimal or no concern with
either data input, storage, or structure. Several of the systems
require that data be entered in their implementation language
LISP (e.g. LIFER (Hendrix), DILOS (Briabrin and Senin)) or do not
give sufficient information to determine entry procedures. The
interfaces are primarily there to analyze input queries. H.
Lehmann describes an on line update of the data base with declar-
ative statements. The data base is generated by other technigues.

-12-

E. Lehmann's semantic network based system extracts information
from input statements and adds it to the data base. An example
of this is in the analysis of Victor's flight to Laxenburg. The
text analysis would result in a richly connected semantic network,
which is automatically updated and extended by each new text.

This approach is applicable if the input text contains truth with
respect to the semantic net.

The optimal balance between the generality of the natural
language query analysis and the ability of the interface to use
the information in the data base for ambiguity resolution is
hard to obtain. If the interface uses sophisticated problem
solvers during the qguery analysis then the data base must be
structured compatibly with the problem solvers. This unfortu-
nately is rather restrictive at the moment and would leave out
most present data base structures. There thus is a dilemma
that relates the power of the techniques used for query analysis,
the universality of the interface, and the structuring of the
data base. None of the papers suggest procedures for restruc-
turing, either physically or logically, a presently constructed
data base. However, this does not preclude the building of a
data base in the required image. Moreover, there is an implicit
assumption that the problems of data base maintenance such as
data integrity and access control are either solved or belong
to someone else.

If it is assumed that the data base structure is now com-
patible with the natural language interface and the problems
mentioned above are solved there is still the question of whether
a change in domain or application is easily accommodated. All
of the systems described were developed for a specific appli-
cation domain such as pharmaceutical drugs for KAIFAS (Krageloh),
environmental data for PLIDIS (Berry-Rogghe and Wulz), or robot
control for DONAU (Bernorio et al.). However all systems were
designed to "easily" change domain. USL (H. Lehmann) requires
only a change of the lexicon by associating the new application
domain terminology with the relations and relation domain names.
For the more complex semantic network organized data bases such
as that required for E. Lehmann's system the user will most likely
not know in detail the organization of the information so that
the move from a tested application domain to a new application
domain will be more difficult. Briabrin claims that all that is
required to change domain in DILOS is a change in vocabulary.

It is difficult here, as in other cases, to evaluate whether the
claims for easy adaption are justified. There is no agreed mea-
sure for ease of adaption.

The applicability of the interfaces and systems to new
domains is also influenced by the linguistic coverage of the
interface. Although all interfaces would like to have universal
coverage, this is clearly an unattainable goal. This regonitiion
results in a conscious restriction of the coverage to sublanguages
such as kernel sentences only, noun phrases only (Rahmstorf), or
limited vocabulary. Unfortunately, restrictions to a natural
sublanguage are difficult to define and may be difficult to learn.

-13-

As a way around this some authors suggest allowing slightly un-
grammatical sentences. Again though there is no accepted way of
defining what is slightly and what is grossly ungrammatical.

The usefulness of a natural language interface is obviously
influenced by the accuracy and precision of the information
extracted from the data base. It is doubtful whether a natural
language interface will ever give absolutely accurate and precise
information. Although the input query is translated into a pre-
cise request to the data base, the inherent fuzziness of the
natural language could easily result in two users making exactly
the same request disagreeing on the precision of the outcome.
The additional problem is that there is no way to measure pre-
cision for general data bases although partially subjective
measures do exist for bibliographic data bases.

The determination of the applicability of natural language
interfaces to real problems has not been answered in general
at this Workshop. There was a distinct split between those
participants that had spent most of their time building data
base systems and those that had built natural language inter-—
faces. The latter claimed that the natural language interface
was necessary to attract the casual user while the former
claimed that the simple highly structured query languages that
are being marketed with data base systems are sufficient. What
is lacking are any measures of user satisfaction of the various
interfaces. In fact there has been very little real usage and
none reported at this Workshop that would allow objective evalua-
tion of any of the claims of the usefulness of natural language
interfaces. What is clear from the Workshop is that the various
systems are at the point where they can be introduced to real
users for evaluation. The second clear point from the Workshop
is that the data base technology and the natural language tech-
nology have not yet merged. The gap is precisely determined by
the level of semantic based knowledge structure imposed or super-
imposed on the data base structure. With present technology,
knowledge structure for large data bases would be quite expensive.
A third point is that there are still a large number of problems
in natural language analysis and that the solutions may turn out
to be dependent on specific natural languages.

NATURAL LANGUAGE INTERFACING TO DATA BASE SYSTEMS

-17-

Access to a Data Base System Via Natural Language

K.-D. Krageloh

GOALS OF NATURAL LANGUAGE PROCESSING FOR DATA BASE SYSTEMS

Simulation of Natural Language Understanding

Natural language communication with the computer has a
relatively long tradition in informatics. Depending on their
objectives, these activities fall into one of two disciplines,
artificial intelligence (AI) or data base technology (DT).

In AI the conception of language understanding systems is
part of the more comprehensive aim to simulate cognitive pro-
cesses on the computer [1,2]. The basic concern of AI in this
connection is the lingquistic component of cognition, i.e. the
assignment of meaning to language entities. Characteristic for
man is his capability of producing a cognitive image of his
environment. This image (called a model) is always an abstrac-
tion from the real world, chosen with respect to the purpose it
is to serve. 1In language understanding, the statements about
the real world are related to the cognitive model (assignment
of meaning), and thus cause reactions such as modifications of
the model, evaluation of the model, or answers.

The simulation of this process above all requires specifi-
cation of a modeling system (MS), by means of which any environ-
ment or part of it can be described as a model (representation
problem). A language understanding system is always based on
a model formulated in some MS. Further, there is a need for
mechanisms that put natural language expressions in relation to
that model (fitting problem [1]).

Characteristic for human language understanding is the fact
that meaning cannot directly be constructed from some basic units
of meaning [1]. Instead, complex relations between the model
objects enter as well into the meaning of language units such as
words. Winograd mentions words like "virtue" or "democracy" as
examples. 1In order to account for the aspect of relations,
special MS are usually developed for language processing. This,
however, leads to very complex MS and, consequently, to extensive
models even in those cases where only small sections of the envi-
ronment are considered (e.g. semantic memories [3], dependency
networks [4], demons [5]).

Obviously the complexity and the size of the model affects
the fitting problem and, if of concern, the rules for deriving
the system reactions. Take as an example the task of finding

-18-

in an extensive semantic net all those subnets corresponding
in their structure to a given net.

Both in human cognition and in the case of its simulation,
models must be physically represented, and operators for manip-
ulating them must be realized. In the first case we assume a
practically unlimited memory (brain, neurons, etc.). This pro-
vides a fully associative solution of the fitting problem even
for highly complex model structures, such as recollection of
impressions, moods, etc. In computer simulation, however, we
have to deal with physical devices and processes of limited
capacity and duration. Given a complex MS and its corresponding
extensive models, this merely allows for the description and
representation of a drastically limited portion of the environ-
ment. Likewise, no manipulation of models on an associative
basis is directly possible on a computer as yet. Instead, the
associative behavior must be simulated thus causing considerable
costs and process times, e.g. long response times in an inter-
active mode.

This problem will certainly become less troublesome as new
hardware technologies become commercially available (use of
microprocessors, new storage divices, LISP-machines, etc.).
Still, it is by no means clear from current discussions whether
human cognition and its simulation on computer really differ
just quantitatively and not qualitatively [6].

If one approaches the same problem from the DT side, however,
one must take into account the necessity of administrating and
processing very large volumes of data. Consequently, even though
a data base is usually again regarded as the model of some real
world [7,8], the MS cannot be chosen completely at will but must
meet a number of conditions:

- At justifiable costs, the MS must allow for the descrip-
tion of even such worlds whose number of objects and facts
to be modeled is very large (i.e. model representation
should take up as little storage space as possible).

- The rules for manipulating the models should be kept
simple, since the time for evaluating even extensive
models is very limited (acceptable response times in
a data base system).

Under these conditions, data base systems must restrict their
MS to those that can be formalized and are simple compared to
those in AI. Models in DT will abstract from the real world
far more than the usual AI models.

Consequently, the range of situations to which they are
applicable will be much smaller than in AI, since they are much
more likely to reject details that one may wish to include in
them. Thus, models in DT are generally oriented towards a com-
paratively narrow purpose. Since in DT the operators defined
on models are few, they are usually included in the MS which
is then called a data model [9,10,11,12,13].

-19-

Natural language access to data base systems has frequently
been discussed. By providing easy access to users not familiar
with formal models one hopes the system will become more widely
available [14,15,16,17].

Because of the differences in MS, it is obvious that lan-
guage understanding systems for large data bases have to be based
on something other than the simulation of cognitive processes.

In DT the MS are rigorously defined by the interfaces of existing
data base systems. Consequently, the language can be restricted
to an extent necessary and reasonable for the usage of the system.
Under these conditions natural language in data base systems,
although much more diverse than programming languages, is still

a formal language.

For practical use, these restrictions are quite acceptable.
For instance, tests of user behavior in data base systems that
provided (simulated) access by unrestricted English language
have shown that the wealth of natural language expressions is
never utilized [18]. Even more, certain guery structures were
used almost all of the time, thus indicating that a natural
language interface for data base systems becomes highly stylized
from the user's point of view, too. This might be due to a
certain lethargy of the user, who finds it difficult to concep-
tualize complex statements [19].

The objective of this paper is to examine the consequences
for natural language processing subject to the conditions imposed
by data base system interfaces. This will include discussion of
the question that results from the fact that AI may be incorporated
in the development of natural languages for data base access, and
to what extent, without violating the aspect of practicability.

In addition to AI, text analysis techniques in documentation
(automatic indexing, morphemic analysis {20,21,22]) are another
large area that may contribute their results. The conclusions

of these considerations will be illustrated in this paper by
means of natural language access to a particular data base system.
As mentioned above, the differences in MS have a clear effect on
the linguistic approach. We shall explore this further by giving
a rough outline of the development of language processing in AI
and DT.

Approaches to Natural Language Processing in AT

The early language processing systems in AI concerned them-
selves with the problem of translating one natural language into
another [23]. These systems possessed a certain knowledge of
the external structure of the languages (grammar), and of the
correspondences between words of the languages (dictionary of
synonyms) . These approaches failed, since grammar and dictionary
alone proved insufficient to deal with the different meaning of
sentences like [1]:

-20-

(1) The fish was bought by the cook.
(2) The fish was bought by the river.

The system would have to know something about the real world to
which the sentence is applied in order to recognize the difference
in the meaning of "by the cook" (person) and "by the river" (place).

Owing to the failure in the early sixties of these approaches
in translation one turned to the broader question of how to simu-
late language understanding on the computer in general. One
indication of a computer system's capability to comprehend natural
language would be, for example, whether in man-machine communica-
tion the machine responds in a manner that seems "plausible" to
its human partner. A system would be perfect if it passed the
Turing test [24].

In order to enable the simulation of human language under-
standing, at least knowledge about the meaning of words relative
to a specific environment must be provided (as we pointed out
earlier). For this purpose the environment or part of it has
to be modeled (MS). A certain portion of the model is assigned
to the word as its meaning. The examples below, however, show
that this approach is still not sufficient [25]:

(3) John jumps higher than Peter.
(4) John jumps higher than the Eiffel tower.

In order to recognize that (4) is meaningless, the system requires
a more extensive knowledge of the environment than the (complex)
meaning of individual words. The model must contain the fact

that no living being can jump higher than the Eiffel tower, in
general, it must establish relations between model parts.

Some of the MS used in the past cannot meet this condition
or, at best, only if applied to sections of an environment too
small to be of any interest. 1In particular, this applies to the
earliest language understanding systems such as STUDENT [26],
SIR [27], BASEBALL [28], ELIZA [29]. For example, the STUDENT
system used equations as MS, i.e. it was restricted to a small
mathematical world; ELIZA used patterns that were suitable only
for very specific situations of a dialogue.

Many MS have the characteristics of a formal language;
best-known among these is predicate logic (applied to a language
understanding system by Coles [30]).

In a formal language MS the environment is ultimately
modeled by means of certain basic units (axioms). Strictly
speaking, they already belong to the class of MS that do not
meet the demand for deriving the meaning of words from complex

-21-

structures with diverse dependencies between model parts.
Winograd [31] or Woods [32], therefore, preferred to construct
more complex MS from programs that provide both the description
of environment situations and operational changes.

Other authors (e.g. Schank [4]) argue that language
understanding could only be simulated on the basis of cognitive
relations, and correspondingly developed as MS complex data
structures such as semantic memories [3] or dependency networks
[4]. The representation problem is solved by demonstrating the
capabilities of the MS on severely restricted worlds (blockworld
[31], airline guide ([32], lunar geology [33], industrial enter-
prise [34]).

Approaches to Natural Language Processing in DT

The application of computers to the processing of large
data sets in industry and public administration lead to the
development of a class of special-purpose program systems known
as "data base systems". A data base system provides for mecha-
nisms for the description, management, and processing of large
sets of data.

Modern data base systems [11,35,36,37,38] are based on MS
(designated as "data models") that make feasible the modeling
of extensive environments. The structure of most MS is such
that it is possible to formalize the description of models
according to comparatively simple rules and to express their
processing by means of algorithms. The formal languages developed
for that purpose are called the interfaces of data base systems.
Well known MS in use are the relational model [9], the hierar-
chichal model [13], the network model [10], and the binary rela-
tion model [12].

As soon as one attempted to make data base systems available
to the casual user unfamiliar with EDP, even simple formalization
rules and their corresponding formal languages proved to be a
severe handicap to many users. Natural language as an end user
language offers some hope of overcoming these problems, since
the user need not learn a new and artificial language, but will
only have to observe restrictions on a language already well
known to him. Natural language access to data base systems
could be the particular advantage in areas like industrial
management, medicine, pharmacy, engineering, or public adminis-
tration where even in data retrieval--as part of a problem solving
process—-~the user may employ the very language in which he gener-
ally formulates his problem and solution (see also [17,33]).

The scope of meanings of natural language queries to a data
base system is determined by the MS (data model). Generally,
such an MS is not oriented towards cognitive theories as it is
in AI. The interface of the data base system is maintained no
matter what language is chosen for accessing it, i.e. in the
case of natural language access, too. In these systems the aim

-22-

of language processing is to translate natural language queries
into expressions of the formal language at the system interface.

Kellog was one of the first to advance this approach. He
chose as the MS of his CONVERSE system [39] a formal language
dedicated to information retrieval and hence containing operators
typical for this purpose. Likewise, Woods put his procedural
semantics into the form of an interface in which predicate and
function symbols were defined for the underlying procedures.
Both these approaches fall into an area between the AI and DT
methodology. Also to be included is the work by Thompson [40],
whose ring structures may be interpreted both as the representa-
tion of cognitive relations and as the realization of a binary
relational model [12]. While Thompson did not develop a formal
interface, he--like Woods--was heavily concerned with the inte-
gration of large data bases into his REL system.

The expressiveness of natural language goes far beyond the
power of the interfaces of available data base systems. In order
to make some use of this expressiveness the formal MS must at
least allow for lengthy expressions based on a small number of
operators (such as the definition of algorithms, nesting of
functions). In general, this capability is only found in so-
called navigating systems [#41]. 1In these a complex problem is
described by a single expression divided into a large number of
successive or parallel steps during processing. The results of
steps serve as a guide to the following steps for further search
in the data base. A classic example is the relational model;
suggestions exist for a natural language access to it [17,42].
Counter examples seem to be the network model, the hierarchical
model, or simply file management. Correspondingly, no approaches
have been published for use of natural language access to them.

Other data models that might provide a basis for navigating
systems are binary relations [12], LEAP-structures [43], or
mathematical sets and relations [16]. The latter will serve as
our starting point for demonstrating natural language access to
a data base system.

A SET-THEORETIC MODELING SYSTEM (SET LANGUAGE)

The set-theoretic modeling system of KAIFAS is a formal
language MS based on set and relation algebra. In order to
express algorithms in the language, the language elements must
be classified into operators, operands, and the control structure
[38,44]. The operand (object) types of the set language together
with their symbols are listed in Table 1 together with examples
from a pharmaceutical application. The symbols for the instances
of types are generated by indexing the symbols of the corresponding
object types. The language includes the standard set-theoretic
operators (Table 2). Special operators map relations to sets.
Further, some logical and relational operators are defined.

23

Table 1. Object types and operators.

Object types
I Individuals, e.g. Thomapyrin, Perphyllon
M Sets, e.g. drugs, diseases
Lists of individuals
R Relations, e.g. indication,
contraindication, manufacturer
Lists of pairs of individuals (Work is
under way to cover n—-ary relations)
Z Numbers
D Measures, e.g. 4 tablets/day
F Measure functions, e.g. dosage
Lists of ordered n-tuples whose
last component is a measure
B Truth values
Operands
11,12,13,...,In, Ml'M2'M3"“'Mk' Rl,...

The control structure of the language determines the
sequential order in which the operators are executed. This is
indicated in the language by expressions in functional notation,
e.g.:

€l Vg (R |B D)

ISteicardin’Mn(Mp

rescription drug’ drug’Iheart neurosis

(Interpretation: 1Is Steicardin a prescription drug for heart
neurosis?) The operators were applied in the sequence: Vg,
MN, €. Loops are introduced by the use of bounded quantifiers.
They offer the (only) possibility to formulate gueries of any
degree of complexity:

(1) Are all drugs for glaucoma prescription drugs?
(2) Which antibiotics are incompatible with cytostatic
drugs?

In both examples the flow of control is identical. For each
element of a given set (i.e. "drugs for glaucoma" or "antibi-
otics) a certain condition (e.g. to be a prescription drug,

Table 2.

-24-

Operators.

On sets:

Mb(Il,...,In)

set construction

MU(Ml'Mz) union
Mﬂ(Ml,Mz) intersection
Km(Ml,Mz) set difference
Kz(Ml) cardinality
On relations:
Ko (Rl) converse
Rb(Rl,Ml) restriction {({(x,y) ‘ (x,y) € Ry ANx € Ml})
Rp(Rlle) product
RU(RI'RZ) union

Reduction of binary relations:

vo(Rl) domain {x|3y: (x,y) € Rl}
Na(R;) range {x|3y: (v,% € R}
Vg(Rl,Il) individual domain {x| (x, 1)) € Rl}
Ng(Rl,Il) individual range {xl (Il,x) € Rl}

Reduction of measure functions:

Fw(Fl,Il) measure number

Logical operators:
G(Il,Ml) test on set membership

C(Ml'M2) test on set inclusion

-25-

to be incompatible with cytostatic drugs) is subject to a test.
In (2) only those elements are listed for which the test yields
"true". (1) corresponds to the following formulation in the
set-theoretic machine:

AL(x1,Vg(R),E(x1,M)) .

drug’Iglaucoma prescription drug

Important quantifiers are:

AL: all, every, EI: some,
DB: which, ZB: how many.

Bounded quantifiers contain three arguments:

- The name of a bound variable, each of its substitutions
defining an invocation of the loop: Xq-

- An expression resulting in a set of objects (range):
Vg(Rdrug’Iglaucoma)‘

- An expression for the condition resulting in a truth
value (scope): E(x1’Mprescription drug)'

Expressions containing quantifiers must be in prenex normal

form, i.e. quantifiers must always appear as the left-most part

of an expression.

PREMISES FOR LANGUAGE ANALYSIS IN DATA BASE SYSTEMS

The main purpose of data base systems is to provide tools
for the management and retrieval of large volumes of data that
are maintained on peripheral storage devices. Access by natural
language can only be justified if it does not consume an inor-
dinate amount of resources such as storage space or processing
time. Consequently a number of restrictions must be imposed
on a natural language interface in a data base system as compared
to the interface of a general language understanding system.

Restrictions on the Natural Language Interface

The Natural Language Interface Should be Describable in
Terms of a Simple Syntax Model

This suggests limiting the syntax model to context-free
grammars. Previous research has shown that context-free grammars
are inadequate for the purpose of defining natural langquage, but
the examples used in the literature for demonstrating the need

-26-

of more complex grammars are of a rather exotic nature, at least
as far as their applicability in data base systems goes. 1Indeed,
Kratzer [45] defined a comparatively large subset of natural
German by means of a context-free grammar without indicating any
need for restricting the semantics of his subset. Therefore one
would expect a context-free definition to be justified all the
more in connection with formal MS and the restrictions of the
semantics corresponding to it. The work by Malhotra [18] also
indicates that there is no need for an extensive language defi-
nition in the data base area. Hence the application of context-
free languages does not seem to place unreasonable constraints
on the formulations a user may be able to use.

Simple Procedures Should Be Chosen for Morphemic Analysis

The analysis of natural language, and German in particular,
introduces the problem of morphemic analysis [20,46]. Depending
on the permissible error rate (incorrectly reduced word forms)
costs and efforts for solving this problem may rise arbitrarily
high (see, for example, [21]). Preferebly, simple procedures
should be chosen here again, the error rate resulting from even
very simple procedures (masking [47]) is surprisingly low (~30%).

Verbs Should Be Omitted from the Interface

Both these requirements discussed can be justified all the
more, since, in defining a language for data base systems, verbs
may be omitted to a large extent. Obviously, verbs are indis-
pensable as soon as a MS accounts for temporal relationships and,
consequently, permits the description of dynamic processes (see,
for example, REL [40]). Data bases of that kind, however, have
so far never gone beyond pilot studies; data base systems in
practical use do not include them yet.

The Parser Should Be Simple and, on Average, Fast

Again, this requirement influences the complexity of the
total system. 1In the literature a number of parsers for context-
free languages are given [48,49,50]. Their efficiency is measured
in terms of an upper limit for the time needed for processing
sentences containing n words (in general the efficiency is pro-

portional to kn3). However, for queries to a data base system
n is comparatively small, so that for choosing a parser the
factor k becomes of major importance.

The Semantic Validity Test Should Be Performed Only After
a Syntactic Analysis

The semantic validity of a query may be controlled in combi-
nation with the retrieval. Concurrent access to the data base

-27-

would have a far worse effect, since all dead ends during the
analysis would add to the total retrieval time although not to
the result. 1In spite of well known objections [51] quite a
number of authors working at natural language access to data
base systems [17,32] defend the principle of postponing the
validity test. The number of syntactically correct but seman-
tically meaningless constructions may be reduced by a special
structure of the grammar (see next section).

The Subset of the German Language Defined

Based on the above demands a subset of the German language
was defined for accessing the KAIFAS data base system by means
of a context-free grammar. Following the works by Schott [20]

a procedure for simplified morphemic analysis (without verbs)
was developed. The parser was derived from the M. Kay-parser
[52] since it best met the requirements of simplicity and speed
(see next section, [38]). The translation from the natural
language to the set algebraic language (MS in KAIFAS) follows
traditional approaches. This process consists of lexical analy-
sis, syntactical analysis, code generation, and transformations.
Figure 1 illustrates the interaction between the steps. During
each of these the following functions are performed:

- The query is divided into terminal symbols. When
searching a dictionary of those, their corresponding
representations on the set language level are found.

- The parser completes the syntactical analysis by means
of the grammar.

- If the query is parsed to a sentence, the code generation
will form an expression of the set language by using the
terminal representations and the code fragments generated
by the parser.

- Then transformations will be applied to this expression
according to certain rules which will be explained in
the next section.

-28-

DICTIONARY USER QUERY

LEXICAL ANALYSIS

SYNTAX GRAPH PARSER GRAMMAR

CODE GENERATION

PRELIMINARY
TRANSLATION

TRANSFORMATIONS

SET-THEORETIC
EXPRESSION

Figure 1. Translation to set language.

TRANSLATION OF NATURAL LANGUAGE INTO SET LANGUAGE

Type and Form of the German Grammar

Vocabulary

As pointed out earlier a context-free formalization of the
natural language interface in KAIFAS was chosen. While a suit-
able subset of the German language can be described as a context-
free language, it is just as important that this description be
practicable, i.e. comprehensible and transparent to the designer
and user, and easy to implement by the system. Practicability
can only be achieved by using some additional tools.

Each context-free grammar contains a number of nonterminals
in order to describe the syntactical phenomena of a language.

-29-

In many natural languages these tend to be quite extensive, e.g.
the combinations of case, gender, and number. In order to limit
the set of nonterminals in the grammar, so-called complex cate-
gories (based on REL [40,53]) are introduced. These may be con-
sidered schemas for nonterminals, and consist of a main category
and a number of features. Traditionally [40,54,55], the main
categories are related to syntactical phenomena such as noun or
noun phrase, whereas features refer to secondary phenomena such
as number or case. The values of a feature correspond to such
phenomena, e.g.

number (1) singular
case (2) = genitive .

Schemas denote sets of nonterminals; e.g.

N
num, cas, gen

denotes a set of 24 nonterminals all of them nouns. Complex
categories may be partially ordered by assigning values to the
features:

Nnum,cas(2,3),gen(1,2)

is a more restricted schema than N and denotes a set

num,cas,gen’
of only 8 nonterminals, since only two values are possible for
each, cas(2,3) and gen(1,2). Assigning a single value to each
feature of a complex category results in a single nonterminal.

The treatment of complex categories in KAIFAS is different
from already existing approaches in several respects:

- Because of the restricted semantics in KAIFAS, main
categories are chosen in accordance with semantic
aspects (e.g. main category for sets ME, for relations
RE). 1In this way we make sure that only semantically
valid constructions are described by the productions
of the grammar.

- A grammar whose main categories are based on semantical
terms does not "naturally" reject sentences containing
major errors such as missing congruence in number,
gender, and case of adjectives and nouns, since these
concepts are based on the traditional syntactical
categories. The necessary syntactical aspects will be
assigned to the features. As a result KAIFAS closely
follows the correspondences

-30-

main categories - semantical aspects
features - syntactical aspects.

For practical reasons this classification cannot always
be maintained. The set language, for example, contains
(semantically) different types of quantifiers which in
many productions are handled in the same (syntactical)
way. The number of main categories and hence productions
can be reduced by expressing the difference in type on
the feature level so that only one main category will

be defined for quantifiers.

- Only binary features are allowed:

case features: nom, gen, dat, acc
gender features: mas, fem, neu
number features: sin, plu

The binary values are designated by +/-. Then, opera-
tions with features may easily be expressed by logic
formulas.

Table 3 provides a list of the main categories and features
of the KAIFAS grammar. It is apparent from the figure that the
main categories fall into two classes,

(a) object-categories and
(b) operator-categories,

corresponding to the classification of the set-theoretic language
into objects and operators. Applying the same distinction to the
terminals of the grammar results in

(a) object symbols which represent instances of the object
types and

(b) operator symbols which represent the operators of the
set-theoretic machine (the environment of the language
in the sense of [56]).

Because the set of terminal symbols is both variable and large
(approximately 50,000 objects in the pharmaceutical area) ter-
minal productions are not made part of the grammar, but are
maintained by means of a dictionary (lexical analysis is de-
scribed later). The operator symbols form a fixed set, but
some concordances can be identified, such as all operator sym-
bols for quantifiers to which only one main category will be
assigned (see above). The operator symbols are also included
in the dictionary.

-31-

Table 3. Main categories and features.

Main categories

AF AL - quantifier
DZ measures
ED term for evaluating measures
ET measure units
IN proper name
ME set
MF measure function
PR operators: relations + sets (prepositions)
RE relations
RP DB-quantifier
RS restriction of sets (relative clause)
SA sentence
SF EI/KE - quantifier
QU other quantifiers
VO relational operator
zn number
Features
Syntactical aspects: Semantical aspects:
mas masculine qua quantified
fem feminine neg negation-quantifiers (no:
neu neuter frw interrogative (who, what)
mul
nom nom%nétlve div for arithmetic operators
gen genitive exp
dat dative add
acc accusative
sin number
plu
adj adjective/noun
att attributive
ajm adjective-modified
pdt predetermined (the drug)
prm premodified (Peter's friend)
pom postmodified (friend of Peter)
std strong declination
svk stops genitive concatenations

KE)

-32-

Productions

The use of complex categories requires a similar extension
of productions into complex productions:

P + Det N .
cas,gen,num cas,gen,num cas,gen,num

This is a production schema from which one may derive a set of
context-free productions when substituting suitable nonterminals
for the complex categories. In doing so, the feature values have
to meet certain conditions (e.g. congruence in case and number).
Consequently, the complex rules are separated into a rewrite
rule defined on main categories only, and a feature program
specifying which combination of feature values may be assigned
to the complex categories in this rule. The feature program
consists of a test section specifying the conditions that the
feature values of the complex categories in the right-hand part
of the production have to meet in order to apply the rule, and
an assignment section defining the feature values for the left-
hand complex category. Test and specification could be done in
list form [U45] or by means of programs in a special programming
language such as in KAIFAS.

In summary, a complex rule may be defined as follows:

(1 VO - 71,...,Vp rewrite rule

(2) A(V1,...,Vp) feature program (test)

(3) Z(V1,...,Vp) feature program (assignment of
the features of VO)

(4) S(V1,...,Vp) semantical part of the rule

VO’V1""'Vp denote complex categories, VO’V1""’vp their main

categories. Table U4 provides a summary of the operators used
in feature programs.

The semantic part is a term for defining the meaning of the
complex rule. It consists of set-language symbols, and place-
markers for the semantics of the complex categories in the rule.
Since some semantical aspects are treated on the feature level,
the semantic part may depend on conditions concerning features.
These dependencies are defined by feature programs as well.

Thus the semantic part S(V1,...,Vp) of a complex rule may alter-

natively be phrased as

A(V1,...,Vp) = S'(V1,...,Vp) (dependencies on features)

33

or

S‘(V1,...,Vp) {no dependencies) .

Table 5 gives an example of a complex rule.

A complex rule may be applied in the following steps
(further details are provided later):

- matching the input string with the right-hand side
of the rule;

~ testing the right-hand features for acceptance; and
- 1if yielding "true", reduction to left-hand side and

assignment of features and semantics.

Table 4. Operators in feature programs.

Test part:

test ({complex category),{list of feature-values))
yields true, if the complex category has associated with it
the feature-values specified, else false.

meq ({complex category),{complex category),{list of features))
yields true, whenever at least one of the listed features

agrees in both complex categories specified.

equ ({complex category),{complex category),{list of features))
same as meq, but all features must agree.

ANV logical connectives

Assignment part:

(all assignments are to the complex category of the left rule part)

AUW ({(list of feature-values))
assigns the feature-values specified.

cop ({complex category),{list of features))
copies the values of the features of the denoted complex
symbols.

and ({complex category),{complex category),{list of features))

assigns those feature-values that agree in both complex
categories.

—-34—-

Table 5.

(1) ME -~ ME ME rewrite rule

(2) test (MEZ,+adj-att) A test (MES,-adj)A featura program

meq (MEz,ME3,sin,pZu) meq (ME2,ME3,nom,gen,dat,acc)A (test)

2
meq (ME ,ME3,mas,fem,neu);

(3) zuw(-ady), and(MEz,ME3,sin,pZu), and(MEz,ME3,mas,fbm,neu) feature program

i t
and (MEZ,ME3, nom, gen, dat, acc); {assignment)

(4) MF\(MEZ,MEa) semantic part

The upper index (ME2) serves for disambiguation of the complex categories of
the production. The feature test excludes those adjectives and nouns that do
not agree in number and in at least either gender or case. The resulting
complex category is treated like a noun (-adj), most of the possible ambi-
guities in gender and noun are solved by the and- operator. The semantics
of the production is the set-intersection.

Lexical Analysis

Assignment of Complex Categories

The dictionary contains all the object-symbols and all
those operator-symbols that have been classified into types.
Since the set of object-symbols is chosen in a user or appli-
cation dependent fashion, these will not be defined until a
user actually works with the system.

The lexical analysis fulfills two functions:

- assignment of a complex category to a terminal (assign
a main category, assign feature-values),

- assignment of semantics (i.e. a terminal symbol of the
set language).

A large number of syntactical ambiguities may be expressed
within one complex category, such as the ambiguity arising by
the German word "ein" (+nom or +ace):

lexical analysis

ein QU~mas-fem+neu+nom-gen-datt+ace+sin-plu ,

where the list of feature-values may be considered a conjunctive
logical expression. If disjunction is needed as well, a conjunc-
tive normal form is used. An example from the German language is:

35

drageefdrmigen — {ME+mas—nom+gen+dat+acc+sin—plu

ME+fem+neu-nom+gen+dat-ace+sin-plu

Here the accusative case is allowed for masculine, but not for
neuter or feminine.

Morphology

The multitude of inflections in the German language does
not allow for storing in a dictionary all word forms to be
derived from a large user-vocabulary. Rather, the dictionary
only contains the word stems. Reduction from inflective form
to word stem is done by algorithmic means (morphological analy-
sis). The exclusion of verbs simplifies the problem. A word
stem is defined as follows:

- nouns: nominative-singular form
- adjectives: attributive form.

Also, the morphological analysis must determine the syntactical
structure of a terminal (gender, case, etc.). Different ap-
proaches have been published for solving this problem for the
German language [20], but all of them require that extensive
linguistic information be supplied with each word in the dictio-
nary which can hardly be expected from a casual user. Therefore,
when defining a word stem in KAIFAS the user will only be required
to specify a minumum of information, namely:

- object-class of a word

- gender

- noun/adjective

-~ singular and plural forms of the word.

The word may then be assigned to a specific morphemic class (see
[20]). This class contains all morphemic endings that may be
attached to the word stem. Each morphemic ending will determine
one or more syntactical structures (set of feature-values) for
all these terminals that contain this ending. By explicitly
storing the plural forms of terminals the highly problematical
reduction of terminals involving mutation of vowels becomes un-
necessary. The additional storage space required may be toler-
ated, since plural forms occur in case of set- and relation-
identifiers only. Table 6 presents an example of a morphemic
class. In order to save storage space in the dictionary, the
syntactical structure of a word stem will also be defined by
morphological analysis. Thus any morphemic class will contain
an entry for the null ending "e".

-36-

Table 6. Morphemic class for articles
singular (e.g. "kein").

Ending Syntactical structure
€ +mas~-fem-num+nom-gen-dat-acc

~mas-fem+neu+nom-gen-dat+acc

e -mas+fem-neu+nom-gen-dat+acc
es +mas~fem+neu-nom+gen-dat-acc
em +mas-fem+neu-nom-gen+dat-acc
en +mas-fem-neu-nom-gen-dat+acc
er -mas+fem-neu-nom+gen+dat-acc

In Table 7 the complete lexical analysis of a query is
illustrated. The syntactical structure of a terminal can be
highly ambiguous due to the lexical analysis. The feature
programs, however, allow for easy disambiguation as demonstrated
by the example of Table 8.

Table 7. Result of lexical analysis for an entire sentence.

Main Set-theoretic
wWord Features A
category representation

Welche Qu +mas+fem+neu+nom+acc+plu DB

QU +fem+nom+acc+sin DB
dragee- ME +mas+neut+gen+dat+acc+sin M25
formigen ME +fem+neutgen+dat+sin M25

ME +mas+fem+neu+nomtgent+dat+acc+plu M25
Psycho- ME +neu+nom+gent+acc+plu M4
pharmaka
haben {terminal) -
Depression IN +nom+dat+acc 164
als {terminal) - Ng

Indikation RE +fem+nom+gen+dat+acc+sin R8

-37~-

Table 8. Disambiguation.

Rule: MEl d ME2 ME3

Meq(mas,fem,neu,MEz,ME3)A Meq(nom,gen,dat,acc,MEz,ME3)A
Meq(sin,plu,MEz,ME3);
And(mas,fem,neu,MEz,MEa),And(nom,gen,dat,acc,MEz,MEa),
And(sin,plu,ME ME3);

MMN(2,3);

27

applied to
(1) ME +mas-fem-neu-nom+gen (drageeformigen)
+dat+acc+sin-plu

(2) ME -mas+fem+neu-nom+gen "
+dat~acc+sin-plu

(3) ME +mas+fem+neu+nom+gen "
+dat+acc-sin+plu

(4) ME -mas-fem+neut+nom+gen (Psychopharmaka)
-dat+acc-sin+plu

Because of number (sin,plu) the feature test accepts combinations (3) and
(4) only. The feature-assignment yields:

(5) ME -mas~fem+neutnom+gen (drageeformigen Psychopharmaka)
-dat+acc-sin+plu

Rule: MEl +—QUZ ME3
Meq(mas,fem,neu,QUz,ME3)A Meq(nom,gen,dat,acc,QUZ,MEa)A
Meq(sin,plu,QUz,ME3);
And(mas,fem,neu,QUz,ME3), And(nom,gen,dat,acc,QUZ,ME3),
And(sin,plu,QUz,MEa):

2(x,3,#)
applied to
(6) QU +mas+fem+neu+nom-gen-dat (welche)
+acc-sin+plu

(7) QU -mas+fem-neu+nom-gen-dat "
+acc+sin-plu

(5) ME -mas-fem+neut+nomt+gen (drageeformigen Psychopharmaka)
-dat+acc-sin+plu

Only combination (6)/(5) is accepted.

Result: ME -mas-fem+neu+nom-gen (welche drageeformigen Psychopharmaka)
-dat+acc-sin+plu

Thus all ambiguities with the exception of case (nominative/accusative) are
resolved.

-38-

Lexical Analysis Algorithm

Lexical analysis for a word x = %,,...,%X, 1s carried out
1 k

according to the simple algorithm outlined below:

For 7 =0,1,2,...,min{(k=-1,3)

X' = X/R_gree i Xy (delete %y _,;,...,x from x} .

If x' is found in the dictionary and X, _;s...,¥,

belongs to the morphemic class of x', then assign
to x':
(1) the main category of the dictionary entry,

(2) the features of the dictionary entry,

(3) the features defined by the entry of Kpogr-=-1¥p

in the morphemic class,

(4) the semantics specified in the dictionary.

This algorithm is applied to each terminal of a guery. The
result will be converted to a form suitable for the ensuing
parsing process. |

Parser

The parser completes the syntactical and semantic analysis
of a query. According to what has been said so far it has to
meet the following conditions:

The parser has to recognize context-free languages.

It must be able to operate on complex categories and
rules.

The storage space and execution time required for the
analysis should be kept small in comparison to the
requirements of the entire retrieval process.

Furthermore a syntax-directed approach is needed for
parsing that is independent of a special grammar. This
is due to the fact that constructing a grammar for
natural languages in an approximative process. The
grammar will be continuously modified and enlarged in
order to eliminate wrong constructions or to extend the
set of permissible sentences.

39

Several parsers are known to meet the first and last conditions,
whereas an adaptation to the second is always necessary. Among
these, Earley's parser for context-free grammars suggests itself
[48]. However, adapting an improved version of this parser to
complex categories and rules resulted in an unwieldy algorithm
violating the third condition (see [57]).

Therefore a parser based on the ideas of Kay [52] was
developed. The original algorithm is capable of operating on
general rewrite rules but was restricted to context-free gram-
mars expressed in our complex notation. Only a short introduc-
tion to this parser will be presented, for details we refer you
to [38].

Figure 2 represents a typical parsing graph as generated
by the parser. The graph contains n+1 vertices for a query
consisting of n words. Every edge of the graph is labeled by
a complex category and its semantics.

During lexical analysis an initial parsing graph is con-
structed (heavy lines in Figure 2). It contains edges only
between vertices k and k+1 (1 < k < n). The number of edges
between two vertices is 1, where I is the number of complex
categories assigned to the k-th terminal in a query.

The parser operates on the initial parsing graph as follows:
Starting at vertex k, for all sequences of edges from k to ver-
tices k' (k < k' £ n+1) the parser compares the main categories
within the labels with the right-hand sides of all complex rules.
On total agreement with a rule r, the parser performs the fol-
lowing steps:

- The feature program of rule r operates on the complex
categories in the sequence of edges.

-~ If the test yields "true", the parser produces a new
edge between the starting and ending vertices of the
sequence of edges. The new edge is labeled by the
left-hand side of the rewrite rule and by the features
obtained from the assignment section in the feature
program of r.

- The edge is additionally labeled by the semantics of
the rule with all place-markers replaced by pointers
to the semantics of the complex categories in the
sequence of edges.

This process is repeated for all vertices from right to left
down to vertex 1.

The parsing of a query will prove successful if there is
an edge between vertices 1 and n+1 labeled by the axiom of the
grammar (in this case Sa).

uo

-poydde Suraq wroiy opna e yuaaoid ey paysy ore saameay asoy) Aju(y -ydesd-Jusreq g amndig

"Spu3-peap ul }nsaJ Jou s30p uonedldde asoyM paIeIs aie Sa|nI asoyl AjuQ

Zaw'taw)> Eawcaniuw
23w uagey by < vs EINTIN 3N :(Aluo sanuewas
(#'23W'x)ny (NI'38)8N pue 3jns a3Mal1 1)
23w nu < baw Y SlENI - 3N paNdde sonl sewiwesn
NOILYMIONI s1v NOISS3Yd3a N38VH VIVWHVHIOHIASE N3IDIWYQIIIOVHQ FHIT1IM
L 9 g v £ 4 1

NIS + 3N

34 (ST NI (N3IAVH> N1d +3W

mNs_@

NIS+3W

" ® - ® 20 - @

SCHW @

N1d +3W

SZW
\ P @
\ -
N1d+aw
(00T UW
N
~
SOIW

T ®

-41-

In Table 9 a special numbering ((0),(@) shows the order by
which the edges have been generated. The exact structure of the
parse can be derived by means of the pointers that connect the
semantics. Obviously, the pointer structure saves storage space
over a solution generating complete code fragments for each edge.

Table 9. Transformations.

Welche drageeformigen Psychopharmaka haben
Depression als Indikation?

Preliminary translation:
C(DB (x,MN(M25,M4) , #) ,Ng (R8,1128))

Transformation: Quantifier DB is placed in front of
the expression, C transformed to €.

DB (x,MN{M25,M4) ,€(x,Ng(R8,1128)))
Welche Indikationen welcher Medikamente sind
Psychosen?

Preliminary translation:
E(DB(xl,Vg(Ra,DB(xz,MZQ,#)),#),M30)

Transformation: Both quantifiers are placed in
front but in reverse order.

DB(xz,MZQ,DB(xl,Vg(RS,xz),E(xl,M30)))

Code Generation

On code generation the fragments are assembled into one
or more expressions of the set-theoretic language depending on
the ambiguity of the query. These expressions form the resultjl
of gquery translation.

Transformations

Applying the code generation process to the parsing graph
in Figure 2 results in the following expression:

C(DB(x,M (M25,M4),#),Ng(R8,I1128)) .

This expression is not well formed, since the quantifier is not
the left-most operator (prenex normal form). # serves as a
place-marker for the scope.

-42-

Problems of this kind and other syntactical properties of
the set language pose difficulties when handled by the translation
mechanism introduced above [38]. Other examples of this nature
are the following:

- Nesting of quantifiers in the set language is subject
to certain rules that control their relative position
within an expression: set quantifiers like DB must
appear in front of logical quantifiers like AL, EI.

- Difficulties arise from the difference in relative
position of operator symbols for quantifiers within
natural German and in that of their corresponding
quantifiers within the set-theoretic equivalent:

Which remedies for which diseases are presecription drugs?

DB (x, ,M ,DB(xz,Vg(Rr)))

1'"diseases ’xl)le(le

emedy Mprescription drug
These problems can be solved by means of grammar rules, but then
the grammar proves impractical (see [38]). Thus these problems
are deferred to an analysis phase that takes place after comple-
tion of the parsing process and hence after application of the
grammar rules.

A solution could be based on the tree-like pointer structure
of the semantic fragments, which we shall call a semantic tree.
The semantic tree has then to be transformed by suitable rules
such that the linear expression derived by code-generation puts
the quantifiers in the right order. Transformations of parsing-
trees are usually formulated by means of transformational gram-
mars, but implementing these requires large efforts in time and
personnel [58].

Moreover, the problems just discussed form a trivial subset
of the general transformation problem. It can be shown that for
every transformation rule defined on semantic trees and needed
here, there exists a corresponding rule defined on the linear
form, the expression. In place of the traditional approach where
basic trees are given as arguments, these rules contain an expres-
sion pattern that must be contained in the expression to be
transformed. For example, the pattern

DB1 (X.I ,Vg(R:DBz (X2 M, #)))

is transformed into:

DB, (x2,M,DB1 (x1 Vg (R, x,), #))

—-43-

Manipulations of linear expressions are easier to do than
transformation of trees. Thus the transformations are postponed
until after code-generation. The transformations may be formu-
lated by means of a string-manipulation language forming a set
of procedures. (Our work in this direction is discussed in [59].
These procedures are integrated in the system and executed after
code generation. Table 9 shows some examples of transformations.

CONCLUSIONS

The linguistic techniques discussed in this paper have been
implemented at the University of Karlsruhe on a Burroughs 6700
as part of the KAIFAS information system. Some experience in
their usefulness has been gained by applying the system to a
pharmaceutical data base containing data on a part of the drugs
available on the German pharmaceutical market (about 8000 [60]).
This data base was applied by experts inexperienced in data
processing via the natural German interface.

One of the purposes of this implementation was to test the
premises defined earlier for their validity. A context-free
definition of the natural language interface proved sufficient
for this application. Whether this is true in general can only
be decided if one included verbs in the interface. The descrip-
tive power of the context-free grammar in the system was even
unnecessarily large, because the users when working with the
system tended to use several short queries successively instead
of a single long one, i.e. they solved their problems in steps.
For this reason relative clauses could eventually be excluded
from the query lanquage. Instead, the possibility of references
to queries stated before is needed involving solutions to the
well known problem of pronouns.

The morphological analysis proved to be sufficient, too.
All correct inflectional forms were detected and reduced. The
simple approach will not guarantee, however, that a syntactical
incorrect inflectional form will be refused under any circum-
stances.

The M. Kay parser, which we restricted to context-free
languages, turned out to be a very simple algorithm. One can
show that the algorithm is superior to Earley's parser with
respect to processing time for short sentences in the neighbor-
hood of ten words or less. Consequently, the M. Kay parser is
particularly suited to the stepwise user approach mentioned
above.

-44-

REFERENCES

(1]

[2]

(3]

(4]

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

Winograd, T., Five Lectures on Artificial Intelligence,
Computer Science Department, Stanford University,
1974.

Smith, L.C., Artificial Intelligence in Information
Retrieval Systems, Information Processing 4§
Management, 12 (1976), 189-222.

Quillian, R., Semantic Memory, in M. Minsky, ed., Semantic
Information Processing, MIT Press, Cambridge, Mass.,
1968.

Schank, R., Identification of Conceptualizations Underlying
Natural Language, in R.C. Schank and K.M. Colby, eds.,
Computer Models of Thought and Language, Freeman,

San Francisco, 1973.

Charniak, E., Toward a Model of Children's Story
Comprehension, MIT Artificial Intelligence Laboratory,
Cambridge, Mass., 1972.

Cherniavsky, V., On Algorithmic Natural Language Analystis
arnd Understanding, presented at the Advanced Course
on Data Base Languages and Natural Language Processing,
Freudenstadt, September 1976.

Proceedings of the IFIP-TC-2 Working Conference on:
Modelling in Data Base Management Systems, Freudenstadt,
January 1976.

Durchholz, R., and G. Richter, Concepts for Data Base
Management Systems, in Proceedings of the IFIP-TC-2
Working Conference on "Data Base Management Systems'”,
North-Holland, Amsterdam, 1974.

Codd, E.F., A Relational Model of Data for Large Shared
Data Banks, Commun. ACM, 13 (1970), 377-387.

Taylor, R.W., and R.L. Frank, CODASYL Data Base Management
Systems, ACM Computing Surveys, 8, 1 (1976), 67-104.

CODASYL-DBTG, Data Base Task Group Report, New York, 1971.

Abrial, J.R., Data Semantics, in Proceedings of the
IFIP-TC-2 Working Conference on "Data Base Management
Systems", North-Holland, Amsterdam, 1974.

Date, C.J., An Introduction to Database Systems, Addison-
Wesley, Reading, Mass., 1975.

Montgomery, C.A., Is Natural Language an Unnatural Query
Language?, in Proceedings of an ACM National Conference,
Association of Computing Machinery, New York, New York,
1972.

[15]

[16]

(171

[18]

[191]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

~45-

Proceedings of the Advanced Course on Data Base Languages
and Natural Language Processing, Freudenstadt,
September 1976.

Krageloh, K.D., and P.C. Lockemann, Hierarchies of Data
Base Languages: An Example, Information Systems, 1
(1975), 79-90.

Codd, E.F., Seven Steps to Rendezvous with the Casual User,
Proceedings of the IFIP-TC-2 Working Conference on
"Data Base Management Systems', North-Holland,
Amsterdam, 1974.

Malhotra, A., Design Criteria for a Knowledge-Based
English Language System for Management: An
Experimental Analysis, MIT Project MAC, Cambridge,
Mass., 1975.

Data Base, 8, 2 (1968).

Schott, G., Automatische Analyse der Flexionsmorpheme
deutscher Substantive, Bericht Nr. 7210, Technische
Universitdt Miinchen, Abteilung Mathematik, Gruppe
Informatik, 1972.

Zur maschinellen Syntaxanalyse, Forschungsberichte,
Institut fir deutsche Sprache, Mannheim, Band 18.1,
18.2, 19., Narr-Verlag, Tiilbingen, 1974.

Salton, G., Automatic Information Organization and
Retrieval, McGraw-Hill, New York, 1968.

Josselson, H.L., Automatic Translation of Languages Since
1960: A Linguist's View, Advances in Computers, 11
(1971), 1-58.

Turing, A.M., Computing Machinery and Intelligence, Mind,
59 (1959), 433-460.

Fodor, J.A., and J.J. Katz, The Structure of a Semantic
Theory, in J.A. Fodor and J.A. Katz, eds., The
Structure of Language, Prentice Hall, Englewood
Cliffs, New Jersey, 1964.

Bobrow, D.G., A Question-Answering System for High School
Algebra Word Problems, Procs. AFIPS Fall Joint Comp.
Conf., 26 (1964), 591-614.

Raphael, B., SIR, Procs. AFIPS Fall Joint Comp. Conf., 26
(1964), 577-589.

Green, B.F., et al., BASEBALL, in F.A. Feigenbaum and
J. Feldman, eds., Computer and Thought, McGraw-Hill,
New York, 1963.

-l 6-

[29] Weizenbaum, J., ELIZA, Commun. ACM, 9 (1966), 36-45.

[30] Coles, L., and L. Stephen, An On-Line Question Answering
System with Natural Language and Pictorial Input, in
Procs. ACM 23rd National Conference, Association of
Computing Machinery, New York, New York, 1968.

[31] Winograd, T., Understanding Natural Language, Academic
Press Inc., New York, 1972.

[32] Woods, W.A., Procedural Semantics for a Question Answering
Machine, Proc. AFIPS Fall Joint Comp. Conf., 33 (1968},
457-471.

[33] Woods, W.A., Progress in Natural Language Understanding -
An Application to Lunar Geology, in Proe. National
Comp. Conf., 1973.

[34] Mylopoulos, J., S. Schuster, and D. Tsichritzis, A Multi-
Level Relational System, in Proe. National Comp. Conf.,
1975.

[35] Astrahan, M.M., et al., System R: Relational Approach to
Database Management, ACM Transactions in Database
Systems, 1, 2 (1976).

[36] 1IMS 2, in Kurazbeschreibung von Information Storage and
Retrieval Systemen, Gesellschaft fiir Mathematik und
Datenverarbeitung, St. Augustin, 1973.

[37] Todd, S., Integrated Architecture for Transaction
Specification and Optimization in Relational Data
Base Systems, presented at the Summer School on Data
Base Technology, Gesellschaft fliir Mathematik und
Datenverarbeitung, St. Augustin, 1976.

[38] Krageloh, K.D., A Multi-Level System Architecture with
Natural Language Interface, Ph.D. Thesis, University
of Karlsruhe, 1976 (in German) .

[39] Kellog, C.H., A Natural Language Compiler for Online Data
Management, AFIPS Fall Joint Comp. Conf., 33 (1968),
473-493,

[40] Thompson, F.B., P.C. Lockemann, B. Dostert, and R.S.
Deverill, REL: A Rapidly Extensible Language System,
in Proceedings of the 24th National ACM Conference,
Association of Computing Machinery, New York, New
York, 1969.

[41] Bachman, C.W., The Programmer as Navigator, Commun. ACM,
16, 11 (1973), 653-658.

[42] Lacroix, M., and A. Pirotte, ILL: An English Structured
Query Language for Relational Data Bases, M.B.L.E.
Research Laboratory Report, Brussels, 1976.

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

47—

Feldman, J.A., and P.P. Rovner, An ALGOL-Based Associative
Language, Commun. ACM, 12, 8 (1969), 439-449.

Goos, G., Programmkonstruktion, internal report, University
of Karlsruhe, 1974.

Kratzer, A., E. Pause, and A. v. Stechow, Einfirhung in
die Theorie und Anwendung der generativen Syntax,
Athenaeum Verlag, Frankfurt, 1974,

PASSAT, Systembeschreibung Siemens PBS4004, Munich, 1973.

Steinacker, I., Dokumentationssysteme, De Gruyter, Berlin-
New York, 1975.

Earley, J.C., An Efficient Context-Free Parsing Algorithm,
Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh,
Penn., 1968.

Kasami, T., An Efficient Recognition and Syntax Analysis
Algorithm for Context-Free Languages, University of
Illinois, Urbana, 1966.

Younger, D.H., Recognition and Parsing of Context-Free
Languages in Time n, Information and Control, 10
(1967) , 189-208.

Simmons, R.F., Natural Language Question Answering Systems:
1969, Commun. ACM, 13, 1 (1970), 15-30.

Kay, M. Experiments with a Powerful Parser, presented at
Deuxiéme Conference sur le Traitement automatique des
langues, Grenoble, 1967.

Dostert, B.H., and F.B. Thompson, How Features Resolve
Syntactic Ambiguity, in Proceedings of the Symposium
on Information Storage and Retrieval, University of
Maryland, College Park, 1971.

Brockhaus, K., Automatische [Jbersetzung, Vieweg Verlag,
Braunschweig, 1971.

Wulz, H., ISLIB - Ein Informationssystem auf linguistischer
Basis, internal report, Institut fiir deutsche Sprache,
Abteilung linguistische Datenverarbeitung, Mannheim,
1975.

Thompson, F.B., English for the Computer, Procs. AFIPS
Fall Joint Comp. Conf. (1966), 349-356.

Wohlleber, W., Ein Parser fiur die Analyse natiurlicher
Sprache, Diplomarbeit, University of Karlsruhe, 1973.

-48-

[58) Friedman, J., A Computer Model of Transformational Grammar,
American Elsevier Publishing Company Inc., New York,
1971.

[59] Mathis, C., Entwurf und Implementierung einer textverarbeit-
enden Sprache, Diplomarbeit, University of Karlsruhe,
1975.

[60] Bundesverband der pharmazeutischen Industrie, Frankfurt,
ROTE LISTE 1975, EDITIQO CANTOR, Aulendorf/wurtt.,
1975.

—49-

Catering for the Experienced and the Naive User

M. King, P. Dell'Orco, and V.N. Spadavecchia

1. INTRODUCTION

The system described here has been developed on a theoretical
base that many may perhaps find uncomfortable. We have chosen to
develop and implement the data base model (and the formal query
language that interrogates the data base) independently of any
consideration of the natural language front end that will ulti-
mately be attached to the system. There are, or so it seems to
us, good reasons for doing this. First the data base model we
use is well known and theoretically well developed, so that its
implementation is, whilst not easy, at least relatively straight-
forward. Secondly the system is designed with two sorts of user
in mind: the experienced computer user who is prepared to accept
a degree of formalization in the query language he must use and
the more naive user for whom any insistence on strict format or
(to him) counterintuitive modes of question formulation consti-
tutes a serious difficulty. These two users determine two types
of query language: the formal query language designed for the
experienced user, a wide subset of natural language designed for
the naive.

Although the formal guery language is an obvious bridge
between the naive user and the system, it would clearly be
wasteful to design one entire system for the experienced user
and a second, different, entire system for the nonexperienced.
So we have regarded the natural language analysis as basically
a type of encoding, transforming natural language queries into
formal language queries. Once that decision is made it becomes
even more obvious that, in terms of research strategy, it is
better to implement the formal query language first, since it
is shared by both users. It is also true that there is a strong
sense in which the data base and its associated formal query
language are logically prior to the natural language. The type
and structure of the information contained in the data base
determine in large part the subset of natural language to be
dealt with, the formal query language determines the output
structures that are to be produced by the natural language
analyzer.

The present state of development of the system is sum-
marized in Table 1. The system has been designed to be quite
modular. Hence Table 1 is fairly accurate in that what appear
to be separate modules connected by narrow interfaces are pre-
cisely that. In particular natural language analysis has been
divided into two sections.

-50-

Table 1.
Input Module Output State of Development
Natural Natural Intermediate :
. Designed, not yet

language language semantic

. . programmed
queries analyzer representation
Intermediate Formal
semantic Translator language Being designed
representation queries
Formal Interpreter,
language data base Answers Implemented
queries interrogation

This paper gives an overview of the whole system using the
formal query language as a pivot for the description, since it
so clearly forms an interface between the natural language analy-
sis part of the system and the formal part.

Section 2 describes the data base model itself. Section 3
argues briefly the case for allowing natural language input and
gives a sketchy view of the general characteristics of the natural
language analyzer. The main thrust of the paper is contained in
Sections 4 and 5. Section 4 describes the formal query language,
although not in full detail. Section 5 takes the intermediate
semantic representation as established by the natural language
analyzer and shows how it is transformed into the formal query
language representation. One caveat should be entered here.

The present translation algorithm is still crude. We anticipate
that much further work will be required before it can be regarded
as adequate. Nonetheless we believe that the current version is

a reasonable first approximation and that its general outlines
will remain substantially unchanged. Some more detailed criticism
of the translation algorithm comes in the conclusion, which also
outlines future development plans.

2. THE DATA BASE

The data base model used in this system is a relational
model, based on the work of Codd [1]. This model was chosen
because it is well developed theoretically, semantically complete,
and logically transparent. Thus a user who wishes to deal di-
rectly with the data base finds it easy to conceptualize the
structure of the base and to see how interconnections between
different sets of information can be realized.

As indicated by the name, a relational data base is a base
organized into a set of relations, each of which consists of a
set of domains. The easiest way to visualize this sort of orga-
nization is to imagine each relation as a table, with the domains

-51~

specifying attributes of the entity represented by the relation
and forming, as it were, column headings (Table 2). A row in
such a table represents a particular instance of the entity de-
scribed by that relation, and the values in the "boxes" defined
by column and row indicator give the specific values of the at-
tributes represented by the domains for this particular instance.
All this sounds rather complicated. That it is really quite
simple can be seen from Table 2, where the relation EMP (employee)
of an example data base is shown.

Table 2. Relation EMP.

CODE NAME DEPT MANAGER SALARY COMMISSION
1 376 JONES TOY 5247 3000 2
2 4923 MONTE PERSONNEL 632 4050
3 589 SCHMIDT FASHION 219 2560 2.5
4 7235 ROBUL HARDWARE 1523 3500 2

Here the domains are CODE (employee's code number within
the organization), NAME (employee's surname), DEPT (the depart-
ment in which he works), MANAGER (the code of his manager),
SALARY (which needs no gloss), and COMMISSION (the percentage
of his sales he takes in commission). Thus the employee repre-
sented by row three is called Schmidt, has code number 589, works
in the fashion department, has as his manager another employee
with code 219, earns 2560 a month and gets 2.5% commission on
his sales.

Relations are not isolated. Often the values of a domain
in one relation map onto the values of another domain in another
relation, so that there is a logical path between the two rela-
tions. Clearly this can be extended to more than two relations.
Part of the implementation of a relational data base involves
providing facilities whereby an optimal path may be found when
necessary. In general the user of the system need not know about
connectivities between relations. When necessary the inference
making part of the formal query language analyzer will detect
the need to provide a path between relations, will determine
what the path is, and will £ill it in.

Throughout this paper we shall constantly refer to the mini
data base given as an example in Table 3. It is part of a larger
data base modeling a department store. The formal query language
interrogates the data base. We return to that in Section 4.

-52-

Table 3.
Relation Name Domains
EMP CODE, NAME, DEPT, MANAGER, SALARY, COMMISSION
SALES DEPT, ITEM, VOLUME, COST
SUPPLY SUPPLIER, ITEM, VOLUME
DEPARTMENT DEPTNO, PRODUCT, TELNO, LOC

3. THE NATURAL LANGUAGE ANALYZER

Given the notoriously intractable problem of natural language
analysis, an obvious first question is why we should want to allow
natural language input at all, especially since considerable ef-
fort has gone into designing and implementing a useful and com-
fortable formal query language for this same system. This is
not the place to engage in lengthy polemic, but, briefly restated,
the chief and most compelling argument lies in the fact that a
user who is not a computer specialist finds input in a formal
language, however well designed, sufficiently repugnant to dis-
courage him from using the system. The amount of effort required
to develop a large data base system is only worthwhile if the
resulting system can be used by a wide variety of nonspecialist
users, who must therefore be specially catered for by the provi-
sion of facilities that will accept as wide a range of natural
language input as possible.

Although a decision to allow natural language input shows
commendable friendliness to prospective users, it makes the
system designer's task a great deal more difficult. The most
critical decision he must make concerns the choice of an appro-
priate question analysis algorithm. No existing computer system
deals with natural language in its full generality, but systems
based on semantic methods of analysis seem to be considerably
more powerful than syntactically based systems, which are subject
to a number of severe drawbacks. First there is the constant
danger of combinatorial explosion in any (otherwise blind) syn-
tactic parser general enough to deal with an adequately large
subset of natural language. Several ways have been suggested
to overcome this problem (see, for example, [2]), but their
success is still in doubt. The further problems of word sense
and structural ambiguity and of determining anaphoric reference
are even in principle insoluble for a purely syntactic parser.
To see this, consider the sentence

Give me the name of any employee who works in the
personnel department whose salary is more than 3000
francs a month.

~53-

It is quite obvious to any person reading this that the "whose"”
refers to the employee, and not to the personnel department.
Yet there is no syntactic rule that could be used to determine
this. It depends on the semantic fact that employees earn
salaries, departments do not. Indeed there could be no syntac-
tic rule, since, with a different context, the reference can
just as easily go the other way:

Give me the name of any employee who works in the
personnel department whose head office is in Rome.

Although this sentence is, in fact, genuinely ambiguous, it
tends to be interpreted with the "whose" referring to the
department.

A further argument comes from the inability of syntactic
parsers to tolerate input that is even mildly ungrammatical
(grammaticality being defined, of course, by the system itself).
A very simple typing mistake, such as typing "whom" for "who"
will normally be enough to break a syntactically based system.
Using semantics as a basic tool in the analysis allows a greater
tolerance of imperfect input.

In most essentials the analysis method used by this system
is an adaptation of Wilks's [3] preference semantics system.
This was originally developed as a framework for translation
between two natural languages, English and French. Since its
structure was extremely modular, by breaking it down into two
main sections, the first of which dealt with the analysis of the
input text and the second with the generation of the French trans-
lation from the intermediate semantic representation established
by the analysis routines, it has been possible for us to take
the first of these two main modules and use it as a basis for
our own analysis. The intermediate representation thus estab-
lished forms the input to a phase that translates it into the
formal query language. The translation phase best reveals the
major modifications made by us to the original Wilks's system and
is therefore dealt with at some length in Section 5.

It is assumed here that the reader has some aquaintance with
Wilks's system. Its general outline is recapitulated only to
refresh the memory, and no pretence is made that an adequate
account is given. The reader in search of more detail can find
a very detailed description in [4]1; [3] is briefer and more
easily readable.

The crux of the whole system is the notion of semantic
preference. Individual word senses are represented by semantic
formulae that are structured organizations of semantic primitives.
Within a formula a particular word sense may express a preference:
a verb, for example, may express a preference for an animate
subject, or an adjective a preference for being a gquality of a

54~

physical object. Such preferences are extensively used in
deciding on a reading for a text, both at the level of deter-
mining overall structure and at the level of disambiguation or
of reference determination. It is important however to remember
that preferences are only preferences and not stringent semantic
restrictions. If a preference cannot be satisfied, the system
does not automatically reject the text as nonsensical but at-
tempts an analysis based on fulfilling the maximum number of
preferences possible. If this were not so, the system would
break down when confronted by perfectly normal and comprehensible
sentences that involve a word used in any but its most standard
(arbitrarily defined to be standard) sense.

Given an understanding of this basic principle, we can, for
the purposes of this paper, skate over the higher-order analysis
of the input text. An input sentence is first broken down into
fragments, each of which corresponds intuitively to a basic
message or unit of information. Possible basic messages are
represented within the system by triples of semantic primitives,
and are called templates. MAN BE KIND, for example, is the basic
message corresponding to any phrase of the general form "a person
is an x"--like "Socrates is mortal" or "Children are normally
happy". The templates are linked by case ties into higher order
structures covering the whole of the input text.

Instead of trying to explain this in detail, let us consider
an example. The sentence is one relevant to the example data
base given in Section 2. We shall use the same sentence later
to illustrate the translation algorithm.

"Give me the name of the employee working in the
department whose produce is XYZ and whose salary
is 5000."

By the time the intermediate semantic representation is formed
the reference of the two occurrences of "whose" has been resolved,
so that the representation given diagrammatically and without
semantic formulae is as shown in Figure 1.

Some commentary on this is clearly necessary. The text has
been broken down into fragments, each of which is represented by
a single template. Fragments of the text which do not form a
complete template but are dependent on other text elements filling
main positions in a template are attached to the elements on which
they are dependent, and the nature of the dependency is given.
Thus "me", the indirect object of "give" in the first template
is marked as being in the RECIpient case relationship to "give".
Similarly genitive constructions are marked by the possessive
case (templates 1, 4, and 5). Relationships between templates
are also specified by case-markers. APPOsitive is the case that
tells us that the template attached expresses a restriction on
the general class denoted by the element to which the tie is

-58~

TEMPLATE 1 [— GIVE THE+NAME 1 ROOT TEMPLATE
RECIP t 1 POSS
ME THE+EMPLOYEE
TEMPLATE 2 [___ WORKING
SLOCA
TEMPLATE 3 [___ N THE+DEPARTMENT h———
APPO
TEMPLATE 4 PRODUCT ISEQUALTO YZ]
t PoOSS
- APPO
WHOSE (DEPARTMENT) —
CONJ

TEMPLATE 5 SALARY ISEQUALTO 5000] ‘

t POSS
WHOSE (EMPLOYEE)

Figure 1.

made. SLOCAtive expresses the space-location case--the activity
denoted by the element to which the tie is made takes place in
the location given in the tied template. CONJunction is a syn-
tactic marker rather than a case proper and is used in the ob-
vious intuitive situations.

We shall return to this example sentence in Section 5.

4. THE FORMAL QUERY LANGUAGE

In this section we shall mainly be concerned with the
formal query language (AQL)} used to interrogate the data base.
It is worth saying a little first about the other components of
the system not mentioned otherwise. A component called the
relational memory system (RMS) is used to map the conceptual,
external view of the data base into internal machine terms. The
RMS organizes the memory space used by the data base and provides
a fast algorithm for efficient storage and retrieval of items.
An interpreter, written in APL, interprets the formal query lan-
guage. The basic idea inderlying its design is to allow the user
to write a descriptive statement that is then translated by the
interpreter into a sequence of routine calls which interface with
the RMS. The interpreter also allows for default options in the
formulation of a query. Obvious actions, like the quoting of
constants or connecting any domain unique to a particular rela-
tion to that relation, are carried out by the system instead of
having to be specified by the user. Similarly the interpreter
allows a user to refer to a given domain by means of a syncnym

-56-

or by a definition once such synonyms or definitions have been
declared to the system. When a query is genuinely ambiguous
or is incompletely specified the user is offered a "menu" and
is asked by means of it to supply the missing information.

Two further features make AQL an even easier language to
use: An inference maker, incorporated in the interpreter,
avoids the user having to specify how navigation between rela-
tions is to be performed (mentioned in Section 2). The language
is also nonprocedural in the sense that the user needs to specify
only what has to be retrieved rather than how to get it.

More detailed description of AQL is best done by examples,
but it should be noted that in a limited space it is not really
possible to give ar adequate idea of the power of a complex
formal language. Throughout the examples the mini data base
given in Section 2 is assumed to be the data base available.

A first, very simple example will illustrate some basic
features of AQL.

Q1. Find the salaries of the employees working in
department 139.

Q

(SALARY OF EMP)
WHEN

DEPT EQ 139

The syntax of such a query is very like that of an APL
statement. The keyword Q denotes a query. The part of the
query to the left of WHEN is the request list. It consists of
a list of one or more domain names (linked by WITH when there
is more than one) referred to the proper relation by the func-
tion OF. To the right of WHEN is the condition list, consisting
of one or more elementary conditions separated by the logical
functions AND, OR, NOT. An elementary condition is simply a
domain name followed by a comparison operator followed by a
value or a list of values. If the user wants all the domains
of a particular relation he may write ALL INFO instead of the
list of requested domains. If he wants all the information con-
tained in a domain he may replace the list of conditions by the
function ALL. When only the request list is specified WHEN ALL
is assumed by default. ALL assumes its argument to be the rela-
tion name last mentioned before the occurrence of ALL.

The result of Q1 is a single column matrix that will be
given the name SALARY, and will become the value of an APL
variable of the same name in the workspace. This is always
true: the result of a query that directly manipulates the data
base automatically becomes an APL variable and can be manipulated
by APL functions both in the body of a query and outside it, as
in the following examples.

-57-

Q2. Sum the employees' salaries.

Q
TOTAL SALARY

SALARY belongs only to the relation EMP, so there is no
trouble assigning this particular domain to its appropriate
relation. The default options transform the query into:

Q

TOTAL (SALARY OF EMP)
WHEN

ALL EMP

This again produces a variable SALARY in the workspace,
which could, for example, be an argument for the defined func-
tion AVERAGE.

Z «—— AVERAGE SALARY

will give Z a value eguivalent to the average salary of all the
employees.

Queries may be nested one inside the other to any depth by
using the function WITH to join together two or more values into
a list of values in the condition list. (Actually any expression
which evaluates to a two-dimensional matrix may be used, but a
WITH expression is the easiest to grasp intuitively.) Thus the
user may write queries like:

Q3. Names of employees working in departments located in
New York or in Houston.

Q
(NAMES OF EMP)
WHEN
DEPT ISONEOF (DEPT NO OF DEPARTMENT)
WHEN
LOC ISONEOF NEWYORK WITH HOUSTON

ISONEOF is the function representing set inclusion. NAMES,
incidentally, is being used as a synonym for NAME,

Comparison functions that perform scalar operations between
corresponding elements in two ordered sets are also defined.
These are useful when a "computed"” domain has to be compared to
an existing one, as in the following example.

-58-~

Q4. Names of employees who earn more than their managers.

Q

(NAME OF EMP)

WHEN

SAL GT ((SAL OF EMP)

WHEN
CODE ISONEOF MANAGER) OWN MANAGER

Here the second (nested) query first finds the salaries
of the managers. Then the function OWN builds a computed domain
which has for every item in the domain MANAGER in EMP the corre-
sponding salary. These values are then compared with the corre-
sponding values of the domain SALARY in EMP to pick out the
relevent names (if any).

Earlier we talked about constructing a path between rela-
tions. The necessity for this arises when the user wants
attributes of one relation while imposing conditions on attri-
butes of another. The burden of building such a path may be
left to the system, as in the next example.

Q5. Names and commissions of employees in the department
with the greatest sales.

Q

((NAMES WITH COMMISSION) OF EMP)
WHEN

(VOLUME OF SALES) EQ MAX VOLUME

The final VOLUME could be a domain either of SALES or of
SUPPLY, so the user is asked to choose between the two. Once
SALES has been specified, the system uses its inference algorithm
to build a link between SALES and EMP. This is done by means of
their common domain DEPT, and the guery is restated as follows:

Q
((NAMES WITH COMMISSION) OF EMP)
WHEN
DEPT ISONEOF (DEPT OF SALES)
WHEN
(VOLUME OF SALES) EQ MAX (VOLUME OF SALES)
WHEN
ALL SALES

If the inference path should not be unigque, the user is
again offered a menu and asked to make a choice.

In this example there are two result variables, NAMES
and COMMISSION.

-59-

AQL also provides facilities for "grouping”, a way of
representing many-to-one relationships.

Q6. Group the names of employees by their managers.

Q
(NAME OF EMP)

GROUPBY MANAGER

Quantifiers are also implemented as AQL functions. Their
use is shown in the following example.

Q7. Departments which sell only items supplied by
supplier 115.

Q

(DEPT OF SALES)

WHEN

DEPT HASONLY ITEM EQ (ITEM OF SUPPLY)

WHEN
SUPPLIER EQ 115.

The function EQ (and its companions GE, LT, etc.) performs
the comparison between every ordered couple of elements of its
arguments. HASONLY retrieves only those DEPTs all of whose
occurrences in SALES are in correspondence only with some item
supplied by 115.

When two domains of the same relation contain values
extracted from the same set, they may be viewed as a set of
ordered couples for which a certain predicate is true, i.e. as
a binary relation in the algebraic sense (see, for example, [5]).
Hence, operations like product, power, and transitive closure
are applicable. Our final example illustrates this.

Q8. Code of the third level manager of employee number 117.

PWR 3

(MANAGER OF EMP)
WHEN

CODE EQ 117

The function PWR executes the query as many times as is
specified in its right argument, substituting at each next step
the constant with the result of the previous query. If the
right argument of PWR is the empty vector, then transitive
closure is executed. 1In our example this would mean that the
code of the top level manager of employee 117 would have been
obtained.

-60—

Sufficient has been said to give a general idea of what
AQL looks like. More detailed discussion can be found in [6].
As can be seen, a reasonably experienced computer user would
have little difficulty in formulating his questions using it.
But it cannot be denied that a nonexperienced user would find
it less easy. 1In the next section therefore we return to the
problem of allowing natural language input.

5. NATURAL LANGUAGE TO FORMAL QUERY LANGUAGE TRANSLATION

Section 3 described the intermediate semantic representation
established by the natural language analyzer and Section 4 the
formal query language used to interrogate the data base. These
form respectively the input and output structure for the trans-
lation phase described now.

Once again, description by means of an example offers the
clearest mode of exposition. The example used is the sentence
whose intermediate semantic representation was given in Section 3.

In order to establish the representation shown in Figure 1
the analysis routines used the semantic formulae given for each
item in the vocabulary, and further semantic information mainly
attached to the internal representation of prepositions and
conjunctions. Now this representation has to be translated into
the formal query language that interrogates the data base. The
formal query language, as we have seen, consists of a set of pre-
defined functions whose arguments are either the formal objects
of the data base, i.e. the names of relations and domains, or
embedded functions with the same type of argument. From this
it is clear that the original lexical items of the question
must be translated into the formal objects of the data base.

In order to accomplish this we have added, for each word sense
represented, a list of the domains and relations with which it
may be associated. Thus, for example, the word "department",
appearing in our example sentence, has related to it the list
of possible data base associations shown in Table 4.

Table 4.

"department".... (DEPT EMP
DEPT SALES
DEPT LOCATION
~=-=— DEPARTMENT)

This tells us that "department" may be associated with the
domain DEPT of the relation EMP, the domain DEPT of the relation
SALES, the domain DEPT of the relation LOCATION or may be directly
connected with the relation DEPARTMENT. (It is not in the least
necessary that all the domains with which a particular word is
associated should have the same name: it simply helps the human

-61—

memory to call closely related domains by the same name.) We
have called these lists "data base associations".

Thus, in essence, we have two levels of specification of
the "meaning"” of a word sense. The semantic formulae attempt
to define its general meaning in the natural language used.
Lists like that shown for "department" define its meaning within
the restricted world of the data base.

Data base associations are heavily used by the translation
algorithm. To see how, let us follow through the action of the
algorithm on the example sentence given in Figure 1.

Consider first the root template, defined as that template
which is not dependent through case ties on any other template
--in our case, template 1 in Figure 2.

[___ give the+name]
RECIP t t POSS
me the+employee
Figure 2.

Now we check the contents of the third position in the
template. (We shall often call this the "object position" since
templates are most easily conceptualized as actor-act-object-
triples.) If the element in this position has a POSS link
attached, as it does in the example, the whole structure is picked
up and considered as a unit. Thus we have

the+name
POSs
thetemployee

Immediately now the data base associations are used. First
we look at those of the dependent. If there is any entry that
refers directly to a relation (like the last entry in Table 4)
it is assumed that this particular query refers to that relation.
"Employee" has only one entry in its data base association, an
association with the relation EMP, so this is taken as the re-
quest relation for this query. Moving now to the data base asso-
ciation for the element to which the POSS is attached, an asso-
ciation with this same relation EMP, via a domain NAME is found,
so we can generate immediately

-62-~

NAME OF EMP

as the first part of the formal query language representation.

This is the simplest case. The POSS link supplied the
name of the relation, the element to which it was attached and
the name of the domain in the same relation. Considerably more
complicated situations are possible, which are worth discussing
in some detail because they show that the addition of data base
associations is an essential aid to translation. 1In order to
facilitate discussion let us diagram the general structure of
the object position with a POSS link as

A
T POSS
B

Two basic situations are possible. The first of these is
the situation we have just seen where B can refer directly to
a relation. 1In that case, if A does not contain in its data
base association an association with a domain of the same rela-
tion, there are a further two possibilities. Perhaps it has an
empty data base association. 1In that case we take the master
key of the relation specified by consideration of B. By master
key is meant that domain or set of domains of the relation that
uniquely identifies the elements of the relation, which is, in
a sense, logically prior to the other domains. In the case of
EMP, for example, it is CODE, the domain that contains the codes
uniquely identifying each employee. So if the question had been
"Give me a list of the employees..." where "list" has an empty
data base association, the structure

CODE OF EMP

would have been generated.

Alternatively, A may have a nonempty data base association,
but can contain an association with a domain in the relation
specified by B. In that case we generate a structure with a
domain specified by A, a relation specified by B, and leave it
to the formal query language processing level to generate a
logical path between the two. So, if the question was "Give me

the location of the employee..." which, as far as the formal
query language is concerned, is shorthand for "the location of
the department of the employee..." we should simply generate

LOC OF EMP

-63-

which the formal query language processor would later transform
into

(LOC OF DEPARTMENT)
WHEN
DEPTNO ISONEOF DEPT OF EMP

If B is not directly associated with a relation, it may
be associated with what we have called a pseudo-relation. By
this is meant a relation which can be defined in terms of

"restriction”, in Codd's sense [1], on another relation, and
whose definition is permanently fixed. Thus, if the query had
asked for "a list of managers", "managers" points us to a pseudo-

relation defined as

(NAME OF EMP)
WHEN
CODE ISONEOF MANAGER

If A has an empty data base association, as would be the case
with "a list of managers", this definition is simply lifted and
inserted as the first part of the query. If A is associated with
a domain, the structure generated is the domain specified by A
of the relation specified in the pseudo-relation given by B.

Once again the formal query language processor will supply a
logical path from the first to the second.

The situation is considerably more complicated if B is
associated only with a set of one or more domains. In this case,
if A has an empty data base association, B is checked to see if
it has already been used. If it has, there is no need to produce
anything. This situation will only arise when there are multiple
POSS links, as in "Give me a list of the names of the employees...
Since we always start with the lowest P0OSS, "names of the em-
ployees" will already have generated

NAME OF EMP

so "list of names" can be ignored.

If B has not been used before, then its translation is the
name of the domain with which it is associated, and the relation
after the OF is found from the data base associations for B. So
"Give me a list of the salaries...” will generate

SALARY OF EMP

-6l

If B is associated with a set of one or more domains and
A also has a nonempty data base association, an attempt is made
to find the strongest correlation between the two data base
associations by forming the intersection of the relations in
which the domains associated with A and B appear. If the inter-
section has only one member, that relation becomes the request
relation for the query. This will arise, for example, with a
query like "Give me the price of items..." where "price" is
associated with the domain COST of SALES and "item" with (amongst
other domains) the domain ITEM of the same relation SALES. From
this is generated, after intersection has determined SALES as
the appropriate relation,

(COST OF SALES)
WHEN
ITEM.......

By now the possibilities, as well as the reader, have been
almost exhausted. If B is not a relation, not a pseudo-relation,
and not a domain, we assume that it must be an item, i.e. a
constant of the data base, something that can only be the value
of a domain. If A is associated with a domain, we prefer it as
the main part of the query, so that, for example, from "Give me
John's salary" where the intermediate representation is

[——- give salary]
RECIPT 'POSS
me John

the query generated is

SALARY
WHEN
NAME EQ JOHN

where the information that "John" is the proper name of a person
is picked up from a conventional semantic formula that is the
same for all people's names.

If A is associated with a relation, the relation name is
cross—checked with the possible relations attached to the formula
of the item. If there is one relation that matches, this is
preferred, and the master key of that relation is generated,
followed by an automatic WHEN.

Twice now we have said "if the intersection has only one
member" without specifying what happens if there is more than

—-65-

one. In this case the query is genuinely ambiguous, and the
user must be asked which relation he prefers.

So far generation from the root template has been considered,
and, although the description is complex enough, not all possible
cases have been covered. No mention has been made, for example,
of what happens if the root position is empty, or if there is no
POSS link, or if there are CONJ links to the root template--all
not only possible but probable situations. But it is also clear
that to continue description at this level of detail would be
impossible. Fortunately the main point has been achieved and
for the rest of the generation we can safely return to our ex-
ample sentence and skate over other cases. The intention was to
demonstrate that the data base associations were an indispensable
aid to translation. It should be gquite clear from the discussion
so far that this is so.

To return to our example sentence. From template 1, the
root template, we have

NAME OF EMP

("Give me", after a simple semantic check to make sure that it
is an information seeking verb, is ignored.) To generate the
rest of the query, the links to the root template are followed
until a constant is found. 1In the example this means that we
follow the APPOsitive link from template 1 to template 2, the
SLOCAtive from template 2 to template 3 and the APPO from tem—
plate 3 to template 4, where the first constant appears. Before
generation starts from the template containing the constant we
check whether other templates are linked to it by a CONJunction
link. TIf such a linked template exists a tie is inserted from
it to the root template if no link already exists. In our
example template 5 is tied by a CONJ to template 4 but it is
also already tied to template 1, so no extra link need be
inserted.

Template 4 contains in its agent position an item that,
via its data base associations, is linked to the domain ITEM
of the relation SALES, and, furthermore, has "department” hanging
from it by a POSS link. "Department" too is associated with the
relation SALES, so that the first part of the conditional section
of the request is determined. The verb position of template 4
is occupied by a comparison verb, the object position by the
constant, so we can immediately generate

(ITEM OF SALES) EQ XYZ

Since we have moved away from the root template we automatically
know that we are now generating the list of conditions part of

-66—

the query, so this new section can be joined to the section
generated from the root template by a WHEN to give:

(NAME OF EMP)
WHEN
(ITEM OF SALES) EQ XY2

As a simple security measure we now travel back up the links to
the root template, checking each template that we pass to make
sure that all the essential information for the formal gquery
language representation has been dealt with. This primarily
means checking the object position of each template for POSS
links.

When the root template is reached, a link that has so far
never been traversed, that from template 5, is found, This
automatically means that the conditions so far generated should
be enclosed in parentheses and a conjunction (AND, OR) generated.
Then template 5 is dealt with, and by a process of reasoning
similar to that used for template 4, the formal query language
representation is completed, to give

(NAME OF EMP)

WHEN

((ITEM OF SALES) EQ XY2
AND

(SALARY OF EMP) EQ 5000

6. CONCLUSION AND FUTURE PLANS

The system is, at present, unevenly developed. The
description given here reveals that the part most in need of
further work is the translation algorithm. There are some
obvious gaps. Quantification, for example, is not yet dealt
with at all. A new semantic primitive, QATTRIB, is planted
in the intermediate semantic representation to mark where
quantification occurs and will, eventually, trigger the appli-
cation of a quantifier specialist during the translation phase.
But the design and specification of this specialist has been
left to one side for the moment on the grounds that it is a
separate distinguishable problem that will not affect the over-
all design of the translation algorithm. A problem more inti-
mately connected with overall design is that of sentences that
contain no constant. Sometimes such a sentence presents no real
problem. "List the names of all the employees", for example,
consists only of a root template in the intermediate representa-
tion and the ordinary generation algorithm will produce a satis-
factory formal query language representation. In other cases
the problem is considerably more complex and requires much
further work. However, even with the crude algorithm described
in Section 5, the linguistic coverage obtained is quite wide

-67-

and is, we believe, at least equivalent to that of other
existing natural language input data base systems.

The chief outstanding guestion with the natural language
analyzer concerns its stability under a wide expansion of
vocabulary. Wilks's orignial system had a larger vocabulary
than any other primitives based system, but even so this only
amounted to some 600+ items. We are now trying to establish
a lexicon of 4000+ items. Preliminary results are encouraging.

The AQL interpreter and the RMS are already implemented.
The next step here is to extend the RMS to include interlocks
for multiuser shared access and update to the data base with
authorization and recovery features. Checking for data con-
sistency, especially during update operations, will also be
provided. Data consistency will be defined by a set of integ-
rity assertions about the domains of each relation in the data
base.

Despite this long list of gaps in the system, the data base
manipulation facilities already offered through the formal query
language and the RMS are very powerful. The fact that any query
that directly interrogates the data base creates an APL variable
in the workspace allows the user to solve problems interactively
with the system. The retrieval facilities are fast and efficient
and can be used with a minimum of detailed specification. The
user need have no fine knowledge of the structure of the data
base and so need determine only what he wants in fairly general
terms without having to give any instruction on how to get it.

Some real applications are running on the part of the system
so far implemented. This should give some feedback which will
allow an evaluation of the effectiveness of the system's facil-
ities, especially as far as interactivity at the formal query
language level is concerned.

68

REFERENCES

(11

[2]

(3]

(4]

(5]

{6]

Codd, E.F., A Relational Model of Data for Large Shared
Data Banks, Commun. ACM, 13, 6 (1970), 377-387.

Marcus, M., Diagnosis of a Notion of Grammar, in Theoretical
Issuee in Natural Language Processing, MIT, Cambridge,
Massachusetts, 1975.

Wilks, Y.A., An Intelligent Analyzer and Understander of
English, Commun. ACM, 18, 5 (1975), 264-274.

King, M., and Y.A. Wilks, Semanties, Preference and
Inference, A Full Description of a System and a
Program, ISSCO Report No. 18, Dec. 1976.

Gries, D., Compiler Constructton for Digital Computers,
Wiley, New York, 1971.

Antonacci, F., P. Dell'Orco, and V.N. Spadavecchia, AQL:
An APL Based System for Accessing and Manipulating
Data in a Relational Data Base System, in Proceedings
APL '76 Conference, Association of Computing Machinery,
New York, 1976.

-69-

The USL System for Data Analysis

H. Lehmann

INTRODUCTION

The use of natural language as a data manipulation language
or, more generally, as a means of communication with the computer
has been challenging many scholars. A number of experimental
systems have been developed, and many different aspects of the
problem have been addressed. Surveys of these systems can be
found in [1,5,15,16,18]. When designing the USL system, the
objectives were different in many respects from the experimental
systems previously developed.

The USL system uses an independent data base management
system (DBMS), and thus input sentences must be translated to
the formal data manipulation language of the DBMS (a similar
approach is also taken in the TORUS project [14]). Hence the
main work to be done for the design and implementation of the
present system was in writing a grammar for German that could
be recognized by the parser (a modified form of Martin Kay's
parser [4] also used in the REL system {17] and in the project
at Karlsruhe [6]), and in developing suitable interpretation
routines to perform the mapping from German to the data manip-
ulation language.

The language of the USL system had to be defined in such
a way that artificial restrictions in the use of the language
could be avoided, because a language that looks natural in some
respects, but behaves differently in others, will confuse the
user and may be more difficult to learn than a formal language.

Although the most serious problems to be solved were
problems of language, the main goal of the system is not the
enhancement of the understanding of language but an attempt to
find ways to bridge the gap between people and the computer,
where by people we mean above all professionals whose interest
is in their problems and not in the problems of electronic data
processing. This main goal affects the manner in which language
analysis can be done in the system, because it implies that
linguistic information requested from the user, when he defines
a new word for example, must be kept to a minimum. For the USL
system this means that, for example, declension classes of nouns
are not available, and it turned out that no serious problems
arose from this restriction.

Concerning the semantics of natural language, there are
several respects where the USL system uses a new or better

-70-

solution. The range of temporal expressions that can be inter-
preted is much wider than in the CHRONOS system [2] which was
specifically designed for that purpose. Notoriously, the inter-
pretation of quantifiers is a big problem in question answering
systems, especially when more than one gquantifier as well as
negation are to be considered. For the purposes of the USL
system, a thorough analysis of the scope of guantifiers in
German sentences was done and an appropriate algorithm was
implemented. The interpretation of coordinate noun phrases is
an important problem, and it is also implemented in the system.
Here, too, empirical investigations specific to German were
necessary to be able to derive the required algorithm.

DESCRIPTION

System Overview

The USL system {(see Figure 1) consists of:

- a dictionary,

- a set of syntax rules,

- a syntax rules compiler,

- a parser,

- an interpreter providing an interface to a DBMS, and
- processing routines for the manipulation of data.

The syntax of the language supplied to USL describes the
conventions of a subset of German, the dictionary entries are
function words like prepositions and conjunctions, and words
whose meanings are constant over applications like names of
months, and system commands. Names of concepts and the relation-
ships between concepts differ from application to application and
will be defined by the users according to the data and the in-
tended use in the application. These identifier names can be
taken from the set of German nouns, adjectives, and verbs
(Maschine, mdnnlich, wohnen, etc.). They can also be defined
freely (e.g. X1, AVSAL).

The syntax is defined in modified Backus normal form (BNF).
Each rule specifies a syntactic configuration to which the rule
is applicable and specifies an output category that is to result
after application of the rule. Associated with the rules are
function calls representing the semantics of a given syntactic
configuration with input elements as parameters. A set of rules
in BNF--a grammar--is given as data to the syntax rules compiler,
which converts the grammar into the format used by the parser
and makes the language available for further use. This permits
specification of user specialty languages and extensions to lan-
guages provided. For a detailed description of the grammar see
[8,9,11,12].

-71-

SYSTEM STRUCTURE

: SYSTEM GENERATION RUN TIME COMPONENT |
| COMPONENT CONTROL I
| |
| |
| I
| [N =
| SYNTAX

| RULES GRAMMAR PARSER |
| COMPILER |
I I
| |
[!
I |
| INTERPRET I
| |
R MNP

DATA BASE DBMS

Figure 1. General system structure.

Input by a user is first analyzed by the parser, which
builds up a tree structure that roughly represents the functional
dependencies of the elements in the input string. The parser
works bottom-up and from left to right. For ambiguous input all
possible representations are built in parallel.

The tree structure built by the parser is passed to the
interpreter which executes the function calls associated with
each node of the tree. The functions successively build a
normalized tree structure representing the dependency structure
of the sentence except for the scope of quantifiers and pronomi-
nal references. This tree is then pruned to generate executable
expressions in the formal data base (DB) language, which are
then passed to the DBMS. Accordingly, the DBMS yields an answer
to a query or performs an update function. A description of the
semantic functions is given in [10].

A word not known to the language implemented is assumed
to be a name. If the use of the word in the input string is

-72-

consistent with that assumption, the system will look for the
required information and return an answer if the word is indeed
a name and known in the DB, or it will signal that the informa-
tion is not available. Otherwise, the system will signal that
the input is not understood. The user may then use the defini-
tion facility to enter the word in the dictionary or repeat
input if the word was misspelled. User errors are indicated by
a set of diagnostic messages.

Semantic Model

We need a way to model the world in the environment of our
system. Our model of the world is very simple, as it only con-
sists of three kinds of entities, namely objects, relations, and
states. Relations are sets of n-tuples of objects, where n is
fixed for every relation. We introduce the notion of semantic
base S as the pair (U,R), where U is a set of objects and R is
a set of relations. We can now refine our model of the world
by categorizing the objects of U, i.e. we introduce a set of
domains D, where D is defined as a subset of the powerset of U.
We can also refine the notion of relation by naming the places
of each relation. These names we call roles. This gives us
the possibility to classify the relations not only by degree
but also by domains and roles. We can define a set of roles Ro
from which every relation has to draw its roles.

The semantic model is conceived as a dynamic structure,
i.e. we can imagine it to consist of states, where two states
may differ with respect to U, R, D, and Ro. This concept of
state is very similar to Carnap's state descriptions [3], or
to the concept of "Zustand" in [7]. 1In order to be able to
talk about the semantic model one obviously needs a language,
which we shall call L. The language is also required to perform
transitions from one state of the model to the other. A formal
definition of the lanqguage L is given in [13].

Natural language reflects in its structure a common sense
view of the world, here called the "linguistic world view".
Here we have concepts like "thing", "property", "event", and
many others. There are variations in what constitutes this
world view from speaker to speaker and speech community to
speech community. For a more detailed discussion of this situ-
ation see, for example, [7]. The USL world model like the
linguistic world view is a model of the world, but it has a
much simpler structure--as shown in Figure 2. The corresponding
language L also is a very simple language--adequate to handle
everything in the world model, but not more. In the USL system
the simple model is used to interpret natural language, which
of course implies that not everything that can be expressed in
natural language can be interpreted by the system.

Theoretically, there are two ways to interpret natural
language in a USL-like system (see Figure 2):

-73-

- Direct interpretation of the linguistic structure in
terms of the model; and

- Translation of the linguistic structures into structures
of a formal language, namely the formal manipulation
language L, by means of a translation function t.

The second way was chosen in the USL system for several reasons,
the most important of which was to be able to formulate a clear
and clean interface to a data base system, i.e. a system that
already performs the interpretation function i.

t

NL L
i
Linguistic USL World
World View Model
w 0 r I d

Figure 2. The USL interpretation of natural language (NL).

Words and Concepts

Concepts are expressed by words (and also by phrases) in
natural language. The concepts can be represented in our model
by relations, objects, or state transitions. The way in which
a particular concept is represented depends on several things
such as word class, utilization of the concept, taste, etc.

When we talk about interpretation of words, we are dealing with
three word classes: noun, adjective, and verb. Nouns can be
subdivided into proper names and common nouns. Proper names
will generally be represented as names of objects, and verbs as
names of relations or state transitions (state transitions play
only a minor role in our present context). Difficulties arise
with common nouns and adjectives as they may sometimes be repre-
sented as objects and sometimes as names of relations. At least
theoretically there is also the possibility to associate them
with domain names or role names. For example:

-4~

SUPPLIER

NAME PRODUCT

JONES INC. BOLTS

SUPPLIER, PRODUCT, and BOLTS are all common nouns. Note that

in an organization as in the example, the question "Are bolts

a product of Jones Inc.?" cannot be asked, unless either PRODUCT
is also the name of a relation or a link exists somewhere from
PRODUCT to SUPPLIER.

For a particular data base application, it will have to be
decided whether each concept that occurs is to be treated as a
name of an object or of a relation. 1In the USL system the choice
was taken that words can only refer to either object names or
relation names. As a consequence standard role names were intro-
duced to refer to particular positions of a relation. These role
names were defined with respect to cases governed by a verb and
by prepositions governed by a verb or noun, and also by types of

adverbials. The standard role names are:

NOM nominative, first position of noun or
adjective

ACC accusative

DAT dative

GEN genitive

VON genitive attribute

LA place

LO origin

LG goal

LD distance

LP path

TA point in time, date

TO beginning

TG end

TD time interval

{preposition) preposition governed by noun or verb .

The introduction of standard role names has the advantage
that questions like

Who is a supplier of bolts?
?Sx [SUPPLIER(NOM=x A VON='BOLTS')]

can be asked as well as

-75=

Who is a supplier of the product bolts?
?2Sx [SUPPLIER (NOM=xAVON="'BOLTS "') APRODUCT (NOM="BOLTS ")]

In the USL system there is also a set of standard domains
that is used. As a calculus of domains does not exist in our
DBMS, only the most general domains are used. One place rela-
tions are used instead to classify the objects in the universe
of discourse. The standard domains are:

ZAHL number

WORT word (character string)
DATUM date, time of day

CODE numeric code .

Sometimes a string of words (phrase) is taken to constitute a
single concept, e.g. "data base administrator".

Syntactic Constructions and Their Interpretation

There are a set of constructions that are used in natural
language queries and will have to be accounted for in any system
that deals with natural language. They are more or less funda-
mental structures that exist in many languages:

{adjective) {(noun)

{noun) of {(noun phrase)
{noun) <noun)

{noun) {adverbial)

{noun) greater than <{noun phrase)
{noun) {(relative clause)
{noun) and {noun)
{quantifier) <{(noun)

{verb) {(noun phrase)

{verb) {(prepositional phrase)
{sentence) (adverbial)

Repeated occurrence, nesting, and overlap of these constructions
leads to the phenomenon of structural ambiguity. Although struc-
tural ambiguity is handled by the parser of the USL system, it
remains a problem in many cases, since parses that do not result
in meaningful interpretations may be costly. Two cases of struc-
tural ambiguity occur quite often in German sentences:

- Nominative/accusative,

- Prepositional phrase or adverbial modifying either a
noun or a verb.

-76-

For example:

Welches Alter hat Fritz?
Who left the room with the terminal?

Sentences like the above cannot be disambiguated syntactically,
but only by the roles of the relations addressed. The treatment
of most of the structures mentioned above is explained in the
sequel; a fuller treatment can be found in [13].

{adjective) {noun)

These are constructions like "male employee". There are
at least three ways to interpret this type of construction
depending on the structures of the relations mapped to:

1. CR EMPLOYEE (NAME,SEX)

EMPLOYEE (NAME='BILL JONES' A SEX='MALE')
2. CR EMPLOYEE (NOM)

CR MALE (NOM)

CR FEMALE (NOM)

EMPLOYEE (NOM='BILL JONES') A MALE (NOM='BILL JONES')
3. CR MALEEMPLOYEE (NOM)

CR FEMALEEMPLOYEE (NOM)

MALEEMPLOYEE (NOM="'BILL JONES')

The representation that is chosen influences the types of
questions that can be asked, and therefore an appropriate choice
is important. The third representation may be desired for con-
cepts like "relative humidity", "former customer”, or "maximum
capacity".

{noun) of {noun phrase)

This construction presupposes relations that have a VON-role,
for example:

MANAGER (NOM, VON)
Who is the manager of Bill?
?Sx [MANAGER(NOM=x A VON='BILL')]

There is an important relationship between genitive attributes--
the kind of construction currently discussed--and the auxiliary
verb "have". So one can also ask the above question in the form:

-77-

Which manager does Bill have?

or
Who does Bill have as a manager?

Therefore provision must be taken that questions of this form
are interpreted like the ones having a genitive attribute in
them.

A similar relationship exists with constructions containing
the preposition "with":

Who are managers with more than 5 employees?
Which managers have more than 5 employees?

Who is a manager of more than 5 employees?
?28x(>5)y [MANAGER (NOM=XAVON=y) AEMPLOYEE (NOM=y))]

{noun) <{adverbial)

Adverbials comprise adverbials of time and place. When an
adverbial modifies a noun, this presupposes that the relation
corresponding to the noun has an appropriate role. Thus "income
in 1975" is interpreted as

INCOME (NOM=x A TA='1975")
"income from 1970 to 1975" corresponds to
(INCOME (NOM=x A TA=y) A y>='1970' A y<='1975")

{noun) greater than {noun phrase)

An example for this type of construction is

income greater than 5000
INCOME (NOM>5000 A VON=x)

{noun?) (relative clause)

Relative clauses are interpreted as restrictive relative
clauses only, since it does not make much sense to add new
information in a question. Relative clauses are interpreted

-78=-

recursively, since they may be embedded. A simple example for

this type of construction is

employee, who is experienced,
EMPLOYEE (NOM=x) A EXPERIENCED (NOM=x)

which corresponds also to the interpretation of "experienced
employee”.

{noun) and {noun)

Constructions of this kind are interpreted in three
different ways by the USL system:

- Conjunction,
- Sequence of displayed tables, and
- Combination of displayed tables.

Examples are:

Who is the manager of Jones and Smith?
Who are the managers and the employees?
What is the age and salary of employees of Jones?

The criteria for the determination of these cases are rather
involved, and will not be presented in detail. It should be
noted, however, that the interpretations are well defined in
most cases, contrary to the widespread belief that people using
"and" or "or" in natural language sometimes mean the one and
sometimes the other, and that therefore natural language is not
logical.

{gquantifier) <{noun)

Syntactically, a quantifier modifies a noun. However, the
scope of the quantifier usually is a clause or sentence. Hence,
quantifiers cannot be interpreted at the time they are recognized
but only after the whole clause is processed. This is relatively
simple as long as only one quantifier is present, but when there
are more than one, scope ambiguities come into play. Scope
ambiguities compete with preferred readings, which although not
completely ruling out some readings definitely stress a single
one. Preferred readings depend on word order (topicalization),
subject versus nonsubject position of the guantified noun, and
several other aspects.

-79-

The following quantifiers are treated by the present
system:

jeder every (each)
kein no

alle all

einige some (any)
etliche some

der the

ein a (one)

"Jeder" and "alle" are interpreted in the same way, although
this is not always correct (compare "all men are equal” with
"each man is equal"). 1In addition, numeric quantifiers are
treated (e.g. "5 managers"). Since contextual (anaphoric)
reference is not treated by the USL system, no distinction is
made between definite and indefinite quantifiers.

{verb) <{noun phrase), {verb) {prepositional phrase)

Verbs are interpreted as relations; in the simplest case,
the noun phrase is a proper name, e.g.:

employ Bill Jones
EMPLOY (NOM=x A ACC='BILL JONES')

when the noun phrase is to be interpreted as a relation also,
like in

sell a computer
SELL (NOM=x A ACC=y) A COMPUTER (NOM=y)

a slightly more complex representation is required.

Noun phrases are conceived as arguments of the verb relation.
At parsing time they are collected one by one, then they are
translated recursively--noun phrases may have arguments of their
own--into the corresponding formal expressions.

-80-

DATA ANALYSIS

Applications and Users Addressed

USL is designed as a problem solving system. In this con-
text, problem solving means the creative process of performing
nonroutine, nonrepetitive operations to solve a problem. The
solution criteria of such problems are often incompletely de-
fined, therefore several solution methods may be possible.
Problem solvers are professionals in their field of specialty.
They are professionals in administration and research who want
to access data for decisionmaking easily and directly. They
are used to explore different strategies and to work towards
problem solution by successive approximation. USL is designed
to help them to retrieve, update, and manipulate computer-stored
data in their terminology, thus eliminating the need for formal
data processing education. It can be easier for planners and
decisionmakers to evaluate alternative solutions to a given
problem and to understand consequences of decisions before they
are implemented. Scientists can make use of USL to explore
dependencies between data and to test hypotheses. This will not
necessarily reduce the time needed for problem solution, but it
can reduce the time spent adjusting the solution to facts that
seemed unrelated at first.

Exploration and exploitation of natural resources is an
application that uses geographical, geological, atmospheric, and
agricultural data. The task includes examining locations of
resources and determining exploitation profitability. The lat-
ter depends on many factors: availability of manpower, trans-
portation cost, cost of refinement of raw materials, etc. USL
contributes to solve these problems by providing the capabilities
required to query data accumulated according to varying criteria
and to evaluate different possible solutions.

Empirical research in industry or universities involves
varying amounts of data depending on the project and the size
of the group participating in the project. Aside from repeti-
tive, routine operations, processing of these data is poorly
supported. Studies in the humanities, for example in sociology
and psychology, often require data collection from questionnaires.
Many users would be served by small data bases, but they are not
created today, because their size does not justify the cost of
installation and maintenance by data processing personnel. Such
DBs can be set up through USL and can improve the effectiveness
of the people using them.

Data Base Design and Vocabulary Definition

Designing a DB means modeling a section of the world in
terms of the data model of a given DB system. Data are collected
in a variety of forms, such as tables, matrices, maps, networks,
curves, lines, texts, or pictures. Not all of these forms are

-81-

equally well analyzed; nor are they equally well accepted by a

DB system. Thus when an application is to be implemented, a
first step is usually a conceptual analysis of the data avail-
able or required. Then a format has to be found for the data
that can be understood by the system. After an appropriate
format for an application has been developed, it can be used
regardless of the availability of a computer or DB system.

When an application is to be developed from scratch, an analysis
of the structure of the data is required, i.e. the concepts that
are to exist in the system have to be determined, and dependencies
between the concepts have to be established also. It has further
to be determined what kinds of results will be expected by the
future users of the system. Part of the conceptual analysis
consists in finding out how the future users are going to refer
to the concepts to be implemented in their language, and the
words have to be defined accordingly, and they have to be related
to the relation names in the DB.

In the USL system a mechanism is provided to make vocabulary
definition as easy as possible. When a new word is to be defined,
it must be ensured that all columns of the respective relations
can be reached by some formulation. Here a special problem
occurs for USL and similar systems: the identification of con-
cepts with relations with a number of roles and domains. This
problem has been addressed at several places in this document
(see the sections on words and concepts and on syntactic con-
structions in particular). Sometimes the same role name could
be used for different domains, like in

manager of Bill Jones
manager of IBM .

Although it might not cause problems even in this case, when the
two domains in question were joined, one would still hesitate to
do so in practice.

Use

Queries can be formulated as yes/no-questions, wh-questions,
or commands using the verb "list". The answer to a wh-question
or a command is a table that may be empty (if no object having
the specified search criteria exists). Intermediary results can
be stored in variables, e.q.

pm2 = the countries whose pmregion is 2 .

New data can be inserted into existing relations using declara-
tive sentences, e.g.

-82-

John is the manager of Bill.
John is the manager of all married employees.

Deletions can only be performed by using the formal data
manipulation language.

Basic arithmetic operations are available for scalars and
row-wise application to relations that have a common "von"-
column, e.qg.

inc=salary+(salary/10) .

In addition to these, column operations are available to compute
sum, averagde, maximum, and minimum. There are also functions to
convert dates and to compute time intervals. These basic opera-
tions can be used to define new functions, e.q.

square (x) ="x**2"
list square(salary)

Functions that require specification of an algorithm can be added
with the help of a programmer. No attempt is made to use natural
language for automatic programming.

REFERENCES

[1] Batori, S., et al., LIANA - Ein deutschsprachiges Frage-
Antwort-System, 1975.

[2] Bruce, B.C., A Model for Temporal References and Its
Application in a Question Answering Program, Artificial
Intelligence, 3,1 (1972) .

[3] Carnap, R., Meaning and Necessity, Chicago University Press,
Chicago, 1947.

[4]1 Kay, M., Fxperiments with a Powerful Parser, presented at
the Second International Conference on Computational
Linguistics, Grenoble, August 1967.

[5] Kogon, R., et al., The User Specialty Languages System, in
Proceedings of the 6th Annual Meeting of the GI, Berlin,
1976. .

[6]1] Krageloh, K.-D., and P.C. Lockemann, Hierarchies of Data
Base Systems: An Example, Information Systems, 1
(1975) .

(71

[8]

[91]

[10]

(11]

[12]

[13]

[14]

{15]

[16]

[171

[18]

83

Lehmann, H., Linguistische Modellbildung und Methodologie,
Max Niemeyer, Tilbingen, 1973.

Lehmann, H., and M. Zoeppritz, Language Facilities of
USL/German, Version II, TN 75.01, Heidelberg Scientific
Center, Heidelberg, 1975.

Lehmann, H., and M. Zoeppritz, Grammar Rules for German,
Version II, TN 75.02, Heidelberg Scientific Center,
Heidelberg, 1975.

Lehmann, H., and N. Ott, Interpretation Routines for German
Grammar Rules, TN 75.03, Heidelberg Scientific Center,
Heidelberg, 1975.

Lehmann, H., and M. Zoeppritz, Partition of German Grammar,
TN 75.05, Heidelberg Scientific Center, Heidelberg,
1975.

Lehmann, H., and M. Zoeppritz, Grammar Rules with Examples,
TN 75.06, Heidelberg Scientific Center, Heidelbergq,
1975.

Lehmann, H., The USL System - Its Objectives and Status,
in Proceedings of IBM Int. Technical Conf. on
Relational Data Base Systems, IBM, Bari, 1976.

Mylopoulos, J., et al., TORUS - A Natural Language Under-
Standing System for Data Management, presented at the
4th IJCAI, Tbilisi, August 1974.

Simmons, R.F., Natural Language Question-Answering Systems,
Commun. ACM, 13, 1 (1970) .

Sparck Jones, K., and M. Kay, Linguistics and Information
Seience, New York, 1973,

Thompson, F.B., P.C. Lockemann, B.H. Dostert, and R.S.
Deverill, REL: A Rapidly Extensible Language System,
in Proceedings of the 24th National ACM Conference,
Association of Computing Machinery, New York, New
York, 1969.

Walker, D.E., Automated Language Processing, in Carlos
A. Cuadra, ed., Annual Review of Information Science
and Technology, Vol. 8, AFIPS, Washington, D.C., 1973.

-84

Appendix. Sample Session.

usl

USL --- VERSION: NOVEMBER 11, 1976

MELDUNGEN - MESSAGES - MELDINGEN - MENSAJES
DEUTSCH(1) - ENGLISH(2) ~ NEDERLANDS (3) — ESPANOL(4)
META:

ENGLISH AVAILABLE FOR EDITING

" s

start iiasa,demo
rd

what is the base?

(ROPERREQ+RCONREQ)
RCOUNTRY

RCONREQ

RCLTIME

RFAC

ROPERREQ

RPRODDEP

RRESERVE

RRESOURC
RREFERENC*RPUBLICA;C
RREF

RWATERPC
2

whose base is 'rfac'?

RELATION
ACT
CAPACITY
FACILITY
FACNAME
FACCLASS
INRESQT
NEED
OUTRESNO

OUTRESQT
?

what are terms for 'inresqt'?

~85-

INRESQT

?

list country 70

COUNTRY NAME
what is the pmregion of 70?

PMREGION

list the countries whose pmregion is 2

COUNTRY NAME
58 TURKEY
60 NETHERLANDS
61 YUGOSLAVIA
63 AUSTRIA
64 BELGIUM
67 DENMARK
68 FINLAND
69 FRANCE
70 FEDERAL REPUBLIC OF GERM
72 GREECE
74 ITALY
75 NORWAY
77 PORTUGAL
79 SPAIN
80 SWEDEN
81 SWITZERLAND
82 UNITED KINGDOM
102 ANDORA
138 ICELAND
139 IRELAND
151 LIECHTENSTEIN
152 LUXEMBOURG
154 MALTA
157 MONACO
174 SAN MARINO
191 VATICAN CITY STATE

?

MAJOR OIL FIELDS AROUND THE WORLD

-86-

5

what is the regired quantity for the construction of 101?

NOT UNDERSTOOD: THE FOLLOWING WORDS WERE ASSUMED TO BE PROPER NAMES:
REQIRED

5

what is the required quantity for the construction of 101?

INTERPRETATION 1
QTY

1,080000
500
2600
4400
4600
27800
80500

INTERPRETATION 2
OBJECT REQUESTED DOES NOT EXIST
-

list the required quantities for the construction of 101

INTERPRETATION 1
OBJECT REQUESTED DOES NOT EXIST
INTERPRETATION 2
RESOURCE QTY REF PURPOSE
52 4400 10 1101
70 1,080000 10 1101
71 0 10 1101
81 27800 10 1101
82 80500 10 1101
83 2600 10 1101
84 4600 10 1101
85 500 10 1101

end

-87-

A Natural Language Interface Facility and
Its Application to a IIASA Data Base*

G.G. Hendrix

INTRODUCTION

This note describes LIFER, a practical facility for creating
natural language interfaces to other computer software. Empha-
sizing human engineering, LIFER has bundled natural language
specification and parsing technology into one convenient package.
This package includes an automatic facility for handling ellip-
tical (i.e. incomplete) inputs, a spelling corrector, a grammar
editor, and a mechanism that allows even novices to extend the
language recognized by the system through the use ¢of paraphrase.
Offering a range of capabilities that supports both simple and
complex interfaces, LIFER allows casual users to rapidly create
workable systems while giving ambitious users the tools needed
to produce powerful and more efficient language definitions.
Experience with the system has shown that for some applications,
very practicable interfaces may be created in a few days. 1In
particular, an interface to an example set of IIASA data was
created in only two days. The resulting systems are directly
usable by business executives, researchers, and office workers
whose areas of expertise lie outside the field of computer
science.

THE LIFER SYSTEM

LIFER is composed of two basic parts: a set of interactive
language specification functions and a parser. In standard
practice, a system builder uses the language specification func-
tions to define an application language. This application lan-
guage is a subset of a natural language (e.g. English) that is
appropriate for interacting with an existing software product.
Using this language specification, the LIFER parser will then
interpret natural languace inputs, translating them into appro-
priate interactions with the application software.

Example interactions with a LIFER application language for
a data base access system are presented in Table 1. This partic-
ular language definition was developed for a collection of IIASA

*The work reported herein was conducted under Stanford Resecarch
Institute's Proprietary, Internal Research and Development
Program.

-88-

Table 1. Example interactions with LIFER.

-What is the depth of the golden spike deposit?
PARSED!
(DEPO.NO 29 DEPTH 1786.4)

-number of wells and API?

Trying Ellipsis: WHAT IS THE NUMBER OF WELLS AND API OF THE GOLDEN
SPIKE DEPOSIT

(DEPO.NO 29 WELLS 21 API 36.0)

~of bell creek
Trying Ellipsis: WHAT IS THE NUMBER OF WELLS AND API OF BELL CREEK
(DEPO,.NO 308 WELL 250 API 32.0)

-deposit 1
Trying Ellipsis: WHAT IS THE NUMBER OF WELLS AND API OF DEPOSIT 1
(DEPO.NO 1 WELLS 63 API 38.0)

-deposits in the Union of Soviet Socialist Republics
Trying Ellipsis: WHAT IS THE NUMBER OF WELLS AND API OF DEPOSITS
IN THE UNION OF SOVIET SOCIALIST REPUBLICS
(DEPO.NO U474 WELLS 2000 API 27.2)
(DEPO.NO 475 WELLS 10 API UNKNOWN)

(DEPO.NO 1128 WELLS UNKNOWN API UNKNOWN)
-What is the average API gravtiy and depth for American oil deposits
spelling -> GRAVITY
PARSED!

API
233 items accepted
Average is 29,63305

DEPTH
236 items accepted
Average is 1265.308

-meximum
Trying Ellipsis: WHAT 1S THE MAXIMUM API GRAVITY AND DEPTH FOR
AMERICAN OIL DEPOSITS

API 57.0
DEPTH 5486.4

~what o0il deposits i+ the U.S.A. were discovered in 1969
Trying Ellipsi=:: &LLIPSIS HAS FAL1LED
THE PARSER DCES NOT EXPECT THE WORD
"U.S.A." TO FOLLOL
"WHAT OIL DEPOSITS IN THE".
OPTIONS FCR NEXT WORD OR META SYMBOL ARE: <CGUNTRY>

-890-

Table 1. (cont'd)

-How is the symbol <COUNTRY> used
PARSED!
<COUNTRY> may be any member of the set {AFGANISTAN ALBANIA ...
... USA ... ZAMBIA}
<COUNTRY> may be any sequence of words following one of the patterns:
<COUNTRY> => CAPE VERDE ISLANDS
=> CENTRAL AFRICAN REPUBLIC

=> UNITED STATES OF AMERICA

-use USA for U,S.A. in -2
PARSED!

(DEPO.NO 212)

(DEPO.NO 342)

(DEPO.NO 436)

-What is the resource of the OKC deposit
Trying Ellipsis: ELLIPSIS HAS FAILED
THE PARSER DOES NOT EXPECT THE WORD
#OKC" TO FOLLOW
"WHAT IS THE RESOURCE OF THE".
OPTIONS FOR NEXT WORD OR META SYMBOL ARE: <DEPOSIT>

-let (What is the resource of the OKC deposit) be a paraphrase of
(What is the resource of the Oklahoma City deposit)

PARSED!

MAY LIFER ASSUME THAT "OKC" MAY

ALWAYS BE USED FOR "OKLAHOMA CITY"?

(TYPE YES OR NO)

yes

<D-NAME> => OKC

-what is the rescurce of the OKC deposit?
PARSED!
(DEPO.NO 336 RESOURCE OIL)

~-Give the discovery date for OKC
PARSED!
(DEPO.NO 336 DISC.DATE 1928)
-Show geological type Salem
Trying Ellipsis: ELLIPSIS HAS FAILED
[error message is printed.]

-Let (show Geological type Selem) be 2 paraphrase of (What is the
geological type of the Salem deposit)

PARSED!

LIFER.TOP.GRAMMAR => <WH/LIST><ATTRIBUTES><DEPOSIT>

-Show geological type Salem
PARSED!?
(DEPO.NO 242 PAY MISS)

-90-

Table 1. (cont'd)

~Country country number and production

Trying Ellipsis: SHOW COUNTRY COUNTRY NUMBER AND PRODUCTIQN SALEM
(DEPO.NO 242 COUNTRY (UNITED STATES OF AMERICA) COUNTRY.NO 31
QUANTITY 3.0)

[now try another compact input similar to SHOW GEOLOGICAL TYPE
SALEM]
-Print number of wells Soviet 0il deposits with API over 37.5
PARSED!

(DEPO.NO 476 WELLS UNKNOWN API 41.0)

(DEPO.NO 481 WELLS 500 API 38.0)

energy data with only two day's work. The system user types in
a query or command in ordinary English, followed by a carriage
return. The LIFER parser then begins processing the input.

When analysis is complete, LIFER types "PARSED!" and invokes
application software (here, a data management system) to respond.

An important feature of the LIFER parser is an ability to
process elliptical (incomplete) inputs. Thus, if the system is
asked

WHAT IS THE DEPTH OF THE GOLDEN SPIKE DEPOSIT?

then the input

OF BELL CREEK

will be interpreted as WHAT IS THE DEPTH OF BELL CREEK. Analysis
of incomplete inputs is performed automatically by LIFER, making
it unnecessary for the system builder to explicitly define ellip-
tical constructions in the application language.

If a user misspells a word, LIFER attempts to correct the
error using the INTERLISP spelling corrector [3]. If the parser
cannot account for an input in terms of the application language
definition, user-oriented error messages are printed that indi-
cate what LIFER was able to understand and that suggest means
of correcting the error.

The definer of the language interface can intermix calls
to LIFER that extend or modify the language definition with
calls to the parser that utilize the developing language system.
This aids system builders in the task of defining the application

-91-~

language, allowing them to operate in a rapid extend and test
mode. Perhaps more importantly, it provides the basis for a
mechanism through which naive users may extend their language

by employing easy to understand notions such as synonyms and
paraphrases. Provisions may be included in the application
language for interfacing with LIFER's own language specification
functions, allowing users to give natural language commands for
extending the language itself. This is illustrated by the para-
phrase examples of Table 1.

The LIFER parser uses an augmented, finite state transition
network [4]. The LIFER language specification functions construct
these underlying transition networks automatically from language
production rules to the type commonly used by both linguists and
compiler builders. The production rules may be easily modified
and tested interactively, allowing sophisticated language defini-
tions to be produced within a short period of time.

In using LIFER, interface builders typically embed consider-
able semantic information in the syntax of the application lan-
guage. For example, words like JOHN and AGE would not be grouped
together into a single (NOUN) category. Rather, JOHN would be
treated as a (PERSON), and AGE as an {(ATTRIBUTE). Similarly,
very specific sentence patterns such as

WHAT IS THE (ATTRIBUTE) OF {(PERSON)

are typically used in LIFER instead of more general patterns
such as

{NOUN-PHRASE) (VERB-PHRASE) .

For each syntactic pattern, the interface builder supplies an
expression for computing the interpretation of instances of the
pattern. Expressions for sentence-level patterns usually invoke
application software to answer questions or carry out commands.

Example interactions defining a LIFER application language
are shown in Table 2. First, application information concerning
biographic data is stored on property lists for later querying.
Then the function MAKE.SET is called to define some word/phrase
categories. The category (ATTRIBUTE), for example, is defined
to include such words as AGE and OCCUPATION. Next, function
PATTERN.DEFINE is used to add the productions

{(ATTR-SET) =) {ATTRIBUTE)

and

(ATTR-SET) =) {(ATTRIBUTE) AND {ATTR-SET)

-92-

Table 2. Defining an application language.

{set up data to be queried}
-SETPROPLIST(JEWELL,.FLEMING (AGE 35 OCCUPATION TEACHER HEIGHT 5.5
WEIGHT 105))
-SETPROPLIST(IVAN.FRYMIRE (AGE 40 OCCUPATION FARMER HEIGHT 6.2
WEIGHT 225))

{MAKE.SET and PATTERN.DEFINE extend the language definition}
-MAKE ., SET (<PERSON> (JEWELL.FLEMING IVAN.FRYMIRE ...))
-MAKE.SET(<ATTRIBUTE> (AGE OCCUPATION HEIGHT WEIGHT))
-MAKE.SET(<IS/ARE> (IS ARE))

-PATTERN.DEFINE (<ATTR-SET> (<ATTRIBUTE>)
(LIST <ATTRIBUTE>))
~PATTERN.DEFINE (<ATTR-SET> (<ATTRIBUTE> AND <ATTR-SET>)
(CONS <ATTRIBUTE> <ATTR-SET>))
-PATTERN.DEFINE((WHAT <IS/ARE> THE <ATTR-SET> OF <PERSON>)
(MAPCONC <ATTR-SET> (FUNCTION (LAMBDA (A)
(LIST A (GETPROP <PERSON> 4))))))

{a call to LIFER.INPUT sends subsequent inputs to the parser}
-(LIFER.INPUT)

{start NL interactions using grammar defined above}
-what is the occupation of jewell.fleming
PARSED!
(OCCUPATION TEACHER)
-age and weight
TRYING ELLIPSIS: WHAT IS THE AGE AND WEIGHT OF JEWELL.FLEMING
(AGE 35 WEIGHT 105)

{MAKE.SET is called to add variety to persons' names}
{leading ! sends line to LISP'S EVAL, instead of to parser}
- IMAKE . SET(<PERSON> ((JEWELL . JEWELL.FLEMING)
(IVAN . IVAN.FRYMIRE)
((JEWELL FLEMING) . JEWELL.FLEMING)
((IVAN FRYMIRE) . IVAN.FRYMIRE))

{now more English input}
-what is the height of ivan frymier
(assumed spelling error)==>FRYMIRE
PARSED!
(HEIGHT 6.2)
-of Jjewell
TRYING ELLIPSIS: WHAT IS THE HEIGHT OF JEWELL
(HEIGHT 5.5)
{define a paraphrase in English}
~define "give the height of ivan" like "what is the height of ivan"
PARSED!
LIFER.TOP.GRAM => GIVE THE <ATTR-SET> OF <PERSON>
{output above shows LIFER's generalization of the paraphrase}
{now try an input based on the paraphrase above}
-give the age and occupation of jewell fleming
PARSED!
(AGE 35 OCCUPATION TEACHER)

-93-

to the language definition, establishing an {ATTR-SET) as a
list of one or more attributes separated by ANDs. The third
call to PATTERN.DEFINE sets up a top-level sentence pattern
of the form

WHAT {(IS/ARE) THE {ATTR-SET) OF {PERSON)

which can match such gueries as

WHAT IS THE AGE AND OCCUPATION OF JEWELL.FLEMING .

The expression for computing the value of this query maps down
the list of attributes that are sought and extracts their values
from the property list of the {(PERSON).

After the function LIFER.INPUT is called, all lines of
input are sent to the LIFER parser for processing. The first
query of the example is a complete sentence, but the second is
elliptical. No special patterns are needed to deal with this
elliptic query. A more complex use of MAKE.SET and examples of
the spelling corrector are shown in later interactions in Table
2. Many other features are available, including a grammar editor,
aids for processing anaphora, and a mechanism for using LISP pred-
icates to define syntactic categories.

LIFER is implemented in PDP-10 INTERLISP, with the basic
system requiring an additional 14K words above the 150K used by
INTERLISP. An extensive language definition for communicating
with a large data base (70 fields on 14 files with hundreds of
records) requires an additional 30K, including some data base
access routines. Such sentences as

WHAT IS THE DEPTH OF THE GOLDEN SPIKE DEPOSIT

parse in less than 0.2 s of CPU time on the DEC KL-10, faster
than the sentences are usually spoken or typed.

For more information about how LIFER works and about how
application languages may be defined, see [1] and [2].

-9l -

REFERENCES

[1]

(2]

[31]

(4]

Hendrix, G.G., The LIFER Manual: A Guide to Building
Practical Natural Language Interfaces, Tech Note
138, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, 1977.

Hendrix, G.G., Human Engineering for Applied Natural
Language Processing, Tech Note 139, Artificial
Intelligence Center, Stanford Research Institute,
Menlo Park, California, 1977.

Teitelman, W., INTERLISP Reference Manual, XEROX Palo
Alto Research Center, Palo Alto, California, 1975.

Woods, W.A., Transition Network Grammars for Natural

Language Analysis, Commun. ACM, 13, 10 (1970),
591-606.

-05-

Natural Language Processing Within
A Restricted Context

V. Briabrin and G. Senin

INTRODUCTION

The Dialogue Information Logical System (DILOS) has been
developed for serving as an "intelligent" mediator between the
user and a set of applied programs and data modules [1]. The
system is written in LISP and can be divided functionally into
several parts called "processors". Three executive processors
are activated by the "formal interface expressions" (¢ expres-
sions) and they perform logical inference, information retrieval,
calculation planning, and control. Thus ¢ language constitutes
one possible medium for user communication with the system.

The special Linguistic Processor (LINGP) is a front-end
part of the system intended for the transformation of the input
natural language phrases (NL phrases) into the corresponding ¢
expressions. We present here a short description of LINGP
operation and its underlying principles. The system has been
developed in Moscow for a BESM-6 computer and transferred to
the PDP-11/45 at IIASA [2].

THE GENERAL PRINCIPLES OF NL -+ ¢ TRANSFORMATION

Let us consider LINGP interaction with the information
retrieval processor (IRP). The general syntax of ¢ expression
directed to IRP is as follows [2]:

_ . {obj-names)| . f (restriction) | ,
Gfunc name) <{div-name) { Cvar) } : {(prescription)} ,...) .

(n

{func-name) defines the type of operation (FIND, ADD, DEL, -+-*).
{div-name) sets up the scope of operation to be performed, i.e.
establishes a current data base division name. <{obj-names) put
further restrictions on the scope of operation by requiring that
it be applied only to the objects with the given names. If (var)
is used instead of the {obj-names) then all objects of the cur-
rent division participate in the operation. <(restriction) is
represented usually by the pair {{ind) (val)} implying that a
required object should possess the given value {val) under the
given indicator {ind>. <(prescription) is represented by the pair

-96-

{{ind) (var)} requiring the system to extract the value of {(ind)
property from a given object and assign it to the variable {var).
{ind) could be represented by an atom or a list; (val) by an
atom, a list, a number, an interval, or a set of values. (var)
is a pattern variable designated by =(identifier).

Example:

(FIND CITIES =X : LOC USSR ; POPUL 1.0 ; INDUST =Y)

div-name var restr-1 restr-2 prescr

In the process of NL + ¢ transformation an attempt is made
to tackle each word from the input string in such a way that it
would help to fill an appropriate position in the ¢ expression
that becomes an output of LINGP. Thus a phrase "What industries
are in the USSR cities with population 1.0?" is transformed into
a ¢ expression as in the above example. For this purpose a
problem-oriented vocabulary (part of the data base) should con-
tain appropriate entries for the words form the input phrase.
Each word has, among other properties, two that are the most
essential:

- an internal code, substituting the given word in the
constructed ¢ expressionj;

- a semantic type (S-type), designating the most likely
role played by the given word in the process of NL + ¢
transformation.

The analysis is directed by the augmented transition net-
work (ATN) where each node contains preconditions allowing
transitions from one state to another and predictions about
the likely S-types of the words that can occur in the current
state. Preconditions could be connected with:

- features (properties) of the current input symbol,
particularly its S-type;

- contents of the "registers" (variables) reflecting
the history of input phrase processing.

Of course, an input phrase could contain "unknown" words not

found in the vocabulary. A special arrangement is made for
dealing with such words and we shall discuss it later.

RESTRICTED CONTEXT

The problem of natural language processing has always been
considered difficult because it was believed that a processing
system should operate successfully in a practically infinite
context and handle a gigantic variety of individual lexicons.

-97-

However we accept the hypothesis that natural language communi-
cation with the computing system, intended for specific problem-
solving, involves a rather restricted lexicon and context.

Two kinds of contexts are distinguished:

- The general context is defined by the pragmatics of
the data base management, i.e. each input phrase tends
to be converted into a meaningful ¢ expression leading
to some operation on the data base contents;

- The local context is specified by the particular know-
ledge of the given problem area, and is represented
by the set of class concepts, individual objects, rela-
tions facts, and rules of inference that reside in the
current data base division (file).

Thus LINGP operates in the restricted environment defined by
the general and specific local contexts. Moreover a local
context is bound to and often created by an individual or a
group of individuals who rarely change their style of conversa-
tion with the system after it has been established during the
first 5-10 terminal sessions. Hence the system interpretation
of the same words (reflected in their S-types) could be different
when switching from one group of users to another but this fact
does not create additional problems; on the contrary it allevi-
ates LINGP operation by applying the same ATN mechanism to
different problem-oriented knowledge.

ATOMIC S-TYPES AND THEIR COMBINATIONS

Each word possesses one of the following elementary (or
atomic) S-types:

i - plays the role of {ind) in the ¢ expression;

v - plays the role of (val);

q - designates a gquery word;

P - a punctuation mark: such a word or character
usually serves for transition to another state
(changing expectations);

or - separator of alternatives;

leqg, greg - substitutes for the words, designating "<"
and "2" relations;

fn - plays the role of {func-name);
fl - plays the role of {(div-name);

n - plays the role of {obj-name);

-9g-

c - designates a "superconcept” of an object;

aa - designates an auxiliary action (i.e. calculation
of minimum, maximum, average, etc.);

last - marks the end of the text.

Generally speaking, the S-type does not depend directly
on syntactic properties of a word or its "ordinary" semantics,
but it is entirely defined by the above mentioned contexts.
For example, if we consider a local context describing the
employees of an institution, then LINGP possibly has to deal
with the following words and their S-types:

S-type ("get") = S-type ("salary") =i
S—-type ("sit") = S-type ("room") = i
S-type ("earlier") = S-type ("before"} = leq

Different types of correspondence exist between words and
their senses (reflected in S-types). This could be a one-to-one
correspondence, i.e. "1 word + 1 sense", but three other cases
could also emerge.

Auxiliaries, i.e. words with "less than atomic" sense, are
processed during the preediting stage (see below).

Composites, i.e. words with "more than atomic" sense, are
assigned sequences of atomic S-types (in the form of LISP-lists).
When encountering such a word the input string processing is
suspended until all atomic senses constituting the composite
sense are tackled in a proper way. Afterwards the input string
processing is resumed. For example:

oldest = most + age + aa + i
who = what + person + g + c
woman = person + sex + female » c + i + v

Homonyms, i.e. words with multiple (alternative) senses
s1,s82,**+ , are represented by lists with the form:
(, s1 82 ++¢+). We shall call it a "list of alternative senses"
(LAS). Each homonym creates a branch point (BP) in the input
string processing. All the necessary information is stored at
the BP; then the first (the next) element from LAS is extracted
and treated as a possible S-type of the current word. If the
following processing becomes upset for some reason, then the
analysis backtracks to the BP, restores all the necessary
information, and tries to handle the next alternative from LAS.

Besides these three cases some words may be declared as
"unimportant"; they are assigned "null" S-type and LINGP ignores
them in the process of input string analysis (e.g. articles, some
prepositions, etc.).

-99-

PROCESSING OF UNKNOWN WORDS

The system can deal with the unknown words in two modes.

In a "careful" mode LINGP asks the user about each unknown
word, stores the information received in the temporary vocabulary
(if the user encourages the system to do so), and proceeds with
normal analysis.

In a "careless" mode all the unknown words are assigned
"null" S-type requiring the system to ignore them at the first
scan. The analysis proceeds from this moment exactly as in the
case of homonyms, except that the LAS contents emerges not from
the vocabulary but from the ATN state in which the corresponding
unknown word was encountered. As has been mentioned each ATN
state contains predictions about S-types that are "acceptable”
in this state and these predictions become a source of LAS
contents. Thus in a careless mode each unknown word creates
a new BP leading the system to backtrack to this point if the
analysis fails in the future.

When all the alternatives from LAS are exhausted arid there
is still no success (LINGP or the user is unhappy with the
constructed ¢ expression) then we have two possibilities:

- to cease processing at the current BP (i.e. backtracking
only one level, not more);

- to backtrack along the entire tree of alternatives with
an attempt to consider all the possibilities created by
homonyms and unknown words.

The user can help the system in the "careless" dealing
with the unknown words. 1Instead of simply refusing to accept
the system's ¢ interpretation of the original phrase, the user
can make changes in the "working" vocabulary so that it contains
only the words from the input phrase. 1In this case some BPs
become excluded from the tree of alternatives thus speeding up
the analysis.

NL PHRASE > ¢ EXPRESSION CORRESPONDENCE

Each NL phrase is mapped into exactly one output ¢ expres-
sion except for the following cases:

Preliminaries: execution of the "basic" expression is
possible only after some preliminary actions.

Example: Who gets more than Brown?
Preliminary: How much does Brown get?
Basic: Whose salary is more than the one just found?

-100-

Additions: after execution of the basic expression some
additional actions are necessary.

Example: What is the average salary of RDD laboratory employees?
Basic: What are the salaries of RDD laboratory employees?
Addition: Compute the average of the found numbers.

When these situations are recognized the corresponding ¢
expressions are generated and pushed into the special stores
("preliminary” and "addition"). After terminating the analysis,
all preliminaries are executed first, then the basic expression
is processed and after that all additions are executed.

PREEDITING STAGE

Words marked in the vocabulary as auxiliaries are processed
before the principal block of translator starts operation. 1In
the vocabulary the following information is connected with such
words:

- What is the "master" of the given word to which it "adds”
its sense;

- What is the "summary" sense of the two words.

As a rule, auxiliaries are predicates and syntactically govern
their master. The master is usually represented at the entry
by means of its syntactic and possibly semantic properties. If
the master is found in the sentence it acquires the "total"
sense. The auxiliary word in this case is excluded from the
input string and does not participate in further considerations.
The following NL word classes can be considered as auxiliaries:

- prepositions and postpositions;
- articles;

- elements used within analytical forms of verbs, adverbs,
and adjectives;

- possibly, some adverbs, adjectives, etc.

Marking a word as an auxiliary is guided by consideration
of convenience and uniformity of further analysis rather than
for linguistic reasons and upon the whole is determined by the
pragmatic purposes of the system.

-101-

IMPLEMENTATION

All programs are written in LISP*. The general and
problem-oriented vocabularies as well as the ATN are stored
in the external memory as special divisions of the "model data
base". Thus the system in fact is not dependent on any specific
NL and is easily convertible from one language to another.

The system is rather flexible because it can be adapted
for special purposes by slight ATN amendment, and not by changing
the basic programs. Particular vocabulary serves as a physical
embodiment of some local context and the ATN of the general one.

The system transfer from the BESM-6 to the PDP-11/45 has
required some notational amendments and modifications of input/
output procedures. It has been tested experimentally and the
performance encouraged us to further development and promotion.
Examples of a user natural language communication with an experi-
mental data base are given in the Appendixes.

REFERENCES

[11] Briabrin, V.M., and D.A. Pospelov, DILOS - Dialog System
for Information Retrieval, Computation and Logical
Inference, in Conference on Artificial Intelligence:
Question-Answering Systems, CP-76-6, International
Institute for Applied Systems Analysis, Laxenburg,
Austria, 1976.

[2] Briabrin, V.M., DILOS Reference Manual: Part 1, RM-76-52,
International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1976.

*The version of LISP translator for the BESM-6 computer was
developed by S.S. Lavrov, G.S. Sylagadze, and V.M. Yufa.

-102-

Appendix 1.
"READY TO SPEAK"

=>what are the IIASA areas and programs , their leaders and budgets ?

"DOES THE FOLLOWING CORRESPOND TO THE INPUT PHRASE 2"

(f£ind *IIASA =$nn : * resarea ; leader =$leader ; budg =$budg)

=>yes

EXECUTE?

=>yes

“START EXECUTION. BE PATIENT"

FA rabar (8006 o)

EN haefele (10420 11210)
SDS balinski (12200 9)

MT straszak (5008 165)
HSS hansen (7000 1342)
RE vasiliev (7200 4182)

"CONTINUE SPEAKING 2"

=>yes

"READY TO SPEAK"

=>what areas have internal budgets between 706808 and 12000 ?

"DOES THE FOLLOWING CORRESPOND TO THE INPUT PHRASE 2"

(find *IIASA =$nn : * resarea ; (budg int) (: 7088 12900) =$int)

=>yes

EXECUTE?

=>yes

®START EXECUTION!"

FA 8000
EN 10400
HSS 70080

RE 7200

-103-

"CONTINUE SPEAKING ?"

=>yes

*READY TO SPEAK"

m)>what scientists came from the USSR ?

*DOES THE FOLLOWING CORRESPOND TO THE INPUT PHRASE 2"

(f£ind "*IIASA-scient” =$nn : ¢ USSR =$¢)

m)>yes

EXECUTE?

m)>yes

*START EXECUTION. IT TAKES TIME"

zimin USSR
vasiliev USSR
surguchev USSR

shigan USSR
rakhmankulov USSR
kononov USSR

klementiev ‘USSR
kiseleva USSR
golubev USSR
dashko USSR
chebotaryev USSR
butrimenko USSR
briabrin USSR
albegov USSR

"CONTINUE SPEAKING ?"

=>yes

-104-

"READY TO SPEAK"

=)

who came from the USA , their christian names and assignments 2

"DOES THE FOLLOWING CORRESPOND TO THE INPUT PHRASE ?"

(find "*IIASA-scient®” =$%nn : ¢ USA =$c ; cn =$cn ; a =$a)

=>yes

EXECUTE?

=>yes

"START EXECUTION!"

welsh USA william BSS
schafir USA kurt MT
rogers usa andreli BSS
pahner usa philip BSS
orchard-hays USA william SDS
matthews usa william RE
linnerooth USa joanne SDS
levien UsSAa roger adm
hansen USA niles HsSs
gros USA jacques sSDS
foell Usa wesley RE
dennis usa robin RE
demb USA ada MT
casti USA john SDS
buhr ing usa william RE
blum usa edward HSS
bell USA charles EN
balinski USA michel SbS

"CONTINUE SPEAKING ?"

=m)yes

-105-

“READY TO SPEAK"

=>the maximum external budget and the goals of IIASA areas ?

“"DOES THE FOLLOWING CORRESPOND TO THE INPUT PHRASE ?"

(find *ITIASA =Snn : * resarea ; (budg ext) =$ext ; goal =$goal)

=>yes

EXECUTE?

=>yes

“START EXECUTION. YOU RELAX"

FA] (food rsrcs & tchnlgy, rgrmnts, cnstr, strtgy)
EN 11210 (energy rsrces, demand, optns, cnstr, strateg)
SpDs @ (optimiz, netw, data bases)

MT 165 (plann, mgm, dyn of techn change, inf technol)
HSS 1342 (health care,hum settl,migr,popul growth)

RE 4182 (water dmnd, mgm, transf, hydr models,climate)

(maxim (budg ext) : 11210 EN)

“CONTINUE SPEAKING 2"

=>no

“YOU ARE OUT OF SPEAKING !*"

-106-

Appendix 2. The protocol examples of DILOS
interaction with "Personnel Data Bank"

=>what american or russian scientists work at SDS , their names ?

Balinski USA SDS Michel
Briabrin USSR SDS Victor
Butrimenko USSR SDs Aleksandr
Chebotarev USSR SDS Spartak
Dashko USSR SbS Valeri

=>who of them has a fix-term contract and was appointed before Jan 1976 ?

Balinski fix-term (1975 Sep)
Butrimenko fix-term (1974 Jan)
Chebotarev fix-term (1976 Jan)
Dashko fix-term (1974 Aug)

=>who came from France or FRG ?

Beau jean France
Grenon France
Hafele FRG

Raquillet France

=>when did they receive phd ?

Beau jean nil
Grenon nil
Hafele 1955
Raquillet nil

=>their fields of interest and experience ?

Beau jean (, math economics) lect
Crenon en-resource (, prof consult "i{nd-firm")
Hafele nucl-phys (, prof consult)

Raquillet urb-plan consult

-107-

=>what IIASA scientists came from the USA , thelr names ?

Afifi ____ USA___A.A.
Balinski UsA Michel
Bell _ _.___USA_ . Charles.
Carter USA Harold
Dennis ____USA . Robin

Edwards USA Ellen
Ferrell. __USA. __ George
Fischer Usa David
Sherill USA__ _Koren_ _

=>who of them was considered by RP before Jan 1977 ?
Balinski (1977 Jan)
Bell (1976 _Aug)
Edwards (1976 Jun)

Sherill (1977 _Jan)

=>in what areas they work . their experience 2?2

Balinski sSDS (, prof consult)

Bell . ENP__ (, consult "ind-firm") —
Edwards cs comnp-prog

Sherill HSS nil

=>what scientists from France and Austria were appointed
before Dec 1976 7

Bodenseher.— _ Austria._ (1974 Feb)
Breitenecker Austria (1976 Qct)
Bruckmann..—_— __Austria___ . __ (1973 Mov)
Fleissner Austria (1975 Jan)
Grumm .. --— .—— ... Austria. . (1975 Sep) .. . _ . ..

Schlifke Austria (1976 Jan)

-108-

=>who has a short-term contract , when did they receive phd ?

Briabrin—--——— short-term 1967 il
Ferrell short-term 1976
Raquillet— ——— short-term —- nil

=>Balinski home institution-? S

Balinski Universite Scientifique et Medicale d; GrenobIé , France

=>who works with SDS , their expiration terms ?

Balinski SDS (1978-Aug)
Bodenseher sSDsS (1977 Jun)
Briabrin———SDS— (1977 Mar) I
Butrimenko SDS (1977 Dec)
-Chebotarev——-SDS—— (1978-Jun)
Dash¥ko sDS (1977 May)
Ferguson SDS (1978__4Apr).
Grumm sDS (1977 Aug)

=>from what cost centers are russians paid , their present grade ?

Briabrin- 820 USSR D1 N

Butrimenko 820 USSR sS4

Chebotarev. 810 _ USSR__.. __C8 _ e
Dashko (, 810 150) USSR D1

Dobrov. 770 USSR F2 .

Golubev 690 USSR E1l

=>what americans are paid from the same cost centers ?

Balinski———~-—-USA—810 — i
Fischer Usa 770

-109-

z> + (find =nn : ¢ France ; ar ; tsk) ?
Beaujean-—— —_—ENP .. ENP2 _ . ——
Grenon ENP (, ENP1 ENP3 ENP7)
Ragquillet-——— _HSS __ HSS3

=>how many full professors do we have , their nationalities ,
field of interests ?

Balinski prof USK math

Bruckmann prof Austria (, math statistics)

Carter prof USA dgricultural economies TS
Dobrov prof USSR nil

Golubev prof USSR {5 Thydrol glaciol)

Grenon prof France en-resource

Hafele prof FRG "~ nucl-phys

Ma jone prof Italy statistiecs

=>who of them was born before 1934 ?

Balinski {1933 Oct)

Carter (1932 pec)

Dobrov (1929 Mar) -
Grenon (1928 Sep)

Hafele (1927 Apr)

Majone (1932 Mar)

=>Dobrov ?

———

_(Dobroy
(% sc S
bV .
(Gennady (1929 Mar) T T
_ __USSR
"res-schol® e
"USSR NMOY

"Inst Cybernetics Acad Scien Ukranian SSR*~ = -~~~ -7~
~ (, "dep=-dir" prof)

nil P e
1950
1987 T e e
"fix-term"

-110-

MT
MT2
770
(, "tsk-leader" scient)
(1976 Ock) ~ 77 -
_ (1977 Oct)
nil T
. Fe
ysy7y
F2)))

=d>who from the USA was recommended by himself , their title ,
experience ?

Afifi———USA —-self — _res-schol asso-prof
Carter USA self res-~schol prof

Ferrell— - USA——self——-—guest-schol— _consult .
Fischer Usa self res-schol (, "asso-prof" consult)

=>who is paid from 820 cost center ?

~-Bodenseher ——820
Briabrin 820
-Butrimenko —820

—=>what-1s -the institute-position-of- UK scientists. ?

Agnew scient uK

=>Interests of Balinski , Butrimenko , Hafzle , Majone ?

-Balinskt math —_————
Butrimenko (, math phys "comp-netw")

-HaTele -——— - nuel-phys-— e
Ma jone statisties

=> + (time) ? e

-111-

tty st user prio sked ps shar+priv wait cpu command

3: 0 W victor 10 5 2765 U.6+ 2.9 tty3 29.1 %

5: 0 W victor 40 127 2831 4.6+ 2.9 wait() 128.7 %

5: 0 W victor 1 5 2858 34.0 pipe39/135.2 L110.speak
5: 0 W victor 40 2 2859 32.8 wait()\286.7 lllO.f‘ind)
5: 1 R victor 103 1 2880 8.0 0.7 /bin/ps lc
26 processes; total core load 25.3+133.7= 159 K words

_=>nil !

__"END OF DILOS OPERATION t"
b4

-112-

INGRES--A Relational Data Base System
M. Stonebraker
In 1970 E.F. Codd [1] proposed the relational model of data
and claimed that relational data base management systems had

significant advantages over other approaches. They have two
basic characteristics.

A Simple Data Model

There is only one data structure (a relation or table) for
the user to be concerned with. This is in contrast with hier-
archical and network models where the data structures are more
complex. This concern for simplicity should be compared with
the "structured programming" ideas of Dijkstra and others [2]
where the notion of simplicity is advocated for general purpose
programming. In both cases the idea is to permit the user
(programmer) the least amount of complexity possible so he has
a better chance of understanding his problem.

A Powerful Data Manipulation Language in which Storage Details
are Absent

The basic notion here is to hide from the user all details
of how his data are stored. This allows applications programs
to be as simple as possible. Moreover, a powerful data manip-
ulation language greatly reduces the amount of programming effort
necessary to implement and maintain an application. Since soft-
ware costs are rising and hardware costs are falling, this is an
especially attractive notion.

Other data manipulation languages are much less powerful
and allow the application programmer to manipulate storage
details. This second characteristic is a radical departure
from other proposals.

The claimed advantages of relational systems were:

- Simplicity of the data model.

- Decrease in the complexity of application programs.

- Since storage details are hidden, they can be adapted to

changing user requirements without affecting application
programs. Hence, programs can continue to operate over

-113-

changes in the way data are stored. This "data inde-
pendence" is not present in other proposals.

- Protection of data, guaranteeing data integrity for
concurrent updates, etc., may be easier,

During the period 1971 to 1974 there was considerable
debate concerning Codd's proposal. Some claimed:

(1) A relational data base system could not be implemented
efficiently.

(2) Programmers would not be able to understand the proposed
relational data manipulation languages. They would be
much more comfortable with lower level languages closer
to COBOL.

(3) More complicated data models included relations as a
special case so why not allow greater flexibility?

(The debate over simplicity is elegantly stated in the early
Turing Award lectures. For simplicity E. Dijkstra "The Humble
Programmer"” (1972) and against simplicity C. Bachman "The

Programmer as Navigator" (1973). Both lectures were reprinted
in the Communications of the ACM (about June 1973 and 1974
respectively).) At the same time, most people questioning the

relational model were simultaneously advocating that the 1971
proposal of the Committee on Data System Language (CODASYL) be
adopted as a national standard. This proposal (often called
the DBTG proposal) had none of the claimed advantages of rela-
tional systems. However, by 1973 there was an implementation
of the proposal (IDMS).

It was clear to us at Berkeley in 1973 that three steps
were required:

- A serious implementation of a relational system to
answer point (1).

- Within the implementation context, a design of a "more
friendly" data manipulation language to answer point (2).

- If such an implementation were successful and if users
could be found to try out the system then they could
validate claimed relational advantages and answer point

(3).

In late 1973 we embarked on an implementation. No commercial
vendors were inclined to try since relational systems were ill
understood, speculative, unsure of marketplace acceptance, etc.
Hence, we viewed it an appropriate research endeavor. (At about
the same time a group at IBM Research also embarked on an imple-
mentation. To our knowledge these are the only serious implemen-
tation efforts with the two characteristics.)

—-114-

Our first working prototype was operational in early 1975.
Since that time we have extended its features and tuned it to
have reasonable performance. Moreover, we have managed to at-
tract about thirty installations to experiment with INGRES or
use it in a production mode. Basically we view this implemen-
tation effort as having the following two major goals:

- Execution of the three steps mentioned above, and

- Serve as an example to stimulate the commercial market-
place to provide relational systems.

In the process of achieving the first goal we are well
along. However, much work still remains to be done. The
accepted proposal to ARO indicates the nature of this work
and it will not be discussed further here. We expect at the
end of the current three year contract period to completely
achieve the first goal. Only in the area of geographically
distributed data on multiple machines are we uncertain over
achieving our implementation goals.

Concerning the second goal there has already been some
marketplace response. Systems that look "quasi relational"
(e.g. NOMAD by National CSS) and relational systems with a
lower level data manipulation language lacking the second
characteristic (e.g. MAGNUM by Tymeshare) have very recently
surfaced. Implementations by MRI Corp. and Honeywell that
are closer to having both characteristics are now under way.
We hope that within five years there will be viable commercial
systems.

REFERENCES

[1] Codd, E.F., A Relational Model of Data for Large Shared
Data Banks, Commun. ACM, 13 (1970), 377-387.

[2] Dijkstra, E.N., 0.J. Dahl, and C.A.R. Hoare, Structural
Programming, Academic Press, London-New York, 1972.

NATURAL LANGUAGE AND KNOWLEDGE REPRESENTATION IN DATA BASE

-117~

An Overview of PLIDIS
A Problem Solving Information System with German as Query Language*

G.L. Berry-Rogghe and H. Wulz**

BACKGROUND AND APPLICATION OF THE SYSTEM

PLIDIS (Probleml&sendes Informationssystem mit Deutsch als
Interaktlonssprache) is a natural language information system
which is belng designed in the context of a project on automated
language processing at the Institut fiir deutsche Sprache sponsored
by the Ministry for Research and Technology for the years 1976 to
1977. The present project is in many ways an extension of a pre-
vious two-year project which achieved the construction of the
experimental question-answering system ISLIB (Informationssystem
auf llngulstlscher Basis) (e.g. [7,8]) based on the simulated
problem domain of the stock exchange. Within this framework
theoretical foundations were investigated and different approaches
experimented with. The PLIDIS project differs from its predeces-
sor in its intention to implement an actual system, whereby our
emphasis lies on the adaptation of the methods tried out in the
pilot study to a real problem domain and on enhancing the problem
solving capacities of the system.

The field of application of PLIDIS will be the control of
water pollution. A pilot version of the system is being developed
in cooperation with the regional "Department of the Environment"
at Stuttgart, which supervises industrial wastes dumped into the
rivers of Northern Wirttemberg.

PLIDIS is scheduled to be used in the following capacities:

- As a supervision system, e.g. to check the chemical com-
position of the samples, to compare the current sample
with previous samples from the same firm and to issue ap-
propriate warnings if a norm has been transgressed;

- As an information system, e.g. to answer gueries concern-
ing the composition and toxicity of certaia chemicals, the

*The research reported here is supported by the Federal Republlc
of Germany's "Bundesminister fiir Forschung and Technologie" under
grant Nr. 081 5900 69 within the "3. DV-Programm der Bundesregie-
run

**Thegauthors are indebted to W. Brecht, W. Dilger, R. Guntermann,
D. Kolb, M. Kolvenbach, A. Ldtscher, H.D. Lutz, K. Saukko,
G. zifonun who collaborate within the PLIDIS project and who did
a lot of the research reported here.

-118-

characteristics of the production processes of the firms
involved, etc.;

- As an investigation system, e.g. to detect where pollution

may have originated and possibly suggest plans of actions
to be taken.

GENERAL DESIGN OF PLIDIS

The PLIDIS information system is composed of a linguistic-
logical part, which translates the German input into an internal
representation modeled on the predicate calculus, and a problem
solving part, which, in addition to performing the usual storage
and retrieval functions, involves problem domain-specific regu-
larities in the deduction process.

The design of the system is largely modular and allows ex-~
tensive user interaction between the various execution phases.
This modularity is an essential prerequisite for efficient team-
work as each member of the group can be allocated a specific part
and possible changes in personnel take place smoothly. Interac-
tive facilities are essential to facilitate experimentation and
debugging.

Figure 1 is a diagrammatic representation of the system's
main components showing the flow of information between them.

The PLIDIS user has several choices of access to the system,
some of which are designed especially for a more naive user and
some destined for the system designer and administrator. The
natural language processor (NLP) enables the user to formulate
problem descriptions as natural language questions or to use nat-
ural language for the input of shorter pieces of information such
as rules about his problem domain or data for updating. For the
input of stereotyped data of larger quantities, the user may have
data sheets on his terminal, which are processed by the processor
of formatted input (FIP). This processor also provides facilities
accessible by the system's command language (CL) to define new
data sheets and procedures for plausibility checks of the format-
ted input. The NLP and the FIP have the same task to perform,
i.e. to translate the input into the language of internal repre-
sentation (IR), an extension of first order predicate calculus.
The processor for information and problem description (PIP) either
stores the incoming information or activates problem solving mech-
anisms in the case of problem descriptions, according to the type
of question asked.

In the current state of the system, the processor for answer-
formulations (PAF) generates only some sort of "pretty-print"
from the formulas of internal representation that contain the
information found by the PIP component as answer to the users’
gquestions. It would be desirable at a future stage that this
component be replaced by procedures that generate natural language

-119-

SWOT XY

"MoO]j uoljewriour pue spusuodwod urew--GIA1d ‘1 2Andig

(10) ebenbueq p

D -~

213709208
-3oed
\ aseg eieq /
12
sa[ny | sarn
S9731| votiel jorioel 5
~-STINDH| -suell ~ufs

aseg suoTjyeradg

ao0seq 103u1 .EkaCH,
R ho
asys 1est
uMuMo SIIURBWASY sud a1y
\ aseg Teo1xoT /

(41) uor3iejussaxdey Teuraul - assp
(sd) suwiog -
(IN) abwnbueq TeInIeRy -
4
, xTos tTaxadng SIAITd
uot3drIasap 108s3301d 10$530014
T e @ -us1q03d pue @ Tndug Sesacord
uoTy _
103 108899014 9 103 10S$3D501d e pa3jeurod Teanyen
1
A¥d dIld 414 EGIY
(a2)

-120-

sentences out of IR formulas. The interaction of these compo-
nents is guided by the PLIDIS supervisor which processes the com-
mand language statements and accepts also INTERLISP code. The
command language gives the nonnaive user access to various inter-
active facilities that are helpful for testing and debugging.

The algorithms draw on lexical and operational information con-
tained in external data bases supplied by the user/designer:

-~ The morphosyntactic lexicon contains at the moment some
10,000 entries of nonlemmatized word forms with their
morphosyntactic features such as tense, number, gender,
etc.

- The semantic lexicon contains information about a word's
equivalent in the internal representation such as rela-
tional symbol, operational symbol, individual term, its
"sort" (see next section), the number and sort of the
arguments for each predicate, and so on.

- The data sheet inventory contains the various data sheets
fqr entering mass data such as laboratory reports, par-
ticulars about the firms, etc.

- The syntactic rules specify a grammar for German as an
augmented transition network (ATN).

- The translation rules specify "transformations" of the
parsings of the NL sentences into the internal represen-
tation.

- Heuristics specify syntactic and semantic criteria to
guide the problem solver.

The data base proper or the "knowledge" of the system is a
collection of atomic formulas in the internal representation stat-
ing the following information about the problem domain: mass data
about samples of river water, the legal norms of the allowed con-
centrations, the composition of various chemicals, their tox-
icity, etc., information about the firms being controlled (type
of plant, production processes, treatment of waste, etc.), axioms
stating general logical implications as well as specific regular-
ities in the world model such as "x is greater than y implies that
x is not equal to y" and "if a chemical interferes with the river
flora, it is toxic".

THE INTERNAL REPRESENTATION IN A SYMBOLIC LANGUAGE (KS)*

General Considerations

The choice of an appropriate IR for the knowledge within the
PLIDIS system was not motivated solely by theoretical considera-
tions but by its use for effective retrieval of answers to queries

*Konstruktsprache in German.

-121-

stated in natural language. An IR for a Question-Answering (QA)
system must have the following properties:

- Expressive power to match the complexity of natural
language;

- World-modeling capacity to describe all situations,
events, actions, and changes of states occurring in a
given microworld; and

- Deductive capacity pertaining to the solution of problems
put to the system.

The broad aspects can be made more explicit in the following
specific requirements.

(I) Like NL, the IR must be an "object language", i.e. it
should not describe regularities of the German language, but should
act on the same referential level as NL. This entails that it
should not contain metalinguistic symbols such as set-theoretic
ones, cases, etc,

(ITI) The IR should be able to describe arbitrary microworlds,
i.e. for any given concrete microworld, it should have the means
to designate all typical entities existing in that world: indi-
viduals, sets of individuals, events, processes, actions, etc.
Similarly, it should be able to express time, temporal relations,
and causality.

(ITI) The syntax of the IR must be explicitly described in
a grammar. This grammar guides automatic mapping processes of
NL structures into IR structures and allows the problem solver
to operate on the syntactic level of the IR.

(IV) With the IR must be associated a formal semantic inter-
pretation that accounts for the way in which IR formulas corres-—
pond to particular arrangements in the external world and further-
more allows one to decide about the equivalence of formalisms [6].

(V) It should be suited to the application of general formal
deduction mechanisms, so that it is not necessary to program
specific deduction algorithms for each deduction (in the sense of
"methods")--which does not of course exclude the use of heuristics.

In particular, points (IV) and (V) indicate the use of a
predicate calculus (PC) for the internal representation, as PC is
interpreted by a formal semantics in the form of Tarskian model
theory and a general "theorem prover" mechanism operates on it.

The standard first-order PC does not, however, fulfill

all the above requirements (e.g. condition (V)). Therefore a
symbolic language (KS) was designed modeled on the first-order
but incorporating a number of extensions. In the discussion below,

we distinguish between the formal representation language KS,
which according to requirement (II) is independent of the given

-122-

microworld, and concrete KS languages defined by a world-specific
vocabulary. The general construction rules of the IR language KS
are described next; a preliminary outline of the concrete language
KS water pollution control is given later.

Short Description of the Syntax of KS§

In addition to the usual sets of symbols in a PC-~namely,
predicate symbols, individual symbols, connectives, and quanti-
fiers—-the vocabulary of KS contains the set S§ of "sorts":

S = {uni, obj, int, sit, per, ort, zus, akt, ... }

(These names are abbreviations for the German: Universal, Objekt,
Intervall, Situation, Person/Personenkdrperschaft, Ort, Zustand,
Aktion,) The set SV of sort-indexed variables is the Cartesian
product of the set V = {x1,...,xn} of variables and the set

S of sorts., KS terms can be constructed with the aid of operation
and relation symbols. For each such symbol, the sorts of its
arguments are specified. The sort of the term thus constructed

is determined by the sort of the last argument of the operation

or relation symbol. The following conditions of well-formedness
for terms are defined:

(1) Sort-indexed variables from SV are terms.

(2) Individual constants are terms. To each constant is
assigned a member of the set S.

(3) Let F be an n-place operation symbol, to which is as-
signed an n+1-tuple of sorts:

> fa, € 8)

@qre--vapran gy i

a4

a
Let t1 ,...,tnn be terms of the sorts a »a respec-

TERE
tively. Then

a] an
et

is a term of the sort a Operational terms are in

n+1°

general individual terms. If the n-th argument term
a

(tnn) is of the sort "int" (interval), then the term

designates individuals with reference to a particular
time. Such individuals are states of the world, actions,

(5)

-123-

processes, and so on. They are terms of the sort "sit"
(situation) and are made up of an operation symbol fol-
lowed by the following tuple of sorts:

(a1,...,an_1,int,sit) .

Let R be an m-place relation symbol, to which is assigned
an m—tuple of sorts;

(a1,...,am) (ai € S) .
a4 am-1
Let t, ,...,t m be terms of the sort a,,...,a .
1 m~1 1 m-1
a, a1
Then |R t1 ,...,tmT1 is a term of the sort ap- Rela-

tional terms are "list terms". Such terms designate sets
of individuals (see later).

Atomic formulas in KS are constructed according to the
following conditions of well-formedness:

Let F be an n-place operation symbol with the tuple of
sorts

(a1,...,an,an+1) .

a
1

a a
1 n n+1
Let ty ,... it ot /]

Then

be terms of the sorts a1,...,an+1

a a a
1 n n+1
(F t1 ,...,tn 'tn+1)
is an operational atomic formula.
Let R be an m-place relation symbol with the tuple of

sorts

(a1,...,am) .

-124-

a
1

a, a;
(R t1 ""'tm

is a relational atomic formula.

a
Let t ,...,tmm be terms of the sorts a1,...,am. Then

Nonatomic formulas are constructed according to the usual
construction rules of PC. A more detailed description of the
syntax of KS can be found in [15,16].

Special Features of KS

Many-Sortedness

The set S of sorts can be extended as demanded by the re-
quirements of specific fields of application. The sorts under-
lie a hierarchical structure made use of in problem solving. The
sortal structure of KS imposes semantically motivated conditions
of syntactic well-formedness—--in the sense of Katz-Fodor "selec-
tion restrictions". But the specification of the number and sorts
of the arguments of a predicate is made as a function of the
world-model, rather than being guided by linguistic principles.

The advantages of a sortal structure in a representation

language were indicated in [5]. A logical sortal calculus with
linguistic considerations was proposed in [11].

Complex Term Building

The notion of "term" in KS is defined recursively, so that
it is possible to embed terms within terms, thus reflecting more
closely some NL constructs, such as complex noun groups.

Example: "the mother of the neighbor of the friend of Hans”
becomes in KS: (MOTHER (NEIGHBOR (FRIEND HANS)))
In the framework of the concrete KS-language with ref-
erence to social relations, MOTHER would have been de-
fined as a 1-place operation symbol taking the tuple
of sorts (per, per). FRIEND and NEIGHBOR would have
been defined as 2-place relation symbols also with the
tuple (per, per).

Quantification

In KS the NL quantification symbols VIELE, MANCHE, EINIGE
(many, several, some) are defined. They describe the size of sets
of entities. The same applies to the natural numbers which can

-125-~

also be used as quantification symbols. They underlie the follow-
ing conditions of well-formedness:

a
Let QU be a quantification symbol and let (# t11,...,t2:1)
a, a
be a list term of the sort a s then (QU (R t1 ,...,tmT.l)) is a

quantified list term of the sort a.

Plurality

Singular and plural objects can be designated in KS by "in-
dividual terms" and "list terms" respectively. As an example the
KS representation of the sentences "der Nachbar der Mutter von
Hans ist Fritz" and "die Nachbarn der Freunde von Hans sind Franz
und Egon" is given:

(NACHBAR (MUTTER HANS); FRITZ)
(NACHBAR (FREUND HANS); (LISTE FRANZ EGON))

Arithmetic Operations

KS incorporates arithmetic operations such as PLUS, DIFFER-
ENCE, TIMES... which can be interpreted as LISP functions.

The KS Language for the Control of Water Pollution

In PLIDIS a concrete KS language is defined that derives its
vocabulary from the field of application in the control of water
pollution. Some examples of the vocabulary of KS water pollution
control are given below:

- Individual constants: ARSEN (sort : "stoff")
ZYANID (sort : “stoff")

- Operation symbols:

PROBE (2-place; sortal tuple : <{betrieb, int, stoffkoll))

PROBENEHMER (1-place; sortal tuple : (stoffkoll, per))

ANTEIL (3-place; sortal tuple : {stoff, stoffkoll,
physobj, num))

LABORBERICHT (3-place; sortal tuple : (perkdrp, stoffkoll,
int, physobj))

BETRIEB (2-place; sortal tuple : {firma, ort, betrieb))

- Relational symbol:
GIFTIG (1-place; sortal tuple : {stoff))

-126-

The above predicates can be "translated" into English as follows:

PROBE = "sample", PROBENEHMER = "sampler", ANTEIL =
"amount", LABORBERICHT = "laboratory report", BETRIEB =
"firm", GIFTIG = "toxic".

The following is an example of a KS—-term:

PROBE (BETRIEB MAX-MULLER STUTTGART) 76.81.13.14.04)
"The sample taken from the firm Max Miiller in Stuttgart
on 13.1.1976 at 14.00 hours."

The following is an example of a KS formula:

(ANTEIL ZYANID (PROBE (BETRIEB MAX-MULLER STUTTGART) 76.81.13.)
(LABORBERICHT (BETRIEB CHEM-UNTERSUCHUNGSANSTALT PLOCHINGEN)
(PROBE (BETRIEB MAX-MULLER STUTTGART) 76.81.13.)
76.81.15.)
i (2,5 mg/1))

"The amount of cyanide contained in the sample taken from the firm
Max Muller in Stuttgart on 13.1.76, according to the laboratory
report of the chemical analysis center in Plochingen produced on
15.1.76 amounted to 0.5 milligram per liter."

NATURAL LANGUAGE ANALYSIS IN PLIDIS

The requirement of modularity in a system such as PLIDIS is
dictated not only by organizational reasons, but also, from a
more systematic point of view, it was desirable to maintain a
strict separation between components that are theoretically or
methodologically well understood or are of no central interest to
the project, and those that are topics of genuine effort and ex-
perimentation and where research is still going on.

Thus the natural language processor is separated into three
passes (see Figure 2): a PASS@ for the morphological identifi-
cation, a PASS1 for syntactic analysis and a PASS2 for code gen-
eration, i.e. translation into the language of internal represen-
tation.

PASS@: Morphological Identification

At an early developmental stage of the system PASS@ was a
program for morphological analysis that operated with a lemma-
tized dictionary. For each German word of the system's vocab-
ulary there existed only one dictionary entry, the basic form of
the word. A certain class of verb forms, for example, were repre-
sented by their infinitive form. It was the task of the program
to apply morphological rules to inflected forms of words and to
reduce them to their basic form, which then allowed a dictionary
look-up for further information. This analysis was very time

-127-

‘s1e0ys eyep £q yndur pue yndut aFenSue| eanyeu Suissaoold 103 spuouodwos QI g NSy

1 0sTAIa@dns

SIAITd4d

dIld

103eI3Uan
wIog

Error Message

3TN UOTIBITITPO
¥o9yd A3TTIqISneld

suor3ydiaosag wiogd

saTny ¥l

xl I03o0npsuel] ‘ A

uI ured
105S8001d

andul pe3jeuiod daId

\

103eI3U3YH
Axjua
uodTX37

SHI0MIBIN uoDTXIT
satnyg ul uoy3rsuely o13003uks
paijuaubny -oyd 1oy
\
uot3es
1035npsueay Ias1ed ~TITIUIRI | q
‘lA A10mIBN Tea1boroydion
414 dar N
Zssvd LSSvd @ssvd
108880014 obenpuerT TeINIBN aYL dIN

-128-

consuming and was replaced by a very simple program that works
with a nonlemmatized dictionary. Each inflected form of a word
has an entry in the dictionary with its full morphological in-
formation such as basic form of the inflected word, word class,
gender, tense, etc. The dictionary is stored on an external
device with index sequential access such that the time required
for morphological identification of a word is rather small. The
amount of work necessary for entering all inflected forms of a
word into the dictionary is reduced by a special function of
PASS@, which generates from a dictionary entry of a basic form
the entries for the inflected form. Finally a HELP routine of
PASS@ enables even a user with little linguistic knowledge to
write the dictionary entry for a basic word form.

PASS1: Morphosyntactic Analysis

The parsing of the German input sentence is done by means
of an ATN as described in [13]. This technique was chosen as it
seemed to be the best studied of parsing techniques and at the
same time it may be handled easily by linguists without any
special training in programming. The advantage of the ATN lan-
guage is its open-endedness, allowing the definition of new arcs,
tests, and actions as required for the analysis of specific NLs.
In the present version the parser is able to recognize the major-
ity of German sentence structures, including complex sentences
containing all types of subordinate clauses--relative, adverbial,
object and subject, etc. Complex noun phrases having inflected
participal constructions as attributes such as "Das von der Firma
Miiller in den Rhein eingeleitete Abwasser" can be handled. The
verb phrase may contain a main verb in any tense or mode, with
the exclusion of the conjunctive mood.

Because of their inherent ambiguity, some constructions not
resolvable by purely syntactic criteria had to be excluded:

~ Coordination between noun phrases (e.g. "Die alten Manner
und Frauen"):;

- "Elliptical" noun phrases, i.e. noun phrases without a
nominal head (e.g. "Er nannte das billigste gut").

The ATN for German is very weakly structured, in particular
with regard to the noun phrase. Whereas a linguist would like
to have a structure something like Figure 3, PASS1 produces an
analysis as shown in Figure 4 for the sentence: "Der Anteil an
Zyanid in der Probe der Firma Miiller betrug 2 mg/l." (The
amount of cyanide contained in the sample of the firm Miller was
2 mg/l.) Certainly it would be possible to push the noun phrase
analysis further by extending the syntactic categories and by
using information such as dependency frames of verbs. But since
deeper noun phrase analysis sooner or later needs semantic in-
formation, it was decided to restrict the syntactic analysis to
the generation of a list of the main constituents of the input

-129-

"’//5\‘
NK VK
/NG\ NK VG NK
NP WK PNK NG v NG
DET N PNK DPNG NP Hre
;G\ PRAEP /NP\ DET NPR ZAHL N
PRAEP np DET N
N
der Anteil an Zyanid in der Probe der Firma-Miller betruq 20 mg/1

Figure 3. Example for desirable syntactic structuring within the domain of noun groups.

S
NG PNG PNG NG VK NC
DET N PRAEP N PRAEP DET N DET NPR v ZAHL N
der Anteil an Zyanid in der Probe der Firma-Miller betrug 20 mg/l

Figure 4. Example for structuring capacity of the PLIDIS NL parser.

-130-

sentence with a minimal dependency structure and to pass the
burden of semantic interpretation to the translation component
in PASS2.

PASS2: Semantic Analysis Component

Within the PLIDIS system semantic analysis is viewed as
the problem of translating NL sentences into formulas of the
internal representation language KS; more precisely, to generate
KS code from the parsing trees produced by the network parser
of PASS1. 1In the earlier ISLIB approach augmented transition
networks were used to state the rules for KS code generation.
As stated earlier, this approach turned out not to be very ef-
ficient and remained at an ad hoc level, since it was not pos-
sible to find a theoretical foundation that would have allowed
reduction of the number of rules needed with this approach. The
new concept for the NL to KS translation starts from the concept
of a translation grammar for two languages L1, L2, where L1 is

the source language and L, the goal language of the translation

2
[14]. PASS2 then can be viewed as a program that interprets the
translation grammar rules. The translation grammar may be com-—
pared with a transformational grammar ([4], the rules of which
operate on already existing derivation trees of a phrase structure
grammar of the source language, i.e. German in the PLIDIS system.
The nodes of these trees are labeled with nonterminal (syntactic
categories of the grammar) and terminal symbols (source language
words) of the phrase structure grammar. In a similar way the
translation grammar rules are applied to the derivation trees of
the source language, which correspond within the context of

PLIDIS to the lists of bracketed and labeled constituents from

the parsing of NL sentences.

For the sake of simplicity and clarity, the translation
grammar is explained here by simplified examples and in an ab-
breviated terminology of derivation trees. The translation
grammar consists of three types of rules:

- Rules for the replacement of source language symbols--
i.e. in general NL words—--by the context pattern of their
goal language equivalent;

- Insertion rules for the goal language context pattern;
and

- Pattern raising rules.

The rules are based on the concept that it will be possible
to define for each goal language symbol something that we will
call a context pattern. The context pattern of a symbol is a
prediction about the syntactic context in which this symbol will
occur. Thus the writer of a translation grammar for German to
KS may state in a rule of the first type that the KS symbol PROBE

-131-

may correspond to the German word "Probe" (sample). The grammar
of KS defines that PROBE may be used within a two-place {TERM)
of the sort {stoffkoll), where the first argument has to be a
{TERM) of the sort {(firma) and the second argument a {TERM) of
the sort {int). Thus in any context where the German "Probe"

is translated by the KS symbol PROBE, it will be followed by

two terms specified as above and the context pattern for PROBE
can be defined as a tree structure, where the top node is labeled
by (TERM ; stoffkoll) and the terminal nodes by (, PROBE, {TERM ;
firma), {TERM ; int) and) respectively. The rule of the first
type for the German word "Probe" would state, then, that "Probe"
is to be replaced by the described context pattern (see Figure
5).

In the context pattern of PROBE, {TERM ; stoffkoll) is viewed
as the head of the context pattern, whereas the nonterminal XS
symbols {TERM ; firma) and {TERM ; int) are considered as "slots"
and it is the task of the second type of rule of the translation
grammar to define how to f£ill in these slots. A distributional
analysis of the context of German "Probe" will show that the nom-
inal attributes of "Probe", i.e. a noun group in the genitive case
or a prepositional noun group following "Probe", are the constit-
uents the translations of which have to be inserted into the slots
of the PROBE context pattern. Thus the insertion rules for the
KS context pattern assigned within the translation of a natural
language sentence to German "Probe" would state that the slot with
the name <(TERM ; int) has to be filled with a context pattern of
the same name, resulting from the translation of a prepositional
noun group following "Probe”, specifying also possible preposi-
tions like "am" or "vom".

Example:

Let RR1""'RR6 denote some rules of the first type for the re-

placement of German words by the context pattern of their KS
equivalent,

IR1,IR2 rules of the second type for the insertion into
context patterns;

let € denote the empty context pattern, consisting of no
symbols.

The application of these rules to German "Probe" within the
context "die Probe bei Miiller & Co vom 15.12.76" (the sample
from Miller & Co of 12/15/76) can be represented schematically
as shown in Figure 5, where the arcs stand for the application
of the rules that label the arc.

The use of the sorts of KS for disambiguation within the
translation can be shown if one considers "die Probe von Miiller
&€ Co am 15.12.76" as an alternative formulation for "die Probe

bei Miiller & Co wom 15.12.76". As the insertion rule IR2 re-

quires.the translation of a prepositional noun group with the
preposition "von" or "am" to be inserted as tense argument into

-132-

natural language
parsing-tree

*—o—0
die Probe bei MiillergCo vom 15. 12 76

<TERM;int>

RRs RR. A

<TERM; firma>

d @
(BETRIEB FRITZ-MULLER&CQ 7@@@.STUTTGART)

<TERM;stoffkoll>

@ —& . 4

{ PROBE <TERM;firma> <TERM;int>)

Figure 5. Simplified illustration of the application of replacement rules (RR) and
insertion rules (IR).

-133-

the context pattern assigned to "Probe"”, the translation of
"Miiller § Co" would take the place of the second TERM within the
PROBE pattern. But since the KS equivalent to "Miller & Co" is
a TERM of the sort {firma), a check of the sort consistency will
block the insertion at the TERM place with the sort <{intervall .
For each insertion rule there is a side effect defined. 1If a
filled-in context pattern is inserted into the slot of another
pattern, it is deleted at its original place, i.e. replaced by
the empty pattern € (see Figure 6).

If all terminal symbols, i.e. all NL words of a derivation
tree, are replaced by the context pattern of their KS equivalent
and if all slots of these patterns are filled in, the pattern
raising rules may be applied to the remaining structure in the
following ways:

(1) A nonterminal symbol x of the source language grammar
can be replaced by a filled-in context pattern if this
pattern is dominated by x and if all other context pat-
terns dominated by x are equal to the empty context
pattern.

(2) If a nonterminal symbol x of the source language grammar
dominates only empty patterns, then it is replaced by
the empty pattern.

(3) If the top node of the remaining tree structure is la-
beled by a symbol of the goal language grammar, a head
y of a context pattern can be replaced by the string
that results from the concatenation of the symbols dom-
inated by the head y under the condition that y does
not dominate another head of a context pattern.

For simplicity we will illustrate the application of the
pattern raising rules with an abstract example.

Example:

Let A, B, C, D be some nonterminal symbols of a source language
grammar and a, b, ¢, d, e, £ symbols of the goal language grammar;
let PR1, PRZ' PR3 denote the pattern-raising rules as described

above in (1), (2), (3) respectively. Figure 7 then illustrates
the application of these rules to the tree whose top is labeled
by A and where a and d are the heads of context patterns. The
numbers preceding the rule names indicate the order in which
these rules were applied. If the string resulting from the ap-
plication of the pattern raising rules consists of terminal
symbols of the goal language grammar, then a translation has
been found.

Since various details of a translation grammar for a subset
of German into KS are still subject of experimentation the PASS2
program, which interprets the translation rules, has not yet
reached its definitive form.

-134-

natural language
parsing-tree

<TEPM;stoffkoll>

*—o— —o— -—

PROBE <TERM; firma> <TERM;int>
/\
{ BETRIEB FRITZ-MYLLER&CO 7¢@@.STUTTGART) 76.12.15.

Figure 6. Result of the application of the rules of type (1) and (2) on “die Probe bei
Miiller & Co vom 15.12.76”.

-135-

3®09q

"(4d) 9on1 Suisres uroped jo uoneonddy -2 aandig

Z3d/2z

k./\gJ

-136-

INFORMATION HANDLING AND PROBLEM SOLVING

The processor for information and problem description con-
sists of data base management procedures for storing the symbolic
data into the data base, and "problem solving procedures" for the
answering of questions. This section deals primarily with the
latter, as data base management problems are not within the main
topics of the PLIDIS development and will arise only in the "real-
life" application of the system, when mass data have to be pro-
cessed. When the PLIDIS data base management is too weak to
handle these problems, the component may be replaced by adapta-
tions of already existing data base management systems.

The problem solving component of PLIDIS must be able to per-
form the following operations:

- matching,

set-theoretic,

deduction, and
- arithmetic.

The choice of the appropriate matching operations depends mainly
on the techniques used in the "data base management" component
for storage of mass data (hash-coding, pattern matching, etc.).

As NL questions put to the system usually involve the use
of plural noun phrases, it should be possible to ask for the
extension of sets (of individuals or of mass-terms). This task
is performed by a component called "Terminterpreter" (TI), which
reformulates the KS question into set-theoretic terms and sub-
sequently evaluates this term with set-theoretic operators. The
deduction process proper is done by means of a theorem prover
(TP) based on the resolution principle.

Arithmetic operations present no particular problem, as they
are represented as KS operators evaluated as LISP functions. The
components performing the above operations interact with each
other in the process of solving a particular problem. This inter-
action is guided by a "monitor".

The theorem prover based on the resolution principle pro-
ceeds in two main stages: normalization and resolution. The
process of normalizing consists in reducing the KS formulas into
sets of literals obtained out of clauses in conjunctive normal
form, the existential quantifiers having been replaced by skolem
constants or functions. For greater efficiency, normalizing takes
place when the formulas are entered into the data base, so that
it only needs to be carried out once. Questions must of course
still be normalized by the TP. The process of resolution proper
generally involves two important aspects: search strategies and

-137-

heuristics. Under the heading search strategies fall such al-
ternative techniques as "state space” versus "problem reduction”,
"depth first" versus "breadth first" analysis, and the use of
connection graphs as described in [9] supported by methods such
as the Waltz algorithm. Each of these techniques presents ad-
vantages for particular types of problems. It was deemed impor-
tant in the PLIDIS implementation of the TP to allow the deduc-
tion strategies to be kept variable, according to the type of
problem at hand. In a QA system, for example, the "problem re-
duction" method (such as "input resolution") has the advantage
that the question being asked (i.e. the conclusion) can be taken
as the starting clause, thus ensuring that only clauses contain-
ing a predicate relevant to the question are resolved upon. Be-
cause of the incompleteness of input resolution conclusions from
false premises ("ex falso quodlibet™") are avoided. On the other
hand, where the TP is to be used for controlling pollution, the
goal state is in general not known and a "state space" deduction
method is hence indicated.

The "default" implementation of the PLIDIS theorem prover
functions in state space mode with breadth first analysis. It
is possible to change the operation mode to either "unit resolu-
tion" or "input resolution", by specifying the appropriate para-
meters. The axioms being resolved upon are linked by a connec-
tion graph [cf.3]. It is envisaged that connection graphs will
be constructed when the data are entered in the data base. The
set of clauses can thus be divided into subsets linked by a con-
nection graph, representing different miniworld models of re-
lated axioms. As a further extension, heuristics could be simi-
larly connected into subsets, which would aid the selection func-
tion. Whether the entire system's knowledge can thus be neatly
divided into subsets has not yet been empirically verified. On
a preliminary investigation, it seems that at least certain co-
herent bodies of knowledge can be distinguished, such as legal
norms, geographical data, composition of chemicals, etc.

At each step in the deduction process, the selection of the
next pair of clauses to be resolved upon is guided by a "selec-
tion function". This function calls upon semantic as well as
syntactic heuristics. An example of a syntactic heuristic would
be a function computing the size of the unifier, i.e. the number
of substitutions. (For example, if the unifier of the link k
contains p elements then f(k) = 1/p; another example would be the
use of resolution with unit clauses--the value of this function
would be either '0' or '1'.) Semantic heuristics take into ac-
count the semantic characterization of the predicate and the
arguments of the literal. Such heuristics must be formulated in
terms of the world model and the problem at hand.

Finally, the PLIDIS problem solver makes use of the sortal
structure of KS in selecting a unifier for a set of clauses.
Before a substitution is carried out, it is checked if the sort
of the constant is compatible with the sort of the argument, as

-138-

illustrated by the following two clauses:

1 (AT x y)V1(MOVE x vy 2) Vv (AT x z)
(AT table (PLACE table))

The following unifier can be established together with a specifi-
cation of the sortal characterization of the substitutions

(table PHYSOBJ)/x, ((PLACE table)LOC)/y

(table PHYSOBJ)/x, ((PLACE table)LOC)/y
yielding the following resolvent:

1 (MOVE table (PLACE table) v (AT table z)

The above clause is ill formed, as the first argument of MOVE has
to be of the sort "animate"; the substitution must hence be re-~
jected.

IMPLEMENTATION OF PLIDIS

PLIDIS is written in SIEMENS-INTERLISP, which is an imple-
mentation of Uppsala-INTERLISP {12], on a SIEMENS-4004/151 run-
ning under the BS 2000 operating system. Uppsala-~INTERLISP is
itself an implementation of INTERLISP {10] for an IBM 360/370
configuration. No specific SIEMENS-INTERLISP features were used
so that the system will almost certainly run in other INTERLISP
implementations.

REFERENCES

{11 Chang, C.L., and R. Lee, Symboliec Logic and Mechanical
Theorem Proving, Academic Press, New York, 1970.

{2] Dilger, W., Ein Frage—Antwort-System auf der Basis einer
pradikatenlogischen Sprache, in Proceedings of the Work-
shop on "Dialoge in natiirlicher Sprache und Darstellung
von Wissen', Freudenstadt, 1976.

[3] Dilger, W., Verbindungsgraph und Auswahlfunktion, internal
paper, Institut fir deutsche Sprache, Mannheim, 1976.

[4] Ginsburg, S., and B. Partee., A Mathematical Model of Trans-
formational Grammars, Information and Control, 15 (1969),
297-334, —

[5]

(6]

{71

(8]

[91]

f10]

[11]

[12]

[13]

(141

[15]

[16]

-139-

Hayes, P.J., A Logic of Actions, in B. Meltzer and D. Michie
eds., Machine Intelligence, No. 6, University Press,
Edinburgh, 1971.

Hayes, P.J., Some Problems and Non-Problems in Representation
Theory, in Proceedings of the 1974 AISB Summer Conference,

Kolb, D., and H.D. Lutz, Verarbeitung von Netzwerken, ISLIB-
Info I-4, Institut flir deutsche Sprache, Mannheim, 1975.

Kolb, D., and H. Wulz, Allgemeine Beschreibung und Kurzan-
leitung fur die Benutzung von ISLIB Borse, ISLIB-Info
I-1, Institut filir deutsche Sprache, Mannheim, 1975.

Kowalski, R., A Proof Procedure Using Connection Graphs,
Journal of the ACM, 22 4 (1975).

Teitelman, W., INTERLISP Reference Manual, XEROX Palo Alto
Research Center, Palo Alto, California, 1974.

Thomason, R., A Semantic Theory of Sortal Incorrectness,
Journal of Philosophical Logic, 1 (1972), 209-258.

Urmi, J., INTERLISP /360 and /370 User Reference Manual,
Uppsala University Data Center, Uppsala, 1975.

Woods, W.A., An Experimental Parsing System for Transition
Network Grammars, in R. Rustin, ed., Natural Language
Processing, Algorithmics Press, New York, New York,
1973.

Wulz, H., Konzept einer Theorie einer Ubersetzungsgrammatik,
unpublished manuscript, Institut fir deutsche Sprache,
Mannheim, 1976.

zifonun, G., KS: eine formale Sprache zur kanonischen Darstel-
lung natiirlicher Inhalte in einem automatischen Frage-
Antwort-System, internal paper LDV-MA-73-3, Institut
fir deutsche Sprache, Mannheim, 1974.

Zifonun, G., Die Konstruktsprache KS, Entwurf eines Darstel-
lungsmittels fiir natiirlichsprachlich formulierte Infor-
mation, internal paper, Institut fur deutsche Sprache,
Mannheim, 1976.

-140-

An Overview of OWL, A Language for Knowledge Representation#*

P. Szolovits, L.B. Hawkinson, and W.A. Martin

OVERVIEW AND MOTIVATION

We have undertaken the design and implementation of a new
computer language for knowledge representation, called OWL. We
have become convinced that recent progress in linguistics and in
artifical intelligence (AI) now suggests a set of principles worth
implementing as part of a programming language to make them uni-
formly accessible for our further work.

For a computer program--as for a person--it is more effec-
tive to know how to do something than to be able to figure it out.
The AI field has made important progress under an opposite set of
assumptions: that all knowledge of the domain should be expressed
in propositional form and that a program's actions should be di-
rected by a general purpose problem solver operating on proposi-
tions representing the application world. Such a problem solver
would always figure out what to do next based on the state of the
world and its set of general principles. At the same time, most
programs that have been used for their ability to perform in an
application domain rather than for their pedagogic clarity have
used a very different form of organization: the knowledge of how
to perform the task was implicitly built into the steps of the
program. Of course, such an organization is generally accompanied
by inflexibility, difficulty of extension, incomprehensibility and
unprovability of the program, and many other ills. If, however,
we could express the description of the procedural knowledge of
the program in the same formalism as its declarative knowledge of
the domain of application, then both would be equally accessible.
This is precisely what is done in OWL--the program is just another
aspect of the description of the application world, and knowledge
of how to solve specific problems of that world can be explicitly
embedded in the description.

We have taken English as the basis for our knowledge repre-
sentation formalism. The greatest attraction of this approach is
that it almost trivially satisfies our need for expressive power.
After all, native speakers of English can usually communicate

*This work was supported by the Advanced Research Projects Agency
of the US Department of Defense and was monitored by the Office
of Naval Research under contract #N00014-75-C-0661.

-141-

their knowledge of any domain of interest in English,* perhaps
augmented by specialized notations and vocabularies particular
to the domain. Because we choose a computer representation
designed to be similar to the natural language (NL] employed by
a computer-naive user of one of our programs, we expect that the
translation process from English sentences to our internal struc-=
tures will be straightforward. Once we succeed in translating
the English phrase into our internal representation, that will
allow all of OWL's activities, including understanding the sen-
tence in semantic detail, resolving references, mapping the sen~
tence onto some capability of the system for acquiring new know-
ledge or answering on the basis of old, etc., to make use of the
same representational formalism. This, in turn, will help us

to make the complete operation of the program accessible for ex-
planation to, and modification by, someone who may well under-
stand the domain of application but not our computer technology.

Arguments for English as a programming language have been
made since the early 1960s, yet it has not been universally ac~
claimed as desirable. The principal objections to basing a pro-
gramming language on English (or any NL) center on the innate
ambiguity of NL and its lack of conciseness when contrasted with
special mathematical notations. The second problem is rapidly
resolved if we extend our definition of NL to allow the incorpora-
tion of new notations. After all, the NL of a physics text is
hardly the literary English of the day. The first problem has
both a trivial and a difficult component: pure syntactic ambigu-~
ity, as created by the existence of homonyms for instance, is
simply controllable, whereas ambiguity arising from the fact that
what one (literally) says is not what one actually means is, of
course, difficult. Our response is simply that we wish to begin
by representing precisely what one says, and we will allow the
determination of the meaning of each utterance to be part of the
problem that the system is to solve.

During the past few years, we have implemented the following
components of a complete system based generally on the above ideas:

-~ A Linquistic Memory System (ILMS) [3], which is a memory
(data base) of concepts in which all knowledge in OWL
resides. LMS can be viewed as a semantic network, with
a somewhat unusual interpretation of its nodes and arcs.

*We limit ourselves to "left-hemisphere knowledge", which does not
include visual skills or manipulative skills where local muscle/
nerve training is an essential component. Thus, our domains are
restricted to reasoning tasks where the necessary data about a
problem can be acquired verbally, e.g. medical diagnosis and
treatment of the type that could be done by consultation over the
telephone (probably not, for example, diagnosis of skin disease,
where visual inspection is a critical skill), automatic program
writing, question answering.

-142-

A theory of English grammar which specifies how any utter-
ance of English can be represented in terms of LMS con-
cepts.

A skeletal world model organized as a taxonomy of concepts
and intimately related to the theory of English grammar.

An augmented transition network parser to translate Eng-
lish utterances into their OWL representations.

A generator to perform the inverse transformation to the
parser.

An interpreter which carries out procedures represented
in the OWL formalism.

An explainer which provides English explanations {(via the
generator) of procedures and data dependencies known to
the interpreter, as well as results of previous executions
of those procedures.

These components are at differing stages of development. We are
pursuing a breadth-first approach to implementation, where we try
to have some version of each of these components before trying to
have the "ultimately" correct version of any of them.

In terms of the above components, we have been building the
following programs:

Programwriter, which takes a declarative specification of
simple programs that need to be written and designs, op-
timizes, and codes them. The scope of its capabilities
includes programs to maintain bank balances and sell tick-
ets for scheduled events [5].

Susie Software, which is another automatic programmer, for
writing manipulation programs for the block's world. It
is a research environment for developing a discourse model
that lets Susie engage the user in a dialogue concerning
the program it is trying to write [2].

Proctor, which helps a business manager to design a pro-
curement system. It is an "unstructured" questionnaire
that provides a framework for a manager to think about his
system requirements [1].

A Digitalis Therapy Advisor, which makes clinical judge-
ments about the condition of a patient who is receiving
the drug digitalis, makes further therapeutic recommenda-
tions, and can interactively explain its reasoning steps
to the user [8].

A gquestion-answering system for a relatively simple data
base.

-143-

We will give an overview of ILMS, the theory of grammar, and
the interpreter, and discuss other modules as they relate to those
central components.

THE LINGUISTIC MEMORY SYSTEM

The OWL LMS is a semantic network with a single primary data
type, the concept, and a secondary data type, the symbol. Sym-
bols are merely strings of characters that denote senses of En-
glish words and affixes and have no innate significance. Concepts
represent the meanings of all words, phrases, clauses, sentences,
etc., of English as well as any needed nonlinguistic entities.

It is very important to note that, whereas in a traditional se-
mantic network each node of the network represents a single word
or item, in LMS each node represents any of the higher level con-
structions mentioned above. Thus, where a typical semantic net
would identify the meaning of a sentence as some subnet of the
whole network, LMS identifies it as a single node of the network.

The Essential Structure of Concepts

Concepts, the nodes of LMS, have structure. In fact, we will
concentrate on the essential structure of a concept as the pri-
mary organizational facility of LMS.

Every concept is defined by a pair, (genus specializer), the
essence of that concept. The genus is another concept, and the
specializer is either a concept or a symbol. The genus specifies
the general type of the concept; if the genus of concept C is B
(i.e., if C = (B specializer)), then we imply that C is-a B, or
C is a kind of B.* C is called a specialization of B, and B is
called a generalization of C. The specializer serves to distin-
guish this concept from all other concepts with the same genus;
it does not by itself define the concept.** The genus and the
specializer together identify a concept.

We want to interpret all the concepts in LMS as forming a
single taxonomy or tree-like classification system in which the
genus points "up" in the taxonomy. To do so, we must designate
a single concept, SUMMUM-GENUS, whose genus is itself. That
condition makes SUMMUM-GENUS the root of the tree. Further, we
insist that no loops may occur in the expression of concepts in
terms of themselves or each other (with the above exception for
SUMMUM—GENUS) . Then, all concepts will form a tree structured

*The general implication of is-a or is a kind of (AKO) links is
that "something" (properties, features, place of classification,
ways to treat, etc.) is inherited by C from B. We will define
this more precisely later.

**For example, we may represent "dog house" as (HOUSE DOG) and
"dog tail" as (TAIL DOG), and although both concepts are
specialized by DOG, they are clearly different.

-144-

classification: starting from any concept in the conceptual
memory and successively moving to its genus will always lead to
the root concept SUMMUM-GENUS in a finite number of steps. That
number will be called the genus depth of the concept. We also
introduce a notational convenience. So far, we have only allowed
a concept to be written as (genus specializer). But clearly, the
depth of parenthesization for writing any concept will be at least
its genus depth, and this is terribly inconvenient. Thus, we
allow equivalence declarations, such as A = (B C), which allows
any appearance of A to stand for an appearance of (B C). A is
called the label of (B C).

The notion of derivative subclassification [3] complicates
this picure somewhat. It assures that all specializations of a
concept are classified the same way the specializers themselves
are classified in the conceptual memory. For example, if in the
taxonomy both DOG and PIG have genus ANIMAL, then we classify
(TAIL DOG) and (TAIL PIG) under (TAIL ANIMAL). The generalizer
of a concept (A B) is the most specific specialization of A
whose specializer is a generalization of B, or, if there are none
of these, just A itself.* The genus of a concept is thus always
either its generalizer or the generalizer of its generalizer,
etc. By moving along the successive generalizers from any concept,
we must finally reach SUMMUM-GENUS, and the number of steps re-
quired is called the generalizer depth of the concept.

We have now described some of the essential structure of
each concept, thus each node, of a conceptual memory. Before
we turn to arguing for the utility of this structure to represent
knowledge, let us see what the essential structure of the nodes
already implies for the semantic network as a whole. In our
current implementation, every concept is directly linked to its
generalizer and specializer. Every concept is not, however,
linked directly to its genus, since the genus can easily be com-
puted from generalizer and specializer links. A typical, but
very small, conceptual memory taxonomy is shown in Figure 1.

Attachment

In the previous section, we presented the essential structure
of a concept in LMS. The act of creating a new node in LMS is
called specialization, and we say that we specialize a genus, G,
by a specializer, S, to form the concept (G S). As we shall

*An intermediate concept in the taxonomy, such as (TAIL ANIMAL)
in our example, is automatically created by LMS whenever more
than one concept may be classified under it. Thus, the general-
izer of a concept, and hence the number of times that we need
to move from a concept to its generalizer in order to reach its
genus, will depend dynamically on what other concepts are in the
taxonomy.

-145-

SUMMUM-GENUS

r—uouu

MASS-NOUN
t::::uATER
SCALE
HEIGHT
(HEIGHT JOHN)
L ——WEIGHT
COUNT-NOUN
——TREE
(TREE APPLE)
—— ANTMAL
DOG
F1DO
P16
PERSON
JOHN
PROFESSOR

:APPLE
TAIL
L (TAIL ANIMAL)

(TAIL PIG)
(TAIL DOG)
L (Ta1L FIDO)
L ADJECTIVE
EMPTY
TRUE
- VERB
MODAL
WILL
AUXILIARY
BE
NON-MODAL -AUXIL [ARY
—— TRANS
—®
L____ HIT
ACT
L ATTACH

Figure 1. A sample conceptual memory taxonomy. This shows the classification of some of
the concepts used in this paper into a small conceptual memory taxonomy. The
taxonomy is a tree which is shown in the figure by successively indenting branches,
asin an outline. Note that derivative subclassification causes the subtree under
TAIL to be organized in a similar way to the subtree under COUNT-NOUN.

This sample is of course very small and sparse; the taxonomy we currently use
has nearly three thousand concepts and a correspondingly more complex
organization.

-146-

argue, any phrase of English can be suitably encoded as a single
concept (though of course it may be a very complex one). When
we wish to reason with a concept, however, we will find it con-
venient to introduce an epistemologically distinct meta-level
representation. For example, if the concept C encodes the sen-
tence "John Smith is a good man" and we wish to represent our
belief that C is true, we cannot merely encode with D that "That
John Smith is a good man is true", because now the question of
D's truth is open for discussion.* We retreat to a formal meta-
level to make statements about elements of our universe of dis-
course which are to be taken at face value rather than be subject
to interpretation. With such an ability for meta-level descrip-
tion, we see that if C is marked as TRUE at the meta-level, then
that is a stronger statement than D. From the former, the Inter-
preter may conclude C's truth absolutely, while from the latter,
only conditionally on D's truth.

The act of attachment creates a directed link in LMS between
two nodes. We write [A B] and say that B is attached to A. Un-
like specialization, attachment creates no new concepts. It
merely establishes an (unlabeled) link from A to B. The meaning
of the connection will depend completely on what A and B are and
on whatever is interpreting the connection. We give :a few il-
lustrative examples of attachment here:

- All concepts B whose generalizers are the concept of A
are automatically attached to A and are called its in-
dexed branches because they are classified directly under
A in the specialization taxonomy.

- Some concepts (C A) are attached to the concept A and
are called its indexed aspects. For example, (AGE JOHN)
may be attached to JOHN and encodes JOHN's AGE aspect.

Note that both of the above forms of attachment are easily recog-
nizable because the concept to which attachment is made appears
as the generalizer or spvecializer, respectively, of the attached
concept. They derive from the essential structure of concepts
and serve much the same purpose for the conceptual memory as do
index entries in a book's index. These attachments do not really

*It is not merely the representation of truth that is at issue
here. A similar treatment is necessary for supposition, hypo-
thesis, "possible futures", and in fact all the fundamental
knowledge on the basis of which OWL operates. Of course the
effect of the meta-level statements that we allow could alter-
natively be introduced by suitable conventions for the Inter-
preter. For example, we could adopt the convention that any
statement about which no qualifying information is known is
true. We prefer, however, to make such a convention part of the
Interpreter and not part of the semantics of LMS.

-147-

bear information; they are established when the taxonomy is built
and are not subject to interpretation or change. Thus, the use
of attachment, a meta-level operation, is appropriate.

- Values may be specified by attachment: e.g., [(AGE JOHN)
49].

- Attributes or descriptors may also be attached: e.g.,
[TOHN MIDDLE-AGED], [(AGE JOHN) (EQUAIL (TO (AGE MARY)))].

~ Characterizations may also be specified by attachment:
e.g., [JOHN PROFESSQR]

This second set exemplifies storage of information (facts in the
object domain), yet we are representing such information at the
meta level. This is because we intend that reasoning be based
on these facts without further verification. We are willing to
guarantee their truth in this domain of application.

HOW ENGLISH PHRASES ARE REPRESENTED AS CONCEPTS

In this section, we shall first argue informally that the
combination of concepts through specialization provides a mechan-
ism capable of representing English phrases. We will then extend
our notion of specialization to deal more rigorously with some
problems we encounter.

What Does an English Expression Say?

We view English phrases as expressions built up by combina-
tion. To explore what forms of combination are necessary, we
examine some modes of communication in English and see how they
are achieved by combining words and phrases.

Designating

We use a conventional name for a concept the listener may be
assumed to know. In its simplest form, the conventional name is
a word of English, e.g., "apple", which we represent in OWL by
APPLE = (FRUIT "APPLE").* But we need many more conventional
names than we have words in our language. So, we permit the for-
mation of conventional names as combinations (pairs). One member
of the pair indicates the class of the concept, the other provides
a distinguishing, or specializing, element to make the pair unique.
For example, "apple tree" is a conventional name formed by special-
ization. In LMS, we represent it as (TREE APPLE). Note that no
strong distinction is made between conventional names that are
compound words and those that are phrases in English. Compare
"fire hydrant", (HYDRANT FIRE), and "fireman" (MAN FIRE).

*"APPLE" is the LMS notation for the symbol "apple". The concept
(FRUIT "APPLE") is LMS's notation for the English concept apple.

-148-

Identifying

We identify an unnamed concept by combining its class and

some (restricting) modifiers. For example, "tall tree", (TREE
TALL), and "the apple tree in my yard"™, (((TREE APPLE) THE)
(IN (YARD MY))).* The difference between identifying and desig-

nating is often slight. In designating, we assume that the hearer
already knows the concept, whereas in identifying, we ask him to
come to know it from what he knows of its components and whatever
else we may later tell him. Thus, a "shoe tree", which we might
initially accept as an identifying compound without a conventional
designation, may come to designate a concept if shoe trees become
a popular consumer item. Just as compound words develop from
conventional names that are phrases, the latter develop from
identifying phrases.

Specifying a Grammatical or Interpretive Aspect

Chiefly by word affixes, English marks phrases and gives
clues to their use in forming sentences and to their proper inter-
pretation. For example, for "books" (BOOK -S), the -8 is a gram-
matical marking for plural on the base concept BOOK. In "hitting"
(HIT -ING), and "to jump" (JUMP TO), the ~-ING and TO play a sim-
ilar role. This form of marking is called inflection. In LMS,
inflection is expressed by specializing the concept to be inflected
by the affix (or other marker).

Specifying a Semantic Aspect

We also represent semantic aspects by specialization. For
example, "size of apple" (SIZE APPLE).

Predication

When we want to say something about an object or action in
a factual or hypothetical context, we use predication. Jespersen
[4] calls this nexus:

If we compare the red door and the barking dog, on
the one hand (junction) and on the other the door s
red and the dog barks or the dog is barking (nexus), we
find that the former kind is more rigid or stiff, and
the latter more pliable; There is, as it were, more life

*Some linguists might feel that this phrase should have a differ-
ent structure, such as (((TREE APPLE) (IN (YARD MY))) THE). We
do not claim to have the final answer to all such structural
questions, but our formalism allows us to capitalize on whatever
insights linguists may have. Where structures are in dispute,
we have chosen what seems best to us.

-149-

in it. A junction is like a picture, a nexus is like

a drama or process. In a nexus something new is added
to the conception contained in the primary: the dif-

ference between that and a junction is seen clearly by
comparing, e.g.

The blue dress is the oldest.
The oldest dress is blue.

A dancing woman charms.

A charming woman dances.

In our terms, a junction identifies or designates. A nexus, or
predication, makes a statement and depends on interpretation for
its meaning,

In LMS, we introduce a new notation to express predication:
subject/predicate. For example, Jespersen's sentence "the oldest
dress is blue" becomes ((DRESS OLDEST) THE)/BLUE. For uniformity
of representation and implementational convenience, however, we
will implement predication in LMS using specialization by adopt-
ing the following convention: The predication A/B will be im-
plemented as ((B NEXUS.) A).

Itemization

To specify a group of things related in some simple way, we
itemize them. Particular types of itemization are: sequences,
conjunctions, disjunctions, sums, products, contrasting pairs,
etc. For example "red, white, and blue", "3+5+9", and "input/
output" are all itemizations. LIMS introduces an external notation
for such itemizations but implements them by a conventional use
of specialization and attachment., The details are unimportant
and will not be pursued here. We should add, however, that we
feel the notion of sequence to be fundamental.

Naming

This important mechanism of English will play a major role

in our representation formalism. Language often uses context to
say concisely what might otherwise require a verbose specification.
In particular, we often use part of a compound to name the whole:
GENERAL for (OFFICER GENERAL), CAPITAL for (LETTER CAPITAL), and
EMPTY for (CONTAINER EMPTY). 1In each of these cases, the special-
izer in context names the whole concept. We shall encounter more
general uses of naming below.

Kinds of Specialization

Our treatment of specialization as outlined above is inade-
quate for some subtler issues of representation. Although we

-150—-

have identified several uses of compound formation in English
communication, we have represented them all by the same special~
ization operation. We form, in a completely similar manner, com-
pound phrases like "the dog" (DOG THE), "sheep dog" (DOG SHEEP),
"small dog" (DOG SMALL), and "dog in the yard" (DOG (IN (YARD
THE))). For these examples, no problems arise because we can
recapture from the specializer itself the kind of compound we

have formed. But that will not generally be the case, as we shall
see below. In this section, we introduce seven distinct kinds of
specialization to enrich our representation scheme.

The English phrase "fat man" is ambiguous. 1In its common
meaning, it stands for a man who is overweight to some degree.
The same phrase, however, also describes a professional circus
performer of great girth, with whom we associate characteristic
forms of dress, behavior, etc. In terms of the modes of communi-
cation listed above, we are either designating the circus per-
former by his conventional name or identifying the man who is
overweight by his genus and a distinguishing characteristic.*

OWL is unique in that we make a procedural distinction between
these two senses of "fat man". 1In the first case, "fat" is com-
bined with "man" to identify a pattern in memory, and then that
pattern is used to find the referent. In the second case, "man"
alone is used to find a pattern in memory, and then items which
match this pattern are further checked to see if they pass the
pattern designated by "fat". We could imagine a skinny fat man
only in the first sense, as referring to the circus performer.
But our representational scheme, as presented so far, offers only
(MAN FAT) for "fat man", and fails to distinguish the two senses
we have discussed.

To preserve the desired distinction between these readings
of "fat man", we will mark every specialization with its meta
type, which indicates the relation between the concept and its
genus.** We will represent our overweight man by a restrictive
specialization, (MAN*R FAT). A restriction (A*R B) may always be
paraphrased as "an A which is B", e.g. "a man who is fat", and a
restriction always represents a concept which is a kind of its
genus with the additional attribute which is its specializer.
Note that a tall fat man ((MAN*R FAT)*R TALL) is not the same as
a fat tall man ((MAN*R TALL)*R FAT), either in real life or in
conceptual memory. In a stereotype (A*T B) the specializer has

*In spoken language, the compound representing the conventional
name is spoken almost as if it were the compound word "fatman".
This additional clue is not available to us via written lan-
guage.

**We are introducing a minor inconsistency here, because we change
the meaning of "genus" somewhat. By the rules of LMS, the genus
of the concept (A*R B) is A*R, yet we will refer here to A, the
concept's linguistic genus, as its genus.

-151-

some close relation to the genus but is not necessarily a property
of it. Consider not just our circus performer, (MAN*T FAT), but
also (HYDRANT*T FIRE), where the relation between "fire" and
"hydrant" is a complex one; "a hydrant which is a source of water
with which one can put out a fire".

The seven OWL meta-types and their notational suffixes are;

¥R restriction *A aspect
*T stereotype *X inflection
*S species *p partitive

*I instance

(A*S B) represents a subspecies of A, where B is often just
a symbol. This represents a Linnaean classification system in
which we assume that different subspecies of A form mutually ex-—
clusive categories. This is a powerful tool for data base search.
(A*I B) represents an instance of A, 1Instances, as species, are
mutually exclusive.* We thus provide a distinction between classes
and individuals by distinguishing instances from species.

An aspect specialization (C*A B) is a kind of its genus C,
that is closely associated with its specializer B. For example,
"height of John" (HEIGHT*A JOHN) and "John's leg" (LEG*A JOHN).
Aspects also play the traditional role of programming language
variables. For example, if we have a recipe for pancakes that
calls for one egg, that egg will be represented by (EGG*A (RECIPE*
T PANCAKE)).

An inflection (A*X B) is used to specify a grammatical or
interpretive aspect. It has the unusual behavior that it inherits
properties not only from its genus, as all other specialization
types do, but also from its specializer. In fact, properties
inherited from the specializer override any inherited from the
genus. For example, "books" (BOOK*X -S), is plural even though
BOOK is singular, because -5 carried the plural property.

The partitive (A*P B) is like a semantic version of inflec-
tion. The partitive inherits properties from both its genus and
specializer, where context determines the appropriate interpre-
tation, Thus, one may first open and then eat a can of beans,
first opening the can and then eating the beans.

The above is a short sketch of our approach to representa-
tion. A much more complete treatment will be found in [7].

*Some systems further divide instances into manifestations:
e.g. "the young Churchill". We would handle this as
(CHURCHILL*R YOUNG), where CHURCHILL = (MAN*I "CHURCHILL").

-152-

Parsing

To translate from strings of English words to their repre-
sentation, we use an augmented transition network parser based
on [10]. The OWL parser uses no registers but maintains a con-
stituent stack of concepts with each phrase for which a transi-
tion network (TN) is being followed. On every arc is an OWL con-
cept which must be matched for that transition to apply and a
set of combining functions which manipulate the matching concept
and constituent stack.

It is the task of the combining functions to compose OWL
concepts representing parts of a phrase into the concept repre-
senting the whole phrase. The role of the TN is to invoke the
combining functions in the appropriate sequence. The parser op-
erates nondeterministically (via backtracking). Failure leading
to backup may occur either because the input string fails to meet
word-order constraints (i.e. no match can be found for any arc
from a nonterminal node of a TN) or because a combining function
rejects a proposed phrase. The conceptual memory contains (ex-
pressed via attachment) strictly enforced constraints on case
slots of all grammatical concepts. Using these constraints, the
combining functions control all compositions such as adjectival
and adverbial modification and case assignment for verb phrases.
The word—-order constraints of the TNs plus the concept-formation
constraints in the conceptual memory (as they are used by the
combining functions) thus express our grammar.

Two mechanisms of special interest should be mentioned: the
use of naming to postpone the introduction of ambiguity, and bid-
ding. Because many English words and phrases have alternate in-
terpretations in LMS (e.g. our "fat man"), if we were to split
our computation nondeterministically every time alternative in-
terpretations of a phrase were available, we would spend a lot of
processing effort carrying all those interpretations along until
all but one could be eliminated. Further, if more than one in-
terpretation succeeded and the sentence parsed ambiguously, we
would have a difficult task localizing the cause of the ambiguity.
To avoid these problems, we take a "wait and see" approach
[cf. 12,6] and try not to choose the appropriate interpretation
until some further constraint forces that choice. Postponing
the choice is accomplished by use of the naming mechanism intro-
duced above. In our "fat man" example, we say that conventionally
we will form the restriction (MAN*R FAT) as the interpretation
of the phrase and we will have in the knowledge base an indica-
tion that (MAN*R FAT) names (MAN*T FAT). In this case, the dis-
tinction may never have to be drawn during parsing, since no
grammatical decisions will depend on it, and it will be some
later step of reasoning in the system that may have to choose the
"circus performer" interpretation.

In a typical situation where grammatical distinctions arise
early in parsing, we take a slightly different approach from the
previous example. The word "drinks" is either the plural of the

-153-

noun "drink", as in "We had a few drinks", or the third person
singular of the verb "drink", as in "Joe drinks beer at dinner~
time". Here, rather than choosing one of these as a primary in-
terpretation, we create the neutral (DRINK*X -S) and say that it
names both (DRINK*X PLURAL-NOUN) and (DRINK*X THIRD-PERSON-—-
SINGULAR-VERB). To make this scheme work, every combining func-
tion must succeed not only when the concepts given to it may be
directly combined but also when any concepts named by the given
ones may be combined. Matching of concepts on TN arcs is simi-
larly augmented. Further, rules like the above for "drink" gen-
eralize, and OWL encodes those generalizations rather than spe-
cific naming rules for each concept. (These naming generaliza-
tions are called productive naming rules. They are applied by
the normal inheritance mechanism of LMS, so of course they may be
overridden by more specific information in any particular case.)

Bidding is another mechanism for deferring a choice among
alternative and avoiding undue nondeterminism. Its application
is best seen when considering the attachment of prepositional
phrases. For example, in "I rode along the highway in my limou-
sine", we may eliminate "the highway in my limousine" as implaus-
ible and attach the prepositional phrase to the predicate (or
predication). By contrast, in "I liked the phone in my limousine",
the prepositional phrase clearly belongs with "phone". We cannot
always make such a definitive judgment: "I saw the man beside
our house" places either me or the man beside the house. From
further context, the ambiguity may be resolved: "As I approached,
I saw the man beside our house". We treat this problem by sus-
pending a path in parsing at a point where it is about to take
an arc transition for a prepositional phrase until all possible
paths leading to taking such a transition for that same phrase
are identified. Then, a conflict-resolving routine is called to
permit any number of the possible interpretations to proceed.
That routine will, in general, invoke the Interpreter to try to
decide which interpretation(s) are best. Its success will depend
on the sophistication of world knowledge in the conceptual memory
and on the existence of appropriate strategies available to the
Interpreter to apply that knowledge. A more specific mechanism
which similarly addresses the problem of "selective modifier
placement" is presented in [11]. We have not yet made any signi-
ficant use of this bidding strategy.

REASONING

We have implemented an initial version of an Interpreter for
OWL, which is the basis of the system's ability to reason. It
is a large program with many interesting capabilities, of which
we will here describe only the central ones. Sunguroff [9] de-
scribes the implementation details of the current version, Brown
[2] is concerned with the use of the Interpreter for dialogue and
the handling of failure, Long [5] gives another view of the Inter-
preter's use for automatic programming, and Swartout [8] discusses
the Interpreter's record-keeping and updating capabilities and
their relation to explaining program behavior.

-154-

So far, we haye interpreted OWL concepts as static entities,
mere translations of English phrases, The system's action when
given the sentence "Prescribe an appropriate dosage of digitalis
for Mr. Jones" cannot be merely to translate that sentence into
its internal representation and then stop. But how is it to know
what the procedural meaning of some sentence is?

If an OWL concept has a METHOD aspect, then it is called a
PLAN and is something the Interpreter can carry out. When the
Interpreter is called (its argument is the call), it performs
the following steps:

- It tries to match the call to a known plan in the know-
ledge base. The search for a matching plan proceeds
"upward" from the call, so that the most specific plan
that matches will be selected.*

— It checks that any required properties on the cases
(variables) of the plan occur also on the concepts which
will be matched to them.

- It creates a new event, to record the initiation of exe-
cution of the selected plan, and binds all the matched
variables.

- If the plan contains a PREREQUISITE aspect, it checks if
it is already TRUE and if not, then it tries to make it
true. This subgoal step of course once again uses the
Interpreter.

- It carries out the steps of the METHOD, either in parallel
or in sequence, whichever is specified.

We attempt always to use the Interpreter to solve subproblems
of an initial problem so that the general matching and reasoning
resources we build up will be available at all levels. For exam-
ple, if X is a prerequisite which is not yet satisfied, we merely
call the Interpreter with the call (GET*T X). Classical goal-~-
directed behavior can be achieved by use of the PRINCIPAL-RESULT
case on a plan, which identifies the teleological goal of the plan.
Then, if a GET is unable to find a plan by its upward search of

*This is a very important idea. With it, we can embed completely
specific plans to solve any problems we know will arise often
and will be critical to the system's performance. We also use
it to express plans when their choice is dictated not by a rea-
soned choice but by convention in the application area. If a
specific plan is unavailable, slightly more general plans will
be attempted, and only if all such plans are found inapplicable
will the system resort to some general deductive scheme. We have
noted that only when a great majority of specific plans for a
domain is available will the system‘'s performance be at an "ex-
pert" level. This agrees with our observations that human ex-
perts seem to have large portions of their ordinary professional
behavior "precompiled" into fixed routines.

-155-

the concept tree, it may search for a matching principal result
and select the plan that promises that result. One other im-
portant aspect of the Interpreter is that after every step of
interpretation, it dispatches to its next step through the main
top-level loop. There, failure-handling and advice-giving pro-
cedures may always be invoked to redirect the course of computa-
tion by "backing off" from unproductive lines (if they can be
recognized).

We are continuing to refine our understanding of the repre-
sentation of English phrases in the formal notation of OWL and
the use of a complex Interpreter that works within that formalism
to perform all reasoning tasks that arise in language processing
and various application areas.

REFERENCES

[1] Bosyj, M., 4 Program for the Design of Procurement Systems,
TR-160, MIT Laboratory for Computer Science, Cambridge,
Mass., 1976.

[2] Brown, G.P., A System to Process Dialogue: A Progress
Report, TM-79, MIT Laboratory for Computer Science,
Cambridge, Mass., 1977.

[3] Hawkinson, L.B., The Representation of Concepts in OWL,
presented at the 4th IJCAI, Tbilisi, August 1974.

[4] Jespersen, O., Essentials of English Grammar, University
of Alabama Press, University, Alabama, 1964.

[5] Long, W.J., A Program Writer, Ph, D. Dissertation, MIT,
Cambridge, Mass. (in preparation).

[6] Marcus, M., Diagnosis as a Notion of Grammar, in Shank
and Nash-Webber, eds., Preprints from the Workshop
in Theoretical Issues in Natural Language Understanding,
1975.

[7] Martin, W.A., A Theory of English Grammar (in preparation).

[8] Swartout, W.R., 4 Digitalis Therapy Advisor with Explanations,
TR-176, MIT Laboratory for Computer Science, Cambridge,
Mass., 1977.

[9] Sunguroff, A., OWL Interpreter Reference Manual, MIT Lab-
oratory for Computer Science, Automatic Programming
Group, Cambridge, Mass., 1976 (unpublished internal
documentation).

[10] Woods, W.A., Transition Network Grammars for Natural Language
Analysis, Comm. ACM, 13, 10 (1970) .

-156-

[11] Woods, W.A., An Experimental Parsing System for Transition
Network Grammars, in R. Rustin, ed., Natural Language
Processing, Algorithmics Press, New York, 1973.

[12] Waltz, D.L., Generating Semantic Descriptions from Drawings
of Scenes with Shadows, TR-271, MIT Artificial Intel-
ligence Laboratory, Cambridge, Mass., 1972.

=157~

Progress in the Development of a Multipurpose
German Language Question Answering System

E. Lehmann

INTRODUCTION

In recent years major artificial intelligence (Al) research
efforts in natural language understanding (NLU) were oriented
toward a more sophisticated and generalized knowledge represen-
tation [2,7,10,13,15,16,17] and the important role higher level
knowledge (frames, schemes, scripts) plays in language processing
({1] as well as Minsky, Abelson, Schank, Rieger, Charniak).
Dealing with the intricacies of understanding connected speech
[9,18] strengthened the need to organize the interaction and co-
operation between many different processes and knowledge sources
in an efficient and transparent way.

One of the lessons learned from this effort was that immense
masses of knowledge of all kinds are required in a system with
generalized capabilities for understanding unrestricted NL. It
would be a formidable task to prepare a complete, working system
with all the required knowledge and to put it into the computer
in the form of program statements, logical axioms, special gram-
mar rules, and linguistic characterizations of lexical entries
(as was done in some small-scale AI experiments).

Limitations with regard to speed and working storage and the
lack of an adequately developed linguistic theory and of a for-
malized corpus of knowledge are the main obstacles for building
a system with general NLU capability today. Therefore, the only
way out for building working NLU systems for special applications
now seems to be to impose strong restrictions on the universe of
discourse [18,19], the complexity of relevant knowledge, the
vocabulary, and the admissible verbal constructions. If we regard
the complexity of knowledge and of language structure, the power
of inferential capabilities, the depth of conceptual representa-
tion, the extent of the dictionary and of the general knowledge
available, the changeability of application areas, and the failure-
tolerance of the system as independent dimensions of design, then
more freedom in one or two of these dimensions has to be paid for
by more restrictions in the remaining ones. Consequently, the
distribution of freedom or restrictions over these dimensions is
of prime importance for designing and judging NLU systems.

The design of most recent question-answering systems (QASs)
or NL data base interfaces was in a rigid way oriented toward
only one singular application area [19]. The universe of dis-
course of such systems is often so radically restricted (with

-158-

regard to its structure and extent) that the desired advantages

of intelligent NL interaction with stored, comprehensive know-
ledge bases more or less vanish, Also more theoretically oriented
approaches for exploring fairly sophisticated mechanisms of

NLU (including frames and more human-like inferential processes)
mostly led~-despite their intended generality--to rather rigid
solutions, avoiding issues of learning and self-improvement.

The problem of how to specify large amounts of complicatedly
structured higher level knowledge by interaction with working

NLU systems remained unsolved. Such inflexible schemes are not
very convincing as models of human language processing, nor do
they seem appropriate as a basis for developing practical systems,
which should be able to adapt easily erough to the changing needs
of really practical applications.

THE QUESTION-ANSWERING SYSTEM FAS2.5--GENERAL OVERVIEW

We give here a short overview of an experimental QAS FAS2.5,
[3,5,6] developed recently for processing input sentences and
answering questions in written German language. FAS2.5 is a
multipurpose system, i.e. it was conceived as a well balanced
general framework for restricted NL communication, adaptable to
many different microworlds and fields of application.

To get a working system for special users or applications,
additional field-specific knowledge is needed. The availability
of such knowledge is very important. It must be filled into
the general system, preferably in the form of NL statements. In
this way, by augmenting an already existing, sufficiently general
framework, it seems easier to create different application systems.
But by no means do we claim that special problems may be solved
solely by using general methods.

For a fixed purpose, the resulting system often does not need
all the devices provided by the general system; therefore all
irrelevant parts (procedures and data) should be omitted.

In the design of FAS2.5 we tried to avoid the danger of per-
fectionism, On the other hand we stressed issues of flexibility,
generality, failure—tolerance, adaptability to specific user-
requirements, and self-improvement by learning [4]. We adopted
a sufficiently powerful scheme of knowledge representation similar
to [2,11,13,14) and designed the input language so that the content
of all that can be said in NL may be expressed in it--sometimes
with minor deviations from the natural form of utterances.

Our system tries to understand (at least literally) almost
all verbal sentences given to it. The input language covers a
wide range from completely unchanged German sentences to more
artificial looking, explicitly structured sentences of our ver-
sion of "stylized" German (similar in spirit to [12]).

~-159~

FAS2.5 has a very flexible strategy for analysis and inter-
pretation of sentences, Successively more specialized and sophis~
ticated semantic knowledge may be superimposed over some basic
syntax-oriented default methods and always has priority, if it
is available.

The system tries to learn as much as possible from the input
texts given to it. Lexical, syntactic, semantic, factual, and
general knowledge learned out of the given verbal input may be
helpful for accomplishing related tasks in the future, e.g. under-
standing related sentences or answering guestions.

The basic components and the information flow in the system
are shown in Figure 1. The system can be roughly divided into
three parts: input processing (language analysis), output proces-
sing (language generation), and internal processing (information
retrieval including processes of inference).

The input language combines a nearly unchanged NL with the
possibility to use stronger stylized language constructs where-
ever advantageous according to user needs and systems capabili-
ties. (For instance, some artificial morphemes may be inserted
into a German text for explicitly structuring sentences or mark-
ing syntactic categories of words for avoiding ambiguities.) The
design philosophy and some details of the input language and the
input processor of an earlier version of the system were described
in [3] and [7]. 1In the last year the quality of the input pro-
cessor was improved so much that now a great many unprepared
German sentences may be accepted as input from the system [5].

Input texts in an approximated German language are sequences
of declarative sentences, questions, and commands. The sentences
of a text normally have a common universe of discourse and are
interconnected by reference mechanisms. They are given to the
system as strings of symbols and are transformed by an input scan-
ner to simple lists containing as atomar elements the words and
punctuation marks of each sentence in the original order. Lin-
guistic processing of input texts is performed in several, partly
overlapping steps, leading to different intermediate levels of
representation. The linguistic processor includes ATN grammars
(adopting the formalism of [20]), dictionaries, and procedures
for morphological analysis (for German and English), a special
scanner for NL text input, and different procedures for resolving
references.

All factual and most of the conceptual (semantic) knowledge
of the system is represented in a semantic network (SN). Net-
work structures represent logically interpretable propositions
and provide a very fast access between semantically related parts
of the stored knowledge. New facts asserted as input sentences
will be assimilated into the SN extending it in an incremental
way. Conclusions drawn from asserted facts by spontaneous infer-
ences also may be assimilated and explicitly stored in the SN.

-160-

INPUT l OUTPUT
TEXTS, QUESTIONS ANSWERS
MORPHOLOGICAL]
> IANALYSIS ! —
VERBAL
SYNTACTIC
ANALYSIS l¢— — | || pEXTERE | |
ATN- RATION GRAMMAR
GRAMMAR FOR
(FOR ANALYSIS) 1] DICTIONARY I SYNTHESIS OF
, VERBAL
= semANTIC [] ——¥ styLizep [¢-{OUTPUT
ANALYSIS TEXT
OUTPUT
77 mechanisms |
< OF ZAN
ASSERTIONS
E:_ DEEPSTRUCTURE _ | REFERENCE | DEEP STRUCTURE
| _
_)
ASSIMI-
LATION
QUESTIONS INFERENTIAL
8| PROCESSES
FACTS AXIOMS]
~b
ACCEPTANCE, —T
GENERATION |, Qgswsn
OF CON- 1= ‘ RNELS
SEQUENCES HANDLING
i QUESTIONS
|
{ INTERNAL
L4 PROCESSING
STORED INFERENTIAL
KNOWLEDGE BASE e ———— — —— | SEARCH WITH
(SEMANTIC NETWORK) PATTERN MATCH

Figure 1. Knowledge sources and flow of information in the multipurpose German

Language Question Answering System FAS2.5.

-161-

Questions are transformed to proposition schemes contain-
ing different kinds of variables. Answer finding as well as
resolying of references is performed by restricted goal-directed
(PLANNER-11ike] inference techniques supported by powerful pattern-
matching procedures.

So far, the system has only limited capabilities for genera-
tion of stylized NL text output. It produces intelligible, but
often not sufficiently (syntactically) polished verbal descrip-
tions of answers found by the system.

Some .classes of general propositions ("axioms" containing
different quantified variables) may be recognized and correctly
interpreted by the system. As logical implications or transfor-
mation rules they are represented in a special way and are very
important for the inferential capability of the system.

NEWER IMPROVEMENTS IN FAS2.5

At the end of 1975 our QAS consisted essentially of the in-
put processor described in [3] (which is also the core of the
system FAS~2/FAS'75 [21]) and a component for deductive answer
finding. The following improvements or extensions have been
made since then:

- A large system of general concepts, arranged in a hierar-
chical way, was added to the system.

- Facilities for processing not only particular factual
knowledge, but also generalized propositions expressed
by verbal sentences were developed (definitions, meaning
postulates, rule-like assertions describing temporal,
causal, or motivational interdependencies between classes
of situations or events).

- Techniques for goal-oriented inference (adopting the
problem~reduction approach within a three-valued logic)
have been improved and extended pattern-matching schemes,
adapted to specific requirements of NLU and to the struc-
ture of our SN, provided.

- Refined methods for handling syntactic and semantic refer-
ence (pronouns, pro-adverbials, noun phrases attributed

by relative clauses or other noun and prepositional phrases,

subordinated clauses) have been added.

- Extensive morphological analysis for lexical units not
contained in the stored dictionary now may be done by
efficient procedures, tailor-made to the needs of a NLU-
system,.

- Mechanisms for generation of (more stylized) verbal out-
put for describing internal objects that have no external
name are now available.

-162-

- A complete linguistic processor (dictionary, ATN grammar,
morphological analysis) exists now for restricted English
as input language. It may be used instead of the orig-
inally developed component for handling German sentences.

LEXTCAL ANALYSIS

Dictionary look~up, morphological analysis, and context-
dependent guessing of lexical categories for unknown words of
the input sentence jointly extract the basic forms of concept
words. These are the smallest building blocks for constructing
conceptual representations. We use a core dictionary of the
most important basic words (containing about 1500 lexical entries)
which can be arbitrarily extended, depending on the application
field.

Because of the small size of our dictionary, procedures for
morphological analysis are very important to find out the appro-
priate syntactic categories and basic forms of the words (in
input texts) that are not included in the dictionary. The core
dictionary at present contains mainly the structural or functional
words (articles, pronouns, prepositions, conjunctions, some adver-
bials), but also the most important content words (including some
important irregularly inflected word forms).

Uncommon words, if not included in the dictionary, may be
marked by the user as belonging to a distinct word category.
This is done immediately in the input text by putting a special
symbol in front of the word in question. If a word is neither
marked, nor identified within the dictionary, the system tries
to generate a plausible hypothesis concerning the correct lexical
handling of it by investigating characteristic features of the
actual syntactic context and of the internal morphological struc-
ture (suffixes and inflectional endings) of the word.

Lexical hypotheses generated in this way can be inscribed
into the dictionary and can prove helpful for analysis of other
sentences later on. This type of lexical learning greatly im-
proves the flexibility and self-adaptability of our system.

SYNTACTIC ANALYSIS

Syntactic analysis is controlled by a specially written ATN
grammar for German sentences and performed with the aid of a
general parser for ATN grammars. Traversing the sentence from
left to right, all relevant information carried by a linguistic
unit (e.g. a noun phrase or sentence) is gathered and stored in
an association list (called "register-list") whose elements are
attribute~value pairs of ATN registers.

Figure 2 shows as a directed graph the syntactic skeleton
of a simplified version of our ATN grammar for German sentences;
Table 1 explains the word classes appearing in Figure 2.

-163-

*$90UOUIS UBULIDL) 10] IBwmeid-N Ly payrdung -z amdig

4NON_HSng

A

(84N1) 4Od

' 3

(ass) dod

('*() WIN

<€

(az1vs) d0d

d3avHd 1Y)

(VS) JINILNIS NIVIN (v

-164-

(penunuos) °g indLy

.Ez;ozee HNI3SSYN e

1vJ

WON 1SL 9

(LNVNO} ALILNVND (4

(o)

aowavuo 1¥)

(dfav) ISVHHd TVAILLI3rAY (3

aowavyo 192
(dAQV) 3SVHHJ TvIB¥IAAY (Q

{8@dN) d0d e

(dN} 3SVHHd NNON (D

-165-

By designing into the grammar look-ahead mechanisms for
avoiding as far as possible superfluous syntactic ambiguities,
simplifying the parser, and augmenting the input language by
additional (facultative) means for clearer (more explicit)
structuring of sentences, the whole process of syntactic analy-~
sis has been significantly streamlined.

Table 1. Word categories appearing in the ATN grammar (see
Figure 2).

DET (determiner, article, quantifier), e.g. DER (the), JEDER {(each)
PRAEP (preposition), e.g. IN (in}, MIT (with), FUER (for])

SUBKONJ (subord. conjunction), e.g. WEIL (because), ALS (when)

NUM (number), e.g. 1, 23, 850, ZWEI (two), ZEHN (ten)

MASSEINH (unit of measurement), e.g. METER, JAHR (year)

MENGEINH (unit for physical quantities), e.g. TONNE (ton}), FLASCHE (bottle)
GRADMOD (gradual modifier), e.g. SEHR (very), KAUM (scarcely)
QUANTMOD (modifier of abstract quantities), e.g, GENAU (exactly)
SUBSTANZMOD (modifier of abstract quantities), e.g. VIEL (much)
PERSPRON (personal pronoun), e.g. ER (he), SIE (she, they)

DEMPRON (demonstrative pronoun), e.g. DIES (this)

RELPRON (relative pronoun), e.g. DAS (that), DEM (whom)

INDIV (proper name), e.g. VICTOR, TURIN, LONDON

VAR (variable), e.g. X, Y, 2, MAN (everyman), NIEMAND (nobody)

N (noun), e.g. MENSCH (man), STADT (city), KRIEG (war)

VF (finite verb), e.g. IST (is), HATTE (had], GING (went)

VI (infinitive form of the verb), e.g. SEIN (be), GEHEN (go)

ADV (adverb), e.g. IMMER (always), SCHNELL (fast), DORT (there)
ADJ (adjective), e.g. GRUENE (green), ALTES (old)

SEMANTIC INTERPRETATION

From the--register list produced by syntactic analysis of a
linguistic unit, a treelike structure of embedded terms is built
up after some additional semantic tests are passed. We call it
"deep-structure” because it may be considered the result of ap-
plying normalizing linguistic transformations to plain syntactic
structures. This structure may also be considered as context-
independent linguistic meaning structure of an isolated sentence.
Such a structure may be considered as a blueprint for the ulti-
mate conceptual structure that must finally either be found in
the actual knowledge base by resolving all references, or other-
wise must be newly produced.

-166-

For instance, for different kinds of clauses and sentences
(assertions, questjions, and commands) unified (canonical)} deep
structures are produced by transformational procedures. The
most important tenses, passive voice, articles, infinitive con-
structions, negation, and quantification are handled here in an
appropriate way.

Our basic mechanisms for interpretation of sentences are
rough syntax—oriented default methods. They allow correct inter-
pretation of a lot of not too complicated German sentences. Suc-
cessively more specialized and differentiating methods are super-
imposed, requiring more specific linguistic or factual knowledge.
More specialized methods, if applicable, always have priority
over less specialized ones.

ASSIMILATION AND REFERENCE

The further handling of deep structures in our system is
different for simple facts (particular propositions), general
sentences (general, nonlogical axioms), questions, and commands.

Deep structures describing objects, states, and events are
mapped by assimilation and resolving of references (formally
handled as term evaluation, but highly dependent on the actual
context and the knowledge already stored) into our internal form
of conceptual knowledge representation: logically interpretable
semantic networks (SN)}. Only asserted propositions will be assimi-
lated as a whole into the SN,

Assimilation may be accomplished in our system in two dif-
ferent moods:

- immediately after a deep structure for any syntactic
unit was produced (before syntactic analysis of the
whole sentence was completed}, and

~ after analysis of the whole sentence was completed.

Many words (e.g. pronouns) and descriptions (e.g. definite
noun phrases) in NL are referring to items or concepts previously
mentioned within the text or already stored in the memory. Mech-
anisms of reference in our input language——although more restric-
ted and more clearly defined than in NL--provide not only useful
means for more economical language use (by the user), but in many
cases have to be considered as essential prerequisites for the
verbal description of complicated ideas (that otherwise could not
be communicated at all). Therefore, at least simple mechanisms
for resolving references and handling context dependency will be
required for advanced NLU systems.

We distinguish two kinds of reference: syntactic and seman-
tic. 1Items introduced or mentioned within a few sentences uttered

-167-

immediately before the most important one may be referred to in
an extremely short and simple manner-—oriented strongly on syn-
tactic criteria~-by use of pronouns and pro~adverbs, Such cri~
teria are the position of the referring word within the actual
sentence, the position of a previously uttered language unit
(taking into account the topic~comment distinction) that is con-
sidered as coreferent with it, and congruence of both constructs
in gender and number.

More semantically oriented mechanisms of reference using
definite noun phrases or some clauses allow reference to arbi-
trary entities mentioned at any time before or already stored
otherwise in the knowledge base of the system. This kind of
reference especially requires the activation of inferential pro-
cesses. For simple cases only very basic relations of conceptual
subsumption have to be considered. More complex noun phrases
with other phrases or relational clauses as attributes have to
be handled by means of the same inferential processes as are ac-~
tivated for answer finding in FAS2.5.

KNOWLEDGE REPRESENTATION

All factual and most conceptual knowledge of our system is
represented in the unified form of a hierarchical SN whose nodes
represent individual entities of different sorts (objects, loca-
tions, states, and situations), concepts (classes, properties,
relations, or functions of objects, events, etc.), numbers, time
moments, quantities, and different quantified variables.

The arcs of the network are labeled only by names of so-
called basic semantic relations and can be followed immediately
(by direct access) in both directions. They represent either
defining or asserted basic relations. Defining outgoing arcs
of a node normally explain what kind of thing or concept the
given node represents. Asserted outgoing arcs of a node es-
tablish specific interrelationships between this node and
others.

All concept nodes in the SN are arranged in a hierarchical
way by connecting them by arcs labeled SUB (subordination or
specialization of concepts). Figure 3 shows a fragment of the
upper parts of this conceptual hierarchy that are important for
arrangement of linguistic and general world knowledge and for
many operations in the system (e.g. simple inference and resolv-
ing of references).

The basic semantic relations can be grouped together depend-
ing on the different sorts of their arguments. Predication (mem-
bership), certainly the most important relation holding between
individual objects or events, and appropriate class concepts are
represented by the relation IS. The negated form is IS, the
not-truth-asserting variants (subjunctive mood)} are SEI and -SEI.

//\\\

m <>

-168-

_~MAN <
LIVING BEING — ANIMAL<
PHYS. OBJECT ON\CPLANT <
PHYS. NONANIMATE OBJECT ——— NATURAL OBJECT <
<
OBJECT MATERIAL ARTIFIC. OBJECT <
CLASS INSTITUTION <
ENVIRONMENT <
\ ABSTR. OBJECT <
IS
suB
BASIC MOD
RELATION AG
INSTR
Loc .
: AGE <
FUNCTION < SEx <
PERSONAL PROPERTY PROFESSION <
PROPERTY PROP. OF THINGS < :

PROPERTY OF EVENTS <

e

BELIEVE<

STATE/ BE ABLE <

RELATIONSRHIP INTEND <
\OWN ORIGINATE <

<
DISAPPEAR ¢
FACT /INCREASE X
CHANGE DEVELOP <
PEFIiCEIVE<\GR0W <
THINK <
EVENT FEELE(
JUDGE<
PRODUCE <
COMMUNICATE PRODUCE &
NUMBER CAUSE r’n:i':\RNnS\l;gRTs
/ TIME MOMENT USE 2 FORCE <
DIMENSION LEARN< <

ABSTRACT
BASIC CONCEPT UNIT OF MEAS.

QUANTITY
TIME PREDICATE<
GRADUAL MODIFIER <
/ ACH (.
VARIABLE ANY (.

SOMEONE
\EVERYTHING

Figure 3. Conceptual hierarchy of stored knowledge (fragment).

e
S
e
S
e
<

-169-

Important relations between concepts are SUB (subordination or
inclusion of concepts, subset relation), EXCL (exclusion), MOD
(unspecific modification), GRAD (gradual modification), and QUANT
(quantitative modification). Abstract quantities are represented
by using MZ (number) and ME (unit of measurement). Relations

for comparison of numbers, quantities, and time moments are GR
(greater than), EQ (equal), and GREQ (greater than or equal).

NUM relates to a set of objects ("compound object") the number

of its parts. Deep case relations between an event and the en-
tities participating in it are: AG (agent), RECIP (receiver),
OBJ (object, experiencer), INSTR (instrument), DIR (direction,
goal), ORIG (origin), ROL (role played by an entity), THEMA (ob-
ject of communication or thought). The relation between an event
and its place is LOC, between the time moment (or interval) MOM
(MOM@ and MOM1 for the start and the end respectively).

Important basic relations between independently defined
events or states are CAUS (causality relation), METH (method),
INT (intention, purpose), and CIRC (circumstance). CONDIT (the
if-then relation) is most important for representing general rule-
like, inference-enabling propositions describing implicative re-
lationships between classes of states or events. All other re-
lations not included in the set of basic semantic relations may
be represented as special concepts by nodes of the SN.

Simple quantified propositions (e.g. "Each dog is an animal.";
"Everyone loves someone.") are representable within the SN for-
malism, as long as several universally quantified variables with
different scopes do not appear and the scopes of all existentially
quantified variables remain within the scopes of the universally
quantified ones. More complicated general propositions (meaning
postulates for words or concepts, and empirical rules) will be
represented as transformational rules or implications (remotely
resembling PLANNER theorems). They are represented as lists con-
taining SN nodes and are also immediately accessible from appro-
priate concept nodes.

AN EXAMPLE

Consider now as an example the following short German input
text that will be accepted by FAS2.5 and mapped into the semantic
network.

VICTOR IST EIN WISSENSCHAFTLER UND LEBT IN MOSKAU. VON
DORT FLIEGT ER MIT EINEM SOWJETISCHEN FLUGZEUG DER FLUG-
GESELLSCHAFT AEROFLOT NACH WIEN, UM EINE KONFERENZ (DIE
VON IIASA VERANSTALTET WIRD) ZU BESUCHEN. DAS FLUGZEUG
IST EINE IL-62. ES HAT 158 SITZPLAETZE UND SEINE REISE-
GESCHWINDIGKEIT BETRAEGT 850 KM/H. WIEN IST HAUPTSTADT
VON OESTERREICH.

(Victor is a scientist and lives in Moscow. From there
he is flying with a Soviet airplane of the airline AERO-
FLOT to Vienna to attend a conference organized by IIASA.

-170-

The airplane is an IL-62. It has 158 seats and its
speed is 850 km/h. Vienna is the capital of Austria.
eee)

This text describes a few simple facts ("The IL-62 has 158 seats.";
"Vienna is the capital of Austria.") which could be contained in

a relational data base. But--as most texts—--it shows also much
more complicated sentences with intentional constructions ("Victor
intends to attend a conference."), time dependency, coordination
and subordination of sentences, and anaphoric reference.

Figure 4 shows the representation of the factual knowledge
contained in this text. It is produced by our system as a re-
sult of analysis and assimilation of the text. Of course, parts
of the stored knowledge may also be given to the system in a
more formal way, either as text in a more restricted and stylized
natural language, e.g.

: VICTOR TUT MIT~INSTR E / SOWJETISCH * FLUGZEUG -
VON : AEROFLOT VON-ORIG : MOSKAU NACH-DIR : WIEN
V FLIEGEN

or as a list of relational triplets or as a specially prepared
positioned data file.

Now let us have a closer look at the different processing
steps of the input sentence

VON DORT FLIEGT ER MIT EINEM SOWJETISCHEN FLUGZEUG
DER FLUGGESELLSCHAFT AEROFLOT NACH WIEN

Lexical analyeis for most words determines by dictionary
look-up their syntactic categories and relevant syntactic fea-
tures. By morphological analysis the infinitive FLIEGEN (fly)
is found as the basic form of the finite verb FLIEGT--which is
not in the dictionary—-—and likewise the adjective SOWJETISCH
(Soviet) as the basic form of the inflected form SOWJETISCHEN.
If the word FLUGGESELLSCHAFT (airline) is not yet known to the
system, then by morphological analysis the suffix —-SCHAFT (typ-
ical for German nouns) will be recognized and so this word will
be classified as a noun.

Syntactie analysis then produces the following list of ATN-
register values:

STYP (sentence type): AUSSAGESATZI (factual assertion)

WW (truth value): T (true)
NEG (negation of sentence): NIL (not available)
PASSIV (possibility of passive voice): NIL (not pos-

sible)

=171~

FLUGZEUG
(AIRPLANE)
O
IL-62 SUB SOWJETISCH SITZPLATZ
FLUGGESELLSCHAFT 3 J O (SOVIET) o (SEAT)
(AIRLINE) Mop
o IS s
Is PART O
Is| G0O000351) NIM o 158
POSS REISEGESCHWINDIGKEIT
] Al O (SPEED)
AEROFLOT PRED 850
INSTR A2 gz_aO
MOSKAU FLIEGEN .
(MOScow) Is O (FLY) ME
O O
N HAUPTSTADT KM/H
%fl'ﬁ) o Loc o MOM O " (CAPITAL)
DIR o |PRED
ISNJ T0000350 O,
A1 OESTERREICH
AG WIEN ° " (AUSTRIA)
Y {VIENNA)
IS ~Victor \inT KONFERENZ
WISSENSCHAFTLER o D Q A
(SCIENTIST) 60000358
SEI [IS (3
BESUCHEN AG
(ATTEND) © oBJ 3 0BJ
O 11ASA

Figure 4. Fragment of factual knowledge in a semantic network.

o VERANSTALTEN
{ORGANIZE)

-172-

GENERAL (sentence interpretable as general proposition):
NIL
TEMP (tense): PRES (present)
VF (finite verb dominating the sentence): FLIEGEN (fly)
NPLIST (list of noun phrases): ((ER))
VONLIST (list of VON-phrases): ((DORT))
PPLIST (list of prepositional phrases):
((MIT (E (CONCEPT (SUB FLUGZEUG) (MOD SOWJETISCH))
(ATTRIB (GENIT (ISTEIN AEROFLOT FLUGGES-—
SELLSCHAFT)))))
(NACH WIEN))
ADVLIST (list of adverbs): NIL

Semantic interpretation and assimilation of substructures
(including resolving of references: ER refers to VICTOR, DORT
to MOSKAU) leads to the following deep-structure tree:

(AUSSAGESATZ
(TEMP PRES)
(AG VICTOR)
(INSTR G0000351)
(ORIG MOSKAU)
(DIR WIEN)) .

By assimilation of this tree a new event node G0000352 with its
defining links to other nodes of the SN is created.

All substructures of our SN have a logical interpretation
important for inference, answer finding, and text generation.
Our sample sentence will be interpreted as a conjunction of some
variable-free basic propositions

IS(G0000352, fly) A AG(G0000352, Victor)A
INSTR({G0000352, G0000351) A ORIG(G0000352, Moscow)A
DIR(G0000352, Vienna) A MOM(G0000352, T0000350)

!

where IS, AG, INSTR, ORIG, DIR, and MOM are two-place predicates,
and their arguments are all constants here. Constants are con-
cepts (e.g. fly) or individual entities that have (as Victor,
Moscow, Vienna) or do not have external names (e.g. G0000351:
Victor's airplane to Vienna).

For internal representation of SN the LISP language (with
its unique atoms, each with its own property list) provides well
suited facilities. We adopted the convention that all network
nodes will be represented by LISP~atoms. Nodes representing un-
named concepts or entities will be given an artificial name (e.g.
G0000352) by the GENSYM function of LISP. All (defining and as-
serted) outgoing (or incoming) arcs of a node are listed in its

-173-

property list by identifying their relational label and their
goal (or source) node. Also the sort of each node (entity, vari-
able, concept, proposition) is indicated in the property list.

QUESTION ANSWERING

Questions should be logically interpreted as proposition
schemas containing variables. They correspond to more or less
general descriptions of classes of propositions supposed to be
contained in the knowledge base. Basic processes of question-
answering are to find such asserted propositions in the stored
data basé that can be substituted under the questions' proposi-
tion schema (pattern) and to retrieve (parts of) them in differ-
ent ways. For attaining a high efficiency of question-answering
it is important to have sophisticated mechanisms for pattern
matching.

In FAS2.5 the information search with pattern matching ori-
ginates from the question pattern and proceeds in a selective
way. Pattern-matching is done rather efficiently paying attention
to the special requirements of NL descriptions and to the chosen
knowledge representation with a hierarchical arrangement of con-
cepts and different kinds of quantified variables within the SN.
The power of our pattern-matcher is significantly increased by
incorporation of specially designed procedures for performing the
most important (apparently ubiquitous) deductive operations (as
following hierarchical chains between concept nodes in both di-
rections, handling symmetry and transitivity of basic relations,
and looking for different possible representations of relevant
facts).

Closed questions simply ask whether any propositions are
known that are instances or counterexamples of the implied prop-
osition scheme. In principle, they have to be answered by one
of the three "formal" answers: "yes", "no", and "unknown" (which
surely does not meet the user requirements for a more comfortable
dialogue mode).

Open questions ("wh-questions”) introduced by interrogatives
imply proposition schemes containing (besides other variables)
the so—-called question-variable (symbolized "?") and are much
more diversified. They are asking not only for the existence of
proposition instances matching the pattern of the question, but--
if such instances are found--cause the retrieval of some or all
entities that are involved in or related to these proposition
instances in a distinct way. The formal answer to an open ques-
tion is a (possibly empty) set of such items that matched the
question variable within successful matches between stored propo-
sitions and the question pattern. The position of the question
variable in the question pattern indicates what special kinds of
information are wanted by the question.

-174-

The following questions can be posed to FAS2.5 and answered
very fast, simply by extended pattern matching after the input
text on Victor's flight to Vienna (see above) was "understood”

by the system.

Q.

WO LEBT VICTOR ?
(Where is Victor living ?)

IN MOSKAU
(in Moscow)

WOHIN FLIEGT VICTOR ?
(Where is Victor flying ?]

NACH WIEN
(to Vienna)

WOZU KOMMT ER DORTHIN ?
(For what does he come there ?)

UM E KONFERENZ ZU BESUCHEN
(to attend a conference)

BESUCHT VICTOR DIE KONFERENZ - VON IIASA ?
(Does he attend the conference of IIASA ?)

UNBEKANNT
(unknown)

WER FLIEGT ZUM BESUCHEN - EINER KONFERENZ NACH
WIEN ?

(Who is flying to Vienna for a visit of a confer-

ence ?)

VICTOR

MIT WELCHEM FLUGZEUG FLIEGT ER ?
(With what airplane does he fly ?)

MIT/ E IL-62
(with a 1IL-62)

WELCHE REISEGESCHWINDIGKEIT HAT SIE ?
(What speed does it have ?)

850 KM/H

BESUCHT VICTOR DIE KONFERENZ ?
(Is Victor attending the conference ?)

UNBEKANNT
(unknown)

-175-

Q. WIEVIELE SITZPLAETZE HAT DAS FLUGZEUG , MIT DEM
VICTOR NACH DER HAUPTSTADT VON OESTERREICH FLIEGT ?
(How many seats has the airplane that Victor is
flying to the capital of Austria in ?)

A. 158

For the sake of clarity we restricted the factual knowledge in

the SN available for this demonstration to only a few proposi-
tions. So it was not possible to demonstrate answering of ques-
tions that require a list of all stored entities of a certain

kind to be found (e.g. "Which cities outside of USSR are connected
by direct flights with Moscow?"). But notice the difficulties
with such questions that may result from the fact that a suffi-
ciently complicated knowledge base containing very heterogenous
knowledge always has to be considered to be incomplete!

Although the questions shown here sometimes differed remark-
ably from the input sentences containing the knowledge necessary
for answer—finding, so far we have only demonstrated the capa-
bilities of FAS2.5 that are based on pattern matching together
with linguistic normalization and resolving of references.

A much broader range of guestions will become manageable
by activation of goal directed deductive mechanisms. They are
able to interact with arbitrary field-specific general knowledge
that may be encoded in FAS2.5 in the form of guantifier-free
implications or pattern-transformation rules that can be produced
by FAS2.5 from German sentences [5] that are interpreted as "gen-
eral” (e.g. "all" sentences, "if-then" sentences).

For questions that proved not to be answerable immediately
by pattern-matching, these deductive mechanisms cause recursively
the transformation into subquestions that it is hoped can be more
easily manageable. Deductive mechanisms in the kind of problem
reduction or searching AND-OR trees already had proved appropriate
in the author's 1971/72 QAS FAS-1 [8] for processing simple queries
for retrieval of a relational data base and will not be described
here in detail.

For extending the inferential power of a practical system
and its adaptability to different application areas or users,
methods for recognition, interpretation, representation, and acti-
vation of generalized knowledge given to the system as NL senten-
ces are very important.

-176-

REFERENCES

[1]

[21

[3]

[4]

[51]

[el

[7]

[8]

91

[10]

[11]

Bobrow, D.G., and D.A. Norman, Some Principles of Memory
Schemata, in D.G. Bobrow and A.M. Collins, eds.,
Representation and Understanding, Academic Press, New
York, 1975.

Hendrix, G.G., Expanding the Utility of Semantic Networks
Through Partitioning, presented at the U4th IJCAI,
Tbilisi, August 1975.

Lehmann, E., Input Processing in a German Language Question-
Answering System, in Conference on Artificial Intelli-
gence: Question-Answering Systems, CP-76-6, Inter-—
national Institute for Applied Systems Analysis,
Laxenburg, Austria, 1976.

Lehmann, E., Self-Improvement of Natural Language Understand-
ing Systems by Learning, Paper submitted for IJCAI-77,
Cambridge, Mass., 1977.

Lehmann, E., Ein Frage-Antwort-System mit variablem Diskurs-
bereich und genereller Wissensreprdsentation, in L. Bolc,
ed., Natural Language Communication with Computers,
Warszawa, 1977.

Lehmann, E., Computersimulation des Verstehens naturlicher
Sprache, presented at Leopoldina-Symposium Naturwissen-
schaftliche Linguistik, Halle/Saale, July 1976. (also
Nova Acta Leopoldina 1977).

Lehmann, E., and F. Zdnker, Fakteneingabe fur ein Frage-
Antwort-System, Bericht Nr. 156/111/9/74, VEB Robotron,
ZFT, FG Grundlagenforschung, Dresden, 1974.

Lehmann, E., Ein Frage-Antwort-System mit Deduktions- und
Lernfdahigkeit, VEB Robotron, ZFT, Dresden 1972; also
in F. Klix, W. Krause, and H. Sydow, eds., 4Analyse
und Synthese von Problemldsungsprozessen II, Kybernetik-
Forschung, Vol. 5, Dtsch.Verl.d.Wissenschaften, Berlin,
1975.

Lesser, V.R., R.D. Fennel, L.0O. Erman, and D.R. Reddy,
Organization of the HEARSAY-II Speech Understanding
System, IEEE Trans. Acoust. Speech, Signal Processing,
23 (1975) 11-23.

Montague, R., The Proper Treatment of Quantification in
Ordinary English, in J. Hintikka, J. Moravcsik, and
P, Suppes, eds., Approaches to Natural Language, Reidel,
Dordrecht, 1973.

Norman, D.A., and D.E. Rumelhart, Explorations in Cognition,
Freeman, San Francisco, 1975.

-177-

[12] Palme, J., 4 Simplified English for Question Answering,
Report C8256-11(64), Institute of National Defense,
Stockholm, 1970.

[13] Palme, J., The SQAP Data Base for Natural Language Infor-
mation, Report C8376-M3(E5), F&rsvarets Forsknings-
anstalt, Stockholm, 1973.

[14] Sandewall, E., Formal Methods in the Design of Question-
Answering Systems, Artificial Intelligence, 2 (1971),
129-145.

[15] Sandewall, E., PCF-2, A First-Order Calculus for Expressing
Conceptual Information, Uppsala University, Computer
Science Dept., Datalogilaboratoriet, Uppsala 1972.

[16] Schank, R., ed., Conceptual Information Processing, North-
Holland, Amsterdam, 1975.

[17] Schubert, L.K., Extending the Expressive Power of Semantic
Networks, Artificial Intelligence, 7 (1976).

[18] Walker, D.E. et al., Speech Understanding Research, Annual
Report, Project 3804, Artif. Intell. Center, Stanford
Research Institute, Menlo Park, California, 1975.

[19] Winograd, T., Understanding Natural Language, Edinburgh
University Press, Edinburgh, 1972.

[20] Woods, W.A., Transition Network Grammars for Natural Language
Analysis, Comm. ACM, 13, 10 (1970), 591-606.

[21] Zanker, F., H. Bdttger, H. Helbiqg, E. Lehmann, and P, String,
Informationsdarstellung in einem Frage-Antwort-System,
presented at Internat. Symposium MKO, Techn. Univ.
Dresden, Oct. 1975.

-178-

Use of Semantic Networks for Information Retrieval

G. Rahmstorf

INTRODUCTION

The information contained in so-called formatted data base
systems is stored in fields of explicitly defined length. Several
data structures such as hierarchical, network, or relational data
structure are used to represent associated information [1]. Com-
monly defined data names are used to get access to stored infor-
mation.

This paper is concerned with free text retrieval systems
that store unchanged text of any kind-~for example, abstracts
of documents--as information for the user. Text retrieval is
the more general term, whereas document retrieval indicates the
main application field.

A survey on document retrieval was given recently by Salton
[2] . Martin and Parker [3] have compared several features of
text retrieval systems currently available.

Data base systems and text retrieval systems have been devel-
oped independently. The development of natural language (NL)
interfaces for data base systems might help to bridge the gap
between the two types of systems. Data structures used in for-
matted data base systems, text retrieval systems and NL question-
answering systems (QAS) are compared in Figure 1.

The original information to be stored in both types of data
base systems is communicated verbally or written as a text (A).
This text can either be stored directly in a free text retrieval
system and/or translated into a data structure (B) of a formatted
data base system. Many attempts have been made to translate free
text into a semantic network (SN) automatically (C). An SN is
another type of formatted data structure that can be transformed
into conventional formatted data files and vice versa.

To avoid sequential search through the whole text data base,
most text retrieval systems prepare an additional inverted file,
which is a list of all word occurrences (except user-defined stop
words such as "the", "is", "for"). The list of words (D) is a
Boolean expression in productive normal form (word A AND word B
AND word C...).

The advantage of this technique is that the system can repre-
sent any text simply by the words of the text. But, on the other
hand the Boolean expression is not a semantically precise document
description.

-179-

"$0INJONIS [eIIAIS Aq 1X3) JO uonejussarday 1 a3y

viel 10 NHI dnli 1snv

vidisny

'V ONILNIS3IH43Y 13N JILNVYINIS D

000°'0Z

0 2 viel vidisny s

"3 YNILN3SIHdIYH 13N JILNVINIS '

vL6L HVIA JHL NI 'A'S 3HL
WO4d 110 3aNH3J 40 LHO4WI S. vidLsAY

NOIL1dI4IS3a 1X31 ISYHHd NNON '3

vL61 V 00002 V ‘NS V
a317ddNS V 110 V 3ANHI V vidisny

NOI1dI4JS3Qa 1X31 Nv¥310049 "0

" $£61 N1 110 3anY I 40 P/ 000'02

INVYAD

saoo9 HY3A Jdwl 3dX3

3714 A311YWYHOd 9

1X3l v

1NOAY HLIM VIYLSNY a317ddnS 'N'S JHL}E

-180-

In this paper we propose to describe a document by a special
NL form instead of a Boolean function. This natural form is
called noun phrase (E) and is represented as a node in an SN (F).

PROBLEMS OF CURRENT TEXT RETRIEVAL SYSTEMS

We base this proposal on a fundamental criticism of current
text information retrieval systems. Several functions of such
systems can be improved, but there are two main problem areas that
require a substantial new approach for improvement.

Insufficient Precision and Recall

Responses given to a user's query are imprecise, because not
all recalled documents are relevant. Responses are also not com-
plete because not all relevant documents are recalled. The para-
meters commonly used to define precision and recall [4] are illus-
trated in Figure 2. Precision as well as recall are dependent
on the type of stored information and the user's evaluation of
the system response, but a general experience is that about 50%
precision and recall are typical values for such systems.

Need for Expert's Assistance

The second deficiency is that the use of these systems re-
quires a large amount of skill to describe the user's information
request in the language of the system. "Most searchers today are
information specialists who through constant practice are com-
fortable with the terminal, command language and data bases" [2]
(FPigure 3).

Many documentarists and librarians are not satisfied with
automatic document description based on word occurrence in the
text. They prefer to select intellectually additional descriptors
from a thesaurus which are then associated with the stored docu-
ment to improve the results of retrieval. This additional index-
ing work is a second source for the growing expense of information
retrieval.

Several studies have been made to improve automatic indexing
[5,14]. The objective of automatic indexing is primarily to
"assign appropriate identifiers capable of representing informa-
tion content to stored documents and incoming user queries” [6].
However, the set of assigned identifiers is not structured by a
natural language syntax forming a phrase. As far as phrases are
used to describe a document, they are taken from the text or from
a list of phrases in a thesaurus. It seems to be extremely dif-
ficult to generate automatically a phrase representing the con-
tents of the text. The extraction of phrases from an abstract
was recently discussed in [7].

-181-

_r11TT]

RELEVANT INFORMATION RECALLED INFORMATION
REL EC

RELREC

- < b

PRECISION REC X 100 100 o
RELREC

=" < 100¢

RECALL REL x 100 N

Figure 2. Definitions: precision and recall.

-182-

‘uondiiosap uorjeusiojur pue uonenuiioy £1onb :wajqoad Lousroyyy ¢ 2andiy

143dX3
1SIYYINIWNI0Q 3DVNONYT
H3X3ANI AY¥3ND
AN NOILdIYIS3a)
V1va ~|nolLywyOaNI[<+«—{AY3ND[* «—
SINIWNI0Q
INILSAS

43sn

-183-

Storage Requirements for Document Description

Text retrieval systems need much storage to represent the
original text and the additional descriptive information auto-
matically derived from the original text. In Figure 4 a simpli-
fied representation of the data structure of an advanced text
retrieval system is shown [8]. The original documents (text)
are stored in a text file that is accessed via a text file index.
To avoid sequential search through all documents for each query,
the system uses two additional files: a dictionary and an inverted
file. The dictionary contains all words of the text, with
pointers referring to records of the inverted file. The inverted
file is mainly a list of occurrence entries for words. A word
occurrence is described by its location within the document. The
purpose of this context specification is to allow queries with
contextual operators such as:

A ADJ B words A and B are adjacent to each other
in this order in the same sentence;

A WITH B A and B occur in the same sentence; and

A SAME B A and B occur in the same paragraph.

On the other hand, the additional descriptive information about
the position of a word within a sentence, paragraph and document
increases the storage requirements. This is again a reason to
propose a shorter and more informative document description.

Performance Considerations

One major advantage of free text retrieval systems is that
they generate the descriptive inverted file automatically. How-
ever, this generation process is done only once for each document.
The expenses for document description charged to one user's search
can therefore be divided by the number of searches. But, each
user has to cover completely the total expenses for his own search
process. Therefore, one must try to reduce the computer time
needed for the search. One way is again to develop a more com-
pressed document description.

Origin of the Problem

There are two main reasons for insufficient precision and
recall.

Imprecise Language for Query and Document Description

Text retrieval systems use Boolean operators to describe the
stored documents and to formulate the user's information requests.

vee g ver oy nee

A 1N3WND20Oa

‘1nd1no

‘was£s [eAdLI}al 1X9) € JO aImjond)s adelols *§ om3yyg

(A LN3IWNDO0Q) ._.xm_._.__A

-184-

{X LNIWND0Q) 1X31 J‘

‘ON ‘'ON ‘ON ‘ON ‘ON
QHOM | 3ION3ILN3S HdvHOVHYd | LNIWNDOA Isvo
—
1NOD _ ANG _L_A "\mm._.z_oa_ ‘_ ._n_mO;_
_ 1NOD _ ANG _ _._.ZOO _ XNa r._.zoo _ XNa —_A “ H3ILNIOd _ xnzO;_

L 1

_

| L

L

[| 1 auom|

ERIEWS €18

X3aNI
X3l

3714 A3LHIANI

+

AHVNOILIIa

*

*** 7.aNV) :AH3NOD _

-185-

Some query languages include other features such as the context
specifications we have already mentioned.

Boolean expressions interpreted as a description of the docu-
ment or as the subject someone likes to know more about, are am-
biguous. A string of keywords connected by AND can represent
many different concepts. What is the content of documents de-~
scribed by the following Boolean expression:

"BASIC AND COMPONENT AND CONSUMPTION AND CONVERSION
AND ELECTRICITY AND ENERGY AND MACHINES AND PRIMARY
AND PRODUCTION"?

Because of the complete lack of syntax, we cannot decide on any
specific interpretation of such an expression.

Wrong Usage of Query and Document Description Language

The reason for incomplete and unprecise system output is
also a result of wrong usage of the available language. Specifi-
cations of Boolean expressions and context operator requires some
training. Any user who is not well trained can easily make errors
in query formulation or document description. An expert of the
system must therefore translate the user's request into a query
for the system, which is a new "major source of failure", because
now one human being has to communicate his information need com-
pletely and accurately to a second person. A large percentage
of the searching failures in 300 searches was attributed to in-
adequate user-system interaction [13].

PROPOSAL

To avoid misinterpretation of Boolean queries and document
descriptions, several proposals have introduced additional fea-
tures for the documentation language, such as role indicators or
descriptor links {9]. They help to reduce the scope of inter-
pretations for a Boolean expression, but these language features
require more expert assistance and more indexer's time to describe
the documents. The higher complexity of the artificjal syntax
for documentation languages decrease the cost-performance ratio
of the whole system.

We need a language that is both less ambiguous and easier
to learn. Therefore we propose to use a few basic syntactical
structures of the NL for query and document descriptions. We
recommend restricting the NL to basic noun phrases. A noun phrase
can be defined by a formal grammar of context free production
rules using the word classes noun, adjective, and preposition.
The following English expressions are noun phrases:

~-186-

- Information system design process;
— Flexible, dielectric materials;

- Effects of pressure on the optical properties of a
polymorph of germanium.

Noun phrases represent the natural form in which the human com-
munication partners express an information request. Noun phrases
are also the syntactical form of titles by which technical or
scientific documents are usually described.

A title in noun phrase form must be precise and complete.
If a given title of a document does not satisfy these require~
ments, it must be completed by another title or additional titles
created by the author or indexer.

The former example for a Boolean document description is
originally a title or a request of the following noun phrase
form:

"Energy consumption for the production of basic components
used for conversion of primary energy into electricity".

The noun phrase in this example is only one possible interpreta-
tion of the Boolean expression, which is ambiguous if interpreted
as information requests or concepts. The transformation from
Boolean to noun phrase form requires additional information rep-
resented by word sequence, special particles as prepositions, and
inflectional forms. This additional structure information has

to be analyzed to understand the noun phrase. Even if the re-
sult of such an analysis is limited by our current linguistic
methods, it is better than a Boolean coordination of descriptors.

The system we propose should have the following functions
for document description and document retrieval:

-~ An indexer or data base administrator may describe
documents or data by noun phrases. These noun phrases
are analyzed by the system and represented in a seman-
tic network as a concept node. The system generates
a unique number for the document description, which
is then added to the document number.

- A user may ask for any information by formulating his
query as a noun phrase. This noun phrase is analyzed
by the system and represented as a node of the seman-
tic network. The system analyzes which document or
data descriptions are relevant to the query and gen-
erates a secondary Boolean query, including the rele-
vant document numbers which are then used to retrieve
the actual document.

-187-

STRUCTURE OF A NOUN PHRASE SYSTEM

These functions can be implemented by a system consisting
of the following components:

- Noun phrase analyzer;

- Lexicon;

- Semantic network;

- Relevance analyzer;

- Document description file; and

- Text data base.
The text data base system for the storage of the documents can
be a text retrieval system as currently available. The noun
phrase system described here can be viewed as a front—end system

used as an additional module for the text retrieval system to
process document descriptions and queries in a higher language.

The Noun Phrase Analyzer (Figure 5)

The noun phrase analyzer is a linguistic processor that rep-
resents the meaning of given input phrase as a node of the SN.
It consists of two interrelated submodules: a syntax parser and
a semantic interpreter.

A set of context free grammar rules is used to analyze a
given phrase. As a result of this analysis one or more syntac-
tical tree structures are generated.

The semantic interpreter uses a set of rules to map nodes
of the syntax tree into nodes of the semantic network. The 1lin-
guistic methods and problems involved in noun phrase analysis
are not discussed here.

Dictionary

The noun phrase analyzer needs a dictionary containing all
nouns and adjectives used in noun phrases. The dictionary speci-
fies for each word syntactic attributes and a pointer to the SN
defining the meaning of a word as a concept within a conceptional
network.

The Semantic Network

The SN is the central component of the information retrieval
system. It is used to represent concepts and relations between
concepts.

-188-

[A Je—

('ON
LN3IWNO0A)
AH3IN0D
AYVYANOD3S

‘ura)s£s [easuyan oseayd unou e Jo spuouodwor) g sy

X In

HIZATVYNVY dN
$31NYH s3INY S3TNY
JONVAIT3Y JLNVIHIS XVLNAS

‘ON 1X31|ON 300N

NOILdIHIS3a LX3L

ON 300N|aHOM

XYOMLIN JILNVIAIS

AHVYNOILDIQ

——[1%43u4

(3SVYHHJ
NNON)
AHIND
AHVIIHd

-189-

A concept can be expressed by a noun phrase of a language
in English or German. Because noun phrases include also single
nouns the concept network is also used to define the meaning of
the nouns (and adjectives) of the dictionary.

Each concept of the semantic network can be used to repre-
sent a text (title of a document) or a search request. Not every
possible noun phrase or document description is represented in
the concept network. The number of possible concepts is immense,
possibly infinite, because one can generate phrases recursively.
But only those nodes in the concepts network that represent a
document description for an actual document have to be generated.
The nodes describing a document have to remain in the network
only for the time the document is stored in the data base.

Concepts are nodes of the SN, relations between concepts
are arcs between nodes. Information from the SN is used by the
grammar rules to analyze noun phrases. The meaning of the anal-
yzed noun phrase is represented as a node of the SN. The node
representing a noun phrase can already exist or can be created
by using relations that connect the new node to the existing
nodes. The SN is used by the relevance analyzer to determine
relevance between nodes representing text description and nodes
representing a user query.

The SN can be viewed as an extended on-line thesaurus for
an information system with additional functions. It is an ex-
tended thesaurus, because it contains not only technical terms,
but also common language words. Classical thesaurus uses only
a few relations [10] between terms such as:

- Narrower term,
- Broader term,
- Related term.

In the SN one needs more relations and more specific rela-
tions, similar to the case relations introduced by Fillmoore [11]
and used by many NL systems.

The SN is a dynamic structure as only the concepts represen-
ted by dictionary words are stored permanently. Concepts repre-
senting complex queries are only created for the time when the
requested phrase must be answered. Concepts representing docu-
ment descriptions are only kept during the time the document is
available in the data base system.

The SN is functionally more than only on-line thesaurus,
because it is primarily not used to assist the user in generating
a proper query, but to determine numbers of documents relevant
to the primary query. These document numbers are taken from the
document description file and are included in the secondary query.

~190-

Text Description File

The information unit stored in the data base system and
described by use of the SN is a text. Each text is identified
by a text number (or document number). Each document must be
described by a title in noun phrase form. Each title or text
description is represented as a concept node of the SN. Those
concepts representing text descriptions are called T concepts.
The text description file (Figure 4) contains all document num-
bers and numbers of T concept nodes representing the document
description. The text description file is created and updated
by the noun phrase analyzer by using the document number and
text description as input.

Relevance Analyzer

T concepts representing titles of documents stored in the
data base and Q concepts representing user requests are mapped
as nodes of the 8N. The relevance analyzer selects those T
concepts relevant to a given Q concept.

As already discussed in the context of precision and recall,
relevance is a very fundamental idea used to evaluate output of
retrieval systems. But, so far, any evaluation is based on sub-
jective decisions of the users of whether a given document is
relevant for them or not. There is no way to check such a deci-
sion objectively.

If query and document description are both represented as
nodes of an SN, one can define objective criteria for relevance.
In Table 1 we have given some examples of such relevance criteria.

Relevance criterion 1 would be the simplest case, specifying
that only those noun phrases represented by the same concept are
relevant for a given query. This means that each synonymous syn-
tactical construction used as a title of a document is classified
as a relevant title.

Another relevant criterion generally accepted, specifies
that more important concepts are classified as relevant. If a
user asks for "energy consumption in Austria", the system would
classify "Austrian energy consumption in 1970" as a relevant
document, because the title has an additional time attribute
which makes it "more special" (subconcept) according to the rele-
vance criterion 2. Relevance between concepts represented in an
SN is a new field that is not discussed completely at this point.
However, the proposed approach allows definition of formal rele-
vance criteria. The user can now have better control of system
recall by specifying his own "hard" or "soft" relevance criteria
depending on the kind of information need.

There are two typical information need patterns (Table 2).
Noun. phrases used as query and document description language seem
to be more appropriate for specific information requests rather
than for a general overview.

‘eragsny ut uorjdumsuo)
*uot3dumsuoo Abasum

*eTIsny ur

Abasus Arewtad JO uUOTSIBAUOD
cuot3zonpoad Abasus ueTtizsSny
seta3sny uTr uoridumsuoco Abiaue ayjy
uo STSTIO TTO 9Yy3z Jo 3oeduy

-uot3dumsuoo Abasus
ueTI3SNY 9Yy3j JO Topow ¥

-191-

OL6T Ut
uot3idumsuoo Abiaus uetalsny

eTa3sny utr uotidumsuod TTIO
*etaysny
ut Abasus jo uorzdumsuo)

-Kbaaua
Jo uotT3dumsuoo ueTIISnY

s3daouoo Teaausb 8IOW °G

s3deouoo pajetoossy ‘§

sydsouoo pojetlay ¢

s3ydsouoco
Tetoads aaoW ¢

3deouoo sureg T

eTa3sny ut
uotidumsuoo Abaauzd

eTI3SnY UT
uot3dumsuoo Abaaug

eTa3lsny ut
uot3idumsuoos Abasulx

eTI3sny ut
uotidumsuoo Abaauld

eTI3ISnY Uut
uot3dumsuo) Abasuzm

s3daouo) &
saseayqd UunoN
v3eJ/UCTIR3USUMOOJ JUPASTSY

eTI83Tad
aoueasTsy peojlsenbsy

adsouod
3sanbay uoTjewIOIUI S,3A9SN ¥

*SUOT3EOTITO9dS 30URADTIY

L oTqel

Table 2.

-192-

Information needs.

Overview, Awareness of
Working Environment

Special Problem Solution
Interest

1.

Type of User Query

What is the current structure
of my scientific field?

Most important problems,
theories, and results?

Spread of papers on topics,
terminology, actual trends

2.
User is developing his own

opinion by browsing through
reference

3.

What is the answer to my
specific question?

All relevant facts,
data or text

User Behavior

User is carefully studying
all relevant data and documents

System Properties

Reply with a representative
set of actual reference is
sufficient

High precision and recall is
not essential

4.

High recall is essential

High precision is required

Information Description

Boolean description is
sufficient

and Query Method

Noun phrases (or equivalent arti-
ficial description) or user known
data/document names are necessary

-193-

Secondary Query

When the relevance analyzer has selected those T concepts
relevant to the query concept, it takes the associated document
numbers from the text description file and creates the secondary
query. The secondary query is a list of the relevant document
numbers connected by Boolean operators OR. The secondary query
is given as input to a standard text information system to re-
trieve the text from the data base.

Comparison

After having discussed the major components of an informa-
tion retrieval system based on a semantic network, Figure 6 de-
scribes how the components interact for both text description and
search. Comparing this structure with standard text retrieval
systems that use Boolean methods, we see that the problem fields
resulting in insufficient recall and precision are replaced. For
the document description function (right side of Figure 6) we
expect the following improvements:

- Less ambiguous text description language (2);

- Easier text description (indexing) by the documentarist
(6};

— More precise semantic representation (3).

Query analysis is expected to be improved because of:

Less ambiguous query language (1);

Simple, natural query formulation by the user (5);

— More precise semantic representation (3);

-~ Precise relevance criteria (4),.
Precision is expected to be greater than with Boolean techniques.
Recall can be controlled by the user with relevance specifications.

Expenses for user assistance will be reduced, because noun phrases
are a part of the user's NL.

Other Applications

The proposed technique for information description is not
restricted to textual information. Noun phrases are the general
tool of NL to identify any objects, entities or concepts. There~
fore, one can also use noun phrases to refer to formatted data,
too. Figure 7 indicates how subsets of a sample file of three
records can be described or requested by use of noun phrases. For
example, the noun phrase "Sales by Jones" is a description of only
those records, where "Jones" is the data item in a data field
characterized as "agent" field.

-194-

‘ON 204
:AH3N0 AHVYANOD3S

*MO[} uorjeuIoyuy *9 3INJ

SISATVNY
JONVA3II3Y @
(LSIHV.LNIWNO0A) @ S3AON
1SATVNY WILSAS 1d30NOD
- ~0
(LN3WND0Q) H3isn
NOLLVWHOANI LX3L dlM2830 1xaL ®
1$3N03H NOILVWHO4NI
JOVNONY]
NOIL4IYOS3a 1X31 @ @ IOVNONVYI AHINOD
SISATVYNY SISATVYNY
dIyds3a 1x3l1 AH3INO
r (ONIX3IANI) 3ISVHHd NNON @ @ 3SYHHd NNON NOILYINWHOS]
CILREL) 1X31] did0s3a 1x3l / XAHINO AUVIIY AH3IND [
@ W3LSAS

~195-

*BJED paprunio] 0 aseayd unou jo uoneorddy -, sy

[4 Z1NHIS O1 HLINS A8 S3TVS
£ oL 81 3dAL 30 S31VS
$ay023y ; ONILNIOd
l S1d3JNOJ SINOrAg s31vS
A $31vS
Y3717 01 81 S12nA0Yd § A10S SINOP
NO1LVZI1v843IAIa ,
] NOILVZITvaY43A
£ ayoo3y HIIVN 81 4 H1INS
7Qyod3y | Z1NHIS 4! z HLINS
1 QY0234 | HITTW 8l S sanor
$37vS 3714 | HIWOLSND | 1INA0Yd | “INVND | NYWSITVS

-196-

REFERENCES

(1]

21

[3]

(4]

(5]

(6]

[7]

[8]

[9]

[10]

[111

(12]

[13]

[14]

Date, C.J., An Introduction to Database Systems, Addison-
Wesley, Reading, Mass., 1975.

Salton, G., Dynamic Information and Library Processing,
Prentice-Hall, Englewood Cliffs, N.J., 1975.

Martin, H., and E. Parker, A Feature Analysis of Interactive
Retrieval Systems, Stanford, 1974.

Klawiter-Pommer, H.T., and W.D. Hoffmann, Ubersicht iiber
die fiur den Leistungs vergleich mehrerer Literatur-
Datenbasen wichtigsten Parameter, Nachr. Dok., 27,
3 (1976). -

Lustig, G., Probleme der Worterbuchentwicklung fiir das
automatische Indexing und Retrieval, Nachr. Dok., 25,
2 (1974).

Salton, G., A. Wong, and C.T. Yu, Automatic Indexing Using
Term Discrimination and Term Precision Measurements,
Informat. Process. & Management, 12, U3-51,

Seelbach, D., Computerlinguistik und Dokumentation, Vlg.
Dokumentation, Munich, 1975.

IBM Storage and Information Retrieval System/Virtual Storage
(STAIRS/VS) Program Reference Manual, SH12-5400-0, IBM,
Stuttgart.

Soergel, D., Dokumentation und Organisation des Wissens,
Duncker & Hunblot, Berlin, 1971.

Lang, F.H., Automatisierte Herstellung von Thesauren und
Begriffssystemen filir Worterbiicher und Fachterminologien,
Nachr. Dok., 24, 6 (1973) 231-238.

Fillmoore, C.J., The Case for Case, in E. Bach and R.T. Harms,
eds., Untiversals in Linguistic Theory, Holt, Rinehart
and Winston, New York, 1968.

Bruce, B., Case Systems for Natural Language, Artificial
Intelligence, 6 (1975), 327-360.

Lancaster, F.W., Problems of Communication in the Operation
of Information Storage and Retrieval Systems, in
J.5. Petofi, and A. Podlech, Fachsprache-Umgangssprache,
Scriptor, Kronberg, 1975.

Sparck Jones, K., Automatic Indexing 1974, A State-of-the-Art
Review, Computer Laboratory University of Cambridge,
Cambridge, 1974.

-197-

Use of a Problem Solver for Data Base Handling¥*

E. Tyugu

An intelligent data base system is considered to contain
the following three parts (see Figure 1):

- A linguistic (L) part for natural language processing;
- A large data base (DB) with efficient access methods;

- A data base handler that accepts questions and amend-
ments as input, and prints out a program for data
manipulation (DM).

If the interfaces between these parts are specified then it would
be possible to design any of the three parts separately. There
may then be some extra expense-—for instance, the semantic support
of parsing may be rather expensive in the linguistic part, if the
other parts are used for this purpose.

We have designed a data base in which a problem solver has
been used as the data base handler. The solver had initially
been designed for general purpose use, and has been applied in
different computer aided design systems [1], and redesigned for
better efficiency later [2].

The source language of the solver is an extendible problem
description language UTOPIST, which appeared quite convenient for
representing semantics in the question-answering system.

The output of the solver is a program ready to run in an
0S/360 environment. The interface between the solver and the data
base is arranged on the data control language level and standard
access methods of the operating system are used.

The main structure of the UTOPIST language is a declaration:

primary-object
dcl
dcl: = id,...: {(I[Peea)
relation
notion [(amendment)]

*Report of an informal presentation.

-
I
|

_+,__

-198-

NL INPUT-OUTPUT

e

L
PROCESSOR
— ¥ ___ _ FORMAL SEMANTIC LANGUAGE
A
DB
HANDLER
—¥ ___ PROGRAMMING LANGUAGE + DML
DB
__l,____ ANSWERS

Figure 1.

-199-

An identifier that has been already used in a declaration denotes
a notion and may be used for declaring new notions, and amend-
ments may be made thereby. So, it is possible to declare:

PERSON: (NAME, CHRN, PATR: STRING: AGE: INT);
CHILD: PERSON (PATR=CHRN of FATHER) ;

Relations may be expressed in different ways: by programs, equa-
tions, etc. One special way is representing them by relation-~
ships (tables) as in Codd's relational data base. An important
point is that any relation is represented in such a way that it
is possible to immediately apply it for calculation. (Any re-
lation is formally regarded as a set of assignments and state-
ments that may be used as soon as would be useful in solving a
problem,)

Internal representation of the text in the solver is a
semantic network (SN} with object and relations expressed in
Figure 2 as nodes of different shapes. The following example
is illustrated in Figure 2.

It is assumed that the notions:

FILE CAR
FILTER PERSON
PRINT

are known to the solver, i.e. that their semantics are already
represented by SN in the memory of the solver, and not in the
data base. The notions in the left column are generally useful
for data base problems. Those in the right column belong to
particular problem areas.

The question "who are the owners of red cars?" will be in
formal semantic language, as follows:

LET PROBL : (CARS, REDC : FILE(CAR);
F1 : FILTER (FPROM CARS TO REDC,
COND = (COLOUR OF CAR OF CARS = 'RED'));
WANTED : PRINT (OWNER OF CAR OF REDC FROM REDC)});
PROG CALCULATE WANTED FROM CARS;
END;

Using the semantic network as illustrated in Figure 2, the
solver synthesizes an algorithm for solving the problem and gen-
erates a code that includes all required data description and data
manipulation statements.

"G 2ndyg

-200-

‘anN3
‘SHVI WOYd4 AILNVM ILVYINITVI D0Ud

(2034 WOYd 203 40 YV 40 HINMO) LNIYd -QILNVM
1

{(.a3y4.

= S4VI 40 ¥VJ 40 ¥N0109) = ANOJ ‘203 OL SHVI WOYL) Y3114 :Ld
Vv ~]

4Nn0103

!
(4v2)3114:2034'S¥V D) :1804d 131

-201-

REFERENCES

[1] Tyugu, E.H., A Data Base and Problem Solver for Computer
Aided Design, Proceedings IFIP 1971, North-Holland,
Amsterdam, 1971.

[2] Kahro, M.I., et al., A Programming System PRIZ, System
Programming and Computer Software, 2, 1 (1976).

QUESTIONS ON NATURAL LANGUAGE UNDERSTANDING AND INTERFACES

-205-

A Dictionary as a Data Base¥*

G. Guckler

INTRODUCTION

In our research project on the investigation of the semantic
structure of natural languages via data processing (Semstruktur) *¥
a vocabulary of about 17,000 words with 50,000 units of meaning
is being tested to see whether they are characterized--as we
presume--by a hierarchical network-like structure, the highest
units of which are terms or concepts (so-called semantic univer-
sals) that cannot be further defined. To this end we are attempt-
ing to identify units and relationships of a possible semantic
structure of natural languages on an empirical and a traditional
lexicographic basis. We expect that by investigating dictionary
definitions, which as "definientia" principally have the form
"genus and differentia specifica" or function as equivalences of
other expressions, a communicative network will be discovered the
core of which is a system of concepts shared by several languages.

Thus, the object of our project is to make explicit the se-
mantic relationships between words and the concepts they denote,
a relationship implicitly existing in a dictionary. Thus, the
definition

anmachen ... 3.2 Feuer~ anziinden

establishes a semantic relationship (of equivalence) between the
definiendum (key word or keyword plus semantic context) and the
definiens. When looking up the head word "anziinden" as definien-
dum one finds

anziinden ... 1 zum Brennen, Gliihen, Leuchten bringen

This procedure can be continued. For each expression the user
finds equivalences and explanations of a conceptual and linquistic

*This report is a summary of earlier reports by G. Wahrig,
E. Miiller, and G. Guckler [1-15].

**The research is sponsored by the Deutsche Forschungs—-Gemeinschaft
(DFG) , Bonn-Bad Godesberg and headed by Professor G. Wahrig of
the University of Mainz.

-206-

nature. This is the inherent semantic structure, contained in
each monolingual dictionary, provided it works with definitions.
The semantic description of expressions can be regarded as di-
rected from expression to contents. The first point is to des-
cribe the preparation of the linguistic data taking the lexi-
cographic structure of the dictionary entries as our starting
point and arriving at a storage in a data base of the STAIRS
type [16,17,18]. Later sections deal with the resulting lin-
guistic analyses based on data processing.

PROJECT CORPUS MATERIAL

The starting point and basis of the linguistic analysis are
monolingual German dictionary entries.* First we limited our-
selves to the study of basic vocabulary, the selection of lexical
entries being based on pragmatic-stylistic criteria. This means
that we deal primarily with lexical units which at least for a
part of their respective meanings do not have to be marked by
an additional reference such as "colloguial", "poetic usage",
“dialect", "technical term", etc., but have a clearly represen-
tational function, as Karl Biihler used the term [20].

Lexicographic Preparation of the Material

The structure of dictionary entries is organized according
to the various meanings of a key word in connection with its
relevant context. Each word is followed by several explanations
of meaning, which are listed separately by medium faced index
numbers, the semantically relevant context preceding the defini-
tion proper. (The explanation of meaning is followed by usage
examples,) Possible relationships between single definitions
of a key word, such as relative of sub- or coordination between
two or several meanings are indicated by a hierarchical arrange-
ment of index numbers. Thus, key word or index number, seman-
tically relevant context, definition, and example of usage are
the most important items of information. In addition there is
an attempt to guarantee a complete and extensive description of
the respective lexical entry by including references to grammat-
ical, syntactic and pragmatic-stylistic properties and by indi-
cating the relationship to other entries of the dictionary by
cross-references (such as synonyms, antonyms, etc.)

Taking the key word "absolut" as our example we show the
above mentioned formal structure of entry in our dictionary
(Figure 1).

*The project corpus material is in preparation [19].

-207-

PIOYIS Yoru
punsizdunpiaysg
wopad raquuadaf ap

PIQUI § 7 IRy
VSR L R
~wapgneamvsadway,
-} seaadway aieqyaal
dins 12 gZ(r)aueyds
w2y saegdsowy o
AT 3ITI yaqziasad sap
SISV A SAS 8D - prgaunyuriyosuly

JYIYIN
HOYIEQIYIS uISutp
vap 1ap dyaraiun
AH Y- e dmriad
LR RENRILIE Y
MUBINEN 07 N0)

y
1208} Aty
Funiaway
DIENRTEY

A‘ - T — NINNTNEINZSINOL 1 |
F2)IUYHISONL V-] D $3N13 IHOH 310 INQL JUVE SN3INH30
\\\\ Ly A fuoawuanawwonpiomyd)| }) L0]
VIVINIHNIAZ
[BUYHASOMLY 3- HOHID 53 - 1X3ILINOD i
92z 'z 9 tl z TUONINYIN
40 LIND
L L = a4
HIBNAN XIANI
ALY 13 599 WANOLNY
SITIOA "LINVUHISTANN und e raeny i SN3INI43D
] - Tt I DU S R [}
T ' L'ON ‘ONINVIW
40 1INN
Hod
HIEWNN X3ONI
rav HYWWVHD
e X P I - P
1nosav AHOM - A3N
A¥0911Y) AHO93LYD AY0931YD RITWNN
-ans NOILVID0SSY NIV X3aN)

-208-

Formal Preparation of Dictionary Entries for Data Processing

Structured Unit of Information

As can be seen from the dictionary entry "absolut", an entry
can consist of more than one unit of meaning. Each unit of mean-
ing together with the key word forms an independent unit of infor-
mation that can contain all previously mentioned types of infor-
mation including the additional references as to grammar, style,
etc. This total unit of information in the following will be
called "structured unit of information".

Categories within the Structured Unit of Information

According to the lexicographic preparation of the dictionary
entry a structured unit of information has the following organi-
zation:

Main Categories

(0) Key word; identical from the
(1) Index number for semantic functional point of view
unit;

(2) Semantically relevant context;

(3) Definiens;

(4) Example.
Only the types of information 0 (or} 1 and 3 are obligatory, the
other two are optional depending on the respective key word.
These most important types of information within a structured
unit of information will henceforth be called "main categories
(0 - 4)", 1In addition to these further optional types of infor-
mation--either of a subordinating or of an associating nature--

can be present, concerning either the key word as a whole or parts
of it:

Subcategories

(1) Syllabification;

(2) Pronunciation;

(3) Grammar;

(4) Level of speech;

(5) Technical terminology;

(6) Geographical distribution;
(7) Situational usage;

(8) Reference of the type: (... stands for), (... of),
the lemma following in main category 3;

-209-

(9) Cross-references {(abbreviation: ...), (symbol: ...),
related to the key word in main category 0.

These can be added to all main categories (0 - 4), except for
subcategories (1 - 3) which can only appear in connection with
the main categories 0 or 1 and 2.

A final group of types of information within the system of
categories is represented by the following cross~references to
other key words:

Association Categories

(1) Orthographic variants;

(2) oOrthographic variants of technical terms;
(3) Synonyms;

(4) Antonyms;

(5) References to a key word under which further examples
of usage are listed;

(6) Reference to an entry that is a general or associated
term, under which a group of words are defined as
examples;

(7) Complementary cross-reference to 1 and 3 of this group.

This group can be combined with main category 3 or replace it.

Numerical Code for the Combination of All Three Groups of
Categories

In a dictionary entry there are various forms of dependen-
cies between the main categories, subcategories, and association
categories. In order to be able to arrive at a formal combina-
tion of them we gave each category within a group an index number
(see lists above). The three groups can thus be combined by
three~digit number codes. The main categories are always to be
found in the first digit of the numerical code. The association
categories appear exclusively in connection with the main category
3 and are to be found in the second position. With main cate-
gories 0 or 1 and 2 the subcategories come as second digit, and
with main categories 3 and 4 or as subcategories of a secondary
degree (that is if they are preceded by another subcategory) they
appear as third digit in the code. It applies to all categories
that within a structured unit of information they have to appear
in ascending sequence. If the main categories are not comple-
mented by sub- or association categories, the tens and single-
digit positions are filled with zeros.

Figure 2 shows all possible combinations of the system of
categories. Figure 3 shows the organization of data as a system
of categories.

-210-

GROUPS OF CATEGORIES

MAIN CAT.

ASSOCIATION CAT.

SUB-CATEGORY OF
1st DEGREE 2nd DEGREE

HUNDREDS

TENS

SINGLES

CODE -
NUTBER

0 OR 1

12345617

123456789 1234567829

Figure 2. Combinations of categories.

-211-

200 e HAtmosphére#

290 Zeichen: ata

370 Atmosphdre (2)

a

aaa 1500414

100 2.6

200 Zer #Nullpunkt#

3500 die tiefste erreichbare Temperatur (-273, 16§347¢C)

aaa 1500415

100 2.7

200 De #Temperatur#

300 auf den gen Nullpunkt bezogene T.

i

aaa 1500416

100 2.8

200 De #HZahl#

300 eine ohne Vorzeichen betrachtete Z.

"_T

aaa 1500417

100 3

300 unbedingt

[

aaa 1500418

100 3.1

200 e HXunst#

300 ungegenstdndl., abstrakte K.

O

aaa 1500419

100 3.2

200 Je #Musik#

300 ungegenstandl. agqg

300 M., der keine au§s39ermusikalischen Vorstellungen zugrunde
Liegen

=

aaa 1500420

100 3.3

200 Te HRechte#

300 R., die gegenuber jedem wirksam sind

?aa 1500421

100 3.4

200 T er #Scheidungsgrund#

300 S., der ein verlangen nach Scheidung rechtfertigt, ohne
Ricksicht darauf, ob die Ehe zerrlttet ist

;aa 1500422

100 3.5

300 rein

;aa 1500423

100 3.5.1

200 T er #Alkohol#

300 wasserfreier Athylalkohol

|

aaa 1500424

100 4

130 S0

300 durchaus, ganzlich, Uberhaupt, vollig

400 das ist {J unmdglich

Figure 3.

=212~

aaa 1500401

000 ab.so’lut

030 Adj.

0

aaa 1500402

100 1

300 unabhdangig, losgelést, fir sich, einzeln betrachtet

340 relativ

[

aaa 1500403

100 1.1

200 O e #Bewegung#

300 (physikalisch nicht denkbare) B. ohne Bezugssystem

[

aaa 1500404

100 1.2

200 O es #Gehér#

300 Fadhigkeit, ohne vergleichbare Téne die Hihe eines Tones
zu erkennen

jm}

aaa 1500405

100 1.3

200 Je #Feuchtigkeit#

300 F.sgehalt der Luft ohne Rlcksicht auf Temperatur

.

aaa 1500406

100 1.4

200 ile HHelligkeit#

300 H. eines Sternes, ungeachtet der durch seine Entfernung
bedingten Sichtbarkeit am Himmel

O

aaa 1500407

100 1.5

200 Oe #Mehrheit#

300 M. von mehr als 50 §364

aaa 1500408

100 2.

300 unbeschrankt, véllig

—

aaa 1500409

100 2.1

200 Zler #Superlativ#

370 Elativ

aaa 1500410

100 2.2

200 Z e #Monarchie#

370 Absolutismus

—

aaa 1500411

100 2.3

200 - es #Vertrauen#

300 unbedingtes V. ohne jede Einschrédnkung

aaa 1500412

100 2.4

200 — es #Ma§s39system#

300 System der gesetzlich festgelegten Ma§s39einheiten

i

aaa 1500413

100 2.5

Figure 3 (continued)

-213-

Preparation of the Dictionary for the Data Base

The formal organization of the dictionary entries has been
conceived with regard to their storage in a data base, since
we were fortunate enough to receive the cooperation of the
Zentralstelle fiir Machinelle Dokumentation (ZMD) in Frankfurt.
This institution working with the STAIRS system seemed to suit
our purposes best and offered optimal conditions for the planned
investigation.

The Assignment of the Individual Categories of Structured
Units to Data Base Levels

The strict formal preparation of the dictionary entries
provided the basis for their transfer into the structure of the
above mentioned data base and made possible multiple forms of
linguistic enquiry and the resulting information retrieval.

STAIRS levels within a STAIRS document: structure within
the STAIRS levels is characterized by a hierarchical arrangement
of levels. The search always refers to the individual levels.
The document is the highest ranking unit within the data base.

It is subdivided into STAIRS paragraphs which for their identi-
fication have paragraph codes and paragraph names. They are sub-
divided into sentences, separated by punctuation. The smallest
unit within the document is the STAIRS word, delimited by blanks
or punctuation marks,

The assignment of categories of structural information units
to STAIRS-levels: in our attempt to adapt our system of cate-
gories to the STAIRS system we arrived at the following corres-
pondence:

- A structured unit of information corresponds to a STAIRS
document.

- Each of the main categories 1-4 corresponds to one
STAIRS paragraph, whereas main category 0 corresponds
to two paragraphs.

- The subcategories and association categories do not cor-
respond to independent paragraphs but each of them forms
a single sentence within these paragraphs.,

A strict paralleling of all our categories with STAIRS paragraphs
was not possible, since due to the multitude of combinations of
main, sub- and association categories an unnecessarily compli-
cated system would have arisen. Nevertheless, in order to provide
access to all our categories of structured units of information
via data base search we stored their three-digit number code to-
gether with the lexical text.

-214-

The three-digit number combination as a whole is of interest
for retrieval of information as are individual digits within it.
That is why the stored index number code was subdivided into
hundreds, tens, and single digits, so that each individual posi-
tion is accessible as a STAIRS word,

Figure 4 provided by the ZMD, again shows how our categories

were integrated into the STAIRS system. As a further illustra-
tion we present an extract from a search query (Figure 5).

RETRIEVAL WITH STAIRS

Some Technical Aspects

In our discussion of technical aspects of retrieving with
the STAIRS data base we confine ourselves to the possible uses
to which we have put the system in our research program. Prin-
cipally we can make use of all STAIRS functions--except for the
SELECT function, which is related to formatted data only. As to
the SEARCH function all types of search query statements can be
formulated via operators, operands, and qualifiers. Furthermore,
in addition to the qualifiers provided by STAIRS, our category
number codes—-although formally stored as words of contents—-for
our purposes function as qualifier and enable us to have better
control of information retrieval.

Thus, taking into consideration further possibilities of
combined search (operands, qualifiers, and operators), it follows
that within our linguistic investigations we will hardly be able
to exhaust the theoretical possibilities of the dictionary as a
data base system.

Examples of Linguistic Investigations with the Data Base

Search Via Category Code

The search via the categories' code, which correspond to
specific types of information in the dictionary, provides subsets
of vocabulary clearly defined as to their function in the diction-
ary. According to the type of category there are the following
subsets:

Main Categories
- The set of all keywords in the dictionary, of their syl-
lables and—--as a subset of all keywords—--the set of all

verbs with a separable prefix.

- The set of all keywords defined (at least for one of their
meanings) within a semantically relevant context (MC 2).

- The set of all keywords for which there are given examples
of usage in the dictionary (MC 4).

-215-

STAIRS

Paragraph Paragraph STORAGE OF CONTENTS
Name Code

BLCKNR 001 STRUCTURE: Code for type of dictionary entry:
GGG = basic dictionary/German w.
GFW
GKO = basic dictionary/irregul. verbs
blank

six-digit number for documents/each
dict. entry

basic dictionary/foreign words

three-digit number/document n® within
a dict. entry: 000 resp. 001,
002 etc.

STICHW 010 - keyword (original)
020 - keyword (only alphabetic text) for search query
030 - keyword subdivided in stem and prefix (/)
040 - keyword subdivided in syllables

- Paragraphs 020, 040 are obligatory in the first
document of a lexical entry; following documents
contain paragraph 020 only.

SUBSTW 100 - Content of category with leading category
code 0 (except: 000)

- three-digit category codes

- category codes subdivided in hundreds, tens
and singles

SUBSTT 200 - Content of category with leading category
code 1 (except: 100)
storage of category codes as above

KONTEX 300 - Content of category with leading category code 2
storage of category codes as above

DEFINS 350 - Content of category with leading category code 3
storage of category codes as above

BEISPL 400 - Content of category with leading category code 4
storage of category codes as above

Figure 4. Structure of the data base.

DW0275004957
BLCKNR:
STICHW:
DEFINS:

BEISPL:

DW027007221
BLCKNR:
STICHW:
DEFINS:

DW0275007328
BLCKNR:
STICHW:
KONTEX:

DEFINS:

DW0275013319
BLCKNR:
STICHW:
DEFINS:

BEISPL:
STICHW:
KONTEX:
DEFINS:
BEISPL:

DW0275016093
BLCKNR:
STICHW:
DEFINS:
BEISPL:

DW0275018770
BLCKNR:
STICHW:
SUBSTT:
DEFINS:

-216-

GGG 102733 002
Auge SST: 1
H3 Z0 E0 Y K300 Sinnesorgan des Menschen u. der Tiere

zur|Hahrnehmung von Lichtwellen.

H4 Z0 EO K400 blauve, braune, graue *n; ein kiinstliches
*, die*n; tffnen, aufschlagen, niederschlagen; mit
den *n rollen; einen Fremdkdrper im * haben; mir st
etwas ins * gekommen, geflogen; die *n brennen,

trdnen mir; jmdm. ein * ausschlagen; mit den *n
zwinkern.

GGG 102944 002

Begriff STT: 1

H3 Z0 EO K30 meist mit einem Hort'benannte. von den
sinnlichen Empfindungen u. Nahrnehmunaen abgeleitete
Verallgemeinerung des Inhalts von Sachen der AuBen-
welt u. der menschlichen Vorstellung.

GG: 103348 012
bei STT: 1.8.1

H2 Z0 EO K200 die Gelegenheit *m Schopfe fassen. H 2
Z4 EO K240 fig..

H3 Z0 EO K300 eine giinstige Gelegenheit schnell
wahrnehmen.

GFW 115511 002
Echo STT: 1

H3 Z0 EO K300 ref1ektierte‘$cha1]we11en, die an ihrem
Ausgangspunkt wieder [wahrgenommen werden. H3Z3 EO K330
Widerhall (1).

H4 Z0 30 K400 ein einfaches, dreifaches, mehrfaches *.
empfinden STT: 1

H2 Z0 EO K200 Reize *.

H3 Z0 EO K300 mit den Sinnen wahrnehmen,

H4 Z0 EO K400 Durst, Hunger, Kilte, Warme *.

GGG 103567 002
Erscheinung STT: 1 ‘
H3 Z0 EO K300|wahrnehmbarer vorgang.

H4 20 EO K400 es ist eine auffallende, eigentUm]jche,
seltene *; es ist eine bekannte *, daB ...; das ist
eine typische * fir ...

GGG 106659 003
Freibeuter STT: 2
H1 74 EO K140 fig.; abwertend.

H3 Z0 EO K300 jmd., der ohne Riicksicht auf Sitte u.
Gesetz seinen Vorteil [wahrnimmt.

| S

Figure 5.

~217-

Association Categories

- The set of all keywords for which (at least for one of
their meanings) there is a synonym, an antonym, or an
orthographic variant (AC 1-4).

- The set of all keywords having a cross reference to other
keywords with which they are in a semantically relevant
relation (AC 5 and 6).

Subcategories

— The set of all keywords with additional information con-
cerning syllabification (SC 1).

- The set of all keywords for which an explication of the
pronunciation is necessary (e.g. foreign words, words
with more than one possible pronunciation or accentuation)
(sC 2).

- The set of all units of meaning having a stylistically or
pragmatically marked dictionary entry (SC 4).

- The set of all units of meaning having a terminologically
marked dictionary entry (SC 5).

- The set of all keywords having a geographically marked
dictionary entry (SC 6).

- The set of all units of meaning confined in their usage
to a special situation, generally marked as temporal or
local (sC 7).

- The set of all keywords having a cross reference to other

keywords with which they are in a formal relation (SC 8
and 9).

Search Via Contents of Category Code

Retrieval of elements stemming from the contents of the cate-
gories is possible only if the researcher knows which elements he
wants to investigate. This is especially true for the systemat-—
ically conventionalized aspect of descriptive language (metalan-
guage) in a dictionary. This is valid for the contents of several
subcategories. Retrieval of this kind makes sense only in com-
bination with category code. The result will be more specialized
subsets:

Subcategory 1
- The set of all keywords at the syllabification of which

there is a change from -ck- to -k. k-, or from -11- to
-11.1-, etc.

-218-

Subcategory 2

-

The contents of this category--which contains information
on pronunciation and accentuation-—depends on the corres-
ponding keywords and thus are not conventionalized search
operands.

Subcategory 3

All subsets of the vocabulary each of which belongs to

a special word class (nouns, verbs, adjectives, preposi-
tions, conjunctions, adverbs, pronouns, prefixes, etc.).
Nouns

The subsets of all nouns in the vocabulary having mas-
culine or feminine or neuter gender.

All subsets of the nouns that have a special ending for
the genitive case and/or the plural.

The subset of nouns for which the plural form is marked
by the "umlaut".

The subset of nouns that have no plural forms.
The subset of nouns that have no singular forms.
Verbs

The subsets of all verbs in the dictionary with strong
or weak conjugation.

The subsets of verbs being conjugated with "haben" or
"sein".

The subsets of the verbs that have a special syntactic
"valency". (e.g. the set of all verbs with direct object,
the set of all verbs with an obligatory time adverbial,
the set of all verbs that may or must be reflexive, etc.)

Adjectives

The subsets of adjectives that have a special syntactic
"valency".

Subcategory 4

The subsets of the set of all--at least for one of their
meanings--stylistically marked keywords characterized by
one of the following labels: fig. (= figlirlich), geh.
(= gehoben), scherzh. (= scherzhaft), umg. (= umgangs-
sprachlich), veralt. (= veraltet), etc,

~219~-

Subcategory &

- The subsets of the set of all—-at least for one of their
meanings--terminologically marked keywords that belong
to one of the specialized technical terminologies (e.g.
the set of keywords that make part of the medical termi-
nology).

Subcategory 6

- The subsets of all geographically marked keywords that
each belong to one geographical part of the whole area
of German language use (e.g. all keywords that in a
special context or with a special meaning are used only
in Austria).

Subcategory 7
- The subsets of all keywords that occur only in a restrict~
ed temporal or local environment; a type list of the con-
tents of this category is in preparation and will provide
for specific subsets.
Subcategory 8
- The subsets of all keywords that are word forms, abbre-
viations, symbols, or acronyms and that are referred to
corresponding keywords.
Subcategory 8
- The subsets of all keywords for which there exists a

generally known abbreviation, symbol, or acronym, or which
can be represented by a numeral.

Search Via Elements of Natural Language

Finally there is the possibility of operating via operands
that are part of natural speech and that are nonconventionalized
parts of the semantic descriptive language. Such search opera-
tions are especially interesting for investigation of the elements
of definientia (MC 300), which-—-as mentioned above--aims at the
identification of semantic universals. By taking as search query
statement an element of natural language the semantic relevance
of which is intuitively assumed, the result will be the subset
of keywords for the definition of which this element (concept,
notion) is used. For this kind of research there are still the
following problems: the elements used for the definitions can
be polysemes or homographs; one concept can be realized by dif-
ferent synonymic words within the definientia, and furthermore
the research operation is rendered more difficult by the fact
that the search element is taken in its uninflected form (lemma)
whereas the elements in the definitions are often supplied with

-220-

flexional morphemes, etc. Thus no complete or systematic search
(result) can be expected, but rather a series of chance results.
This is exactly where our work with the data base finds its lim-
itation.

By giving the above list of research operations and retriev-
al results we could only indicate very incompletely the abundance
of possible computational linguistic investigations given by the
organization of our dictionary as a data base. By any combina-
tion of search operands (category codes and contents of categor-
ies) via Boole-operators we can set up more and more strict con-
ditions so that we arrive at more and more special subsets of
documents.

Linguistic Studies Beyond Data Base Use

In terms of linguistics our investigations are aimed at the
construction of a hierarchy of mentally related terms in the cat-
egory of definientia (main category 3). We are trying to find
out which words--and corresponding terms or concepts--are used
again and again in a dictionary for the semantic description of
the units of a language. We think that within the set of these
words we shall find those that constitute a kind of kernel for
a content structure of a language.

This is why we are at present engaged in analyzing the words
contained in our main category 300. Our data base can furnish
us with the wheole set of the material content of this category.
For further investigations we have developed individual programs
to generate indices, concordances, lists of tokens and types,
lists of associated terms (synonyms, antonyms and related terms)
for linguistic analyses being performed by computer or manually,
depending on the aims and structures of the individual tasks.

The result of our project is expected to be a metalanguage
for the semantic description of a natural language. This metalan-
guage will contain only semantically disambiguated words (terms)
on a conventionalized basis and will correspond to the metalan-
guage for grammatical and pragmatical descriptions of dictionary
entries contained in the subcategories of our data base.

At present a group of graduate students are engaged in pilot
studies investigating the so-called "grammatical words" of the
dictionary (data base) to discover the semantic deep structure
of grammatical relations expressed by prepositions and adverbs.
From the first outlines of their findings we are confident that
in the near future we will have at our disposal a set of "rela-
tional primitives" for semantically describing the relations
between the words (terms) within the definientiae and between
definienda and definientiae. This set of relations will also be
of interest for the further developement of data base systems
for information retrieval,

-221-

In most data base systems in use today, descriptors in in-
formation retrieval systems are connected by logical operators
that fundamentally function only as negation, conjunction, and
disjunction. More sophisticated operators have been installed
for special purposes (medicine, chemistry, jurisprudence) func-
tioning as causative, resultative, and similar relations. In
our system we can install a complete set of operators that func-
tion as relations representing the contents of a natural language
grammar.

REFERENCES

[1] Guckler, G., E. Miller, and G. Wahrig, Untersuchungen zur
gemantigchen Struktur natirlicher Sprachen mittels
EDV (Semstruktur), Zwischenbericht uber die Arbeiten
von Sept. 1974 bis Jan. 1976 am DFG-Projekt Wa 340/1,
DFG, Bonn-Bad Godesberg, and University of Mainz,
Mainz, 1976.

[2] Miller, B., Onomasiologie der deutschen Prdpositional-
phrasen mit lokalbezug, Staatsexamensarbeit, Mainz,
1976.

[3] Wahrig, G., Informationsklassen in Worterbuchern, Beitrag
zum Kolloquium "Kasus-Labels, mehrsortige logische
Konstrukte und handlungstheoretische Elemente in der
Grammatik", Bielefeld, April, 1975 (mimeo).

[4] wWahrig, G., Der Possesiv als Kategorie einer semantischen
Tiefenstruktur der deutschen Sprache, University of
Mainz, Mainz 1976 (in preparation for Festschrift fur
W. Th. Elwert, 1977).

[5] Wwahrig, G., Untersuchungen zur semantischen Struktur
natiurlicher Sprachen (Semstruktur), Beschreibung des
Projektes DFG Wa 340/1, University of Mainz, Mainz,
1974.

[6] wahrig, G., Strukturelle Grammatik: Inhalte grammatischer
Kategorien, Vorlesungsskriptum, University of Mainz,
Mainz, 1976.

[7] Wahrig, G., Zwischenbericht iuber das DFG-Projekt Wa 340/1,
Nachtrag, University of Mainz, Mainz, August 1976.

[8] wahrig, G., E. Miller, und G. Guckler, Untersuchungen zur
semantischen Struktur natiirlicher Sprachen mittels
EDV (Semstruktur), Zwischenbericht iUber die Arbeiten
von Sept. 1974 bis Jan. 1976 am DFG-Projekt Wa 340/1,
DFG, Bonn-Bad Godesberg, and University of Mainz, Mainz,
1976.

[9]

[10]

[111]

[12]

[13]

[14]

[15]

(161

[171]

[18]

[19]

[20]

-222-

Wirth, I,, Funktionen deutscher Prdpositionen mit Ausnahme
der Lokal~ und Temporalrelationen, Staatsexamensarbeit,
Mainz, 1977,

Christmann, R,, Das Wortfeld fir "Zeit" im Deutschen,
Staatsexamensarbeit, Mainz, 1977.

Gotthardt, W., Bericht iliber eine graphentheoretische Unter-
suchung zur Beschreibung der semantischen Struktur des
Grundwortschatzes, in Zwischenbericht iber das DFG-
Projekt Wa 340/1, Nachtrag, DFG, Bonn-Bad Godesberg, and
University of Mainz, Mainz, August 1976,

Form und Funktion von Definitionen in Worterbiichern, Mag.
-Arbeit, Lessenich-Drucklieb, Mainz, 1976.

Dahlberg, I., Uber Gegenstinde, Begriffe, Definitionen und
Benennungen, in Muttersprache 2, Wiesbaden, 1976.

Guckler, Zweisprachiges Worterbuch filr angendherte opera-
tionelle Analyse semantischer Entsprecherungen mittels
EDV, Niemeyer, Tilbingen, 1975.

Wahrig, G., Anleitung aur grammatisch-semantischen Beschreib-
ung lexikalischer Einheiten, Versuch eines Modells,
Niemeyer, Tiibingen, 1973.

Lizenzprogramme, Ubersicht iber das Storage und Information
Retrieval System (System zur Informations-Speicherung
und Wiedergewinnung) fur die Systems IBM/360 und
IBM/370 (0S), IBM, Stuttgart, 1974.

IBM, STAIRS-Handbuch, Teil A: Funktionen und Moglichkeiten,
and Teil B: Von der Datenerfassung zum betreibs-
bereiten System, IBM, Stuttgart, 1973.

Zusatzprogramme fir den Einsatz von STAIRS im I & D-Bereich,
ZMD-Sehrift, 1IBM, Stuttgart, 1974.

Wahrig, G., ed., Der deutsche Grundwortschatz, Stuktur und
Bedeutung, Deutscher Taschenbuch Verlag, Munich (in
preparation).

Buhler, K., Sprachtheorie, Die Darstellungsfunktion der
Sprache, Fischer, Stuttgart, 1965,

-223-

The Role of Prepositions in
Understanding Relations of Causality

G. Lau

INTRODUCTION

Recently the field of causality and motivation has gained
considerable interest. The use of concepts of causality has
become important in artificial intelligence (AI) research and
in the theory of argumentation. "How do we answer why-questions?"
This problem has become central for AI. On the other hand in
the theory of argumentation the main problem consists in finding
a way for the generation of answers to questions like "How can
you know that?". AI--in other words—--is more bound to the object
level of communication, while the theory of argumentation deals
with a meta level. But pure separation of object and meta level
seems to be impossible, as the psychologist Piaget has shown us.
(He distinguishes between three different kinds of explanations,
causal (the connection between cause and effect), logical (con-
nections between propositions), and psychological (a mixture--
reasons and actions)[1]).

When considering natural language (NL) interaction with
computer data bases, both levels surely have relevance. A user
should be able to get an answer to his question, why some event,
of which he has been told by the system, has come into existence.
There will be situations when the user has some doubts with re-
spect to information coming out of the system. He wants to know
how the system has formed that information. In a computer system
a number of preconditions must be simulated significant for ver-
bal communications between humans [2]. The following is my free
translation of [2].

SOME BASIC REQUIREMENTS FOR ANSWERING QUESTIONS

- Everybody who starts talking needs one or more individuals
to talk to.

- The individuals involved in verbal communication agree
in basic ideas how to act, i.e. they have a definition
of the situation in which they communicate. The possi-
bility of cooperating in that situation is founded on
that definition.

- The situation is a social one, in so far as the involved
individuals react with each other.

-224-

- One of the individuals needs some further definition of
the sjituation.

It is a topical question and it calls for a widening of the
definition of the situation. The question can be directed back-
wards: then a presupposed part of the definition is being chal-
lenged. Or the question can be directed forwards: the questioner
asks for some more detailed specification of the situation.

A minimal cycle of communication consists of the following
triple:

D., the set of presupposed utterances that consitutes the
definition of the situation up to the moment of the
question;

F., the question presupposing Di; and

X’ the utterance that is an answer to question F. and gives
a specification of Di' J

This triple of subsequent utterances serves as a scheme for an-
swering questions put explicitly, as well as a basis for under-
standing texts. When understanding texts we have the task of

finding questions F, by which we could have asked for the infor-

mation given in Dk on the basis of Di'

Let us consider the following quite different sequences of
utterances as an example:

I IT III
D, ... The recorder is | ...caiinineenaceenn ... The recorder is
. switched on. | ciiiiiieieiiiiienn switched on.
F, And why? Why is the record= |ciiiiiiennnneas

er switched on? | ...ieciiiinnncnannnn

D. I have pressed the I have pressed the I have pressed the
power switch. power switch. power switch.

The dots in front of the information in Di are to indicate

that a complete definition of the situation would be more than
the sentence in Di' That will be understood at once when we

consider the question Fj in sequence I: the why—-question is

ambiguous. At least in German, you can ask for the goal as well
as for a cause when using "warum?". In order to be able to answer

Fj in I, another part of Di has to be presupposed: the questioner

is more likely to need information about the cause of the focused
element of the situation, than to need information about its goal.

In I and II the question Fj is being put explicitly. But in

III, which serves as an example for a text, such a question would
be quite unnatural. The hearer must decide whether he supposes
a causal relation exists between the two facts. The result of
his understanding is only equal to I and II if he assumes an F,
as in I to be natural.]

DIFFERENT KINDS OF CAUSALITY

There is no standard subdivision of the different kinds of
causality. Those that have been introduced in AI differ in sev-
eral aspects [cf. 3]: there is a different number of concepts;
and the same concepts are used to combine units of language which
are of quite different complexity. Schank [4] for instance uses
a reductionistic way of representing the meaning of NL inputs.
His four causal relations (ENABLE, RESULT, REASON, INITIATE) are
defined to combine only basic conceptualizations. Rumelhart ([5]
does not say much about the complexity of the events, actions,
etc. which are the facts of the relations of ALLOW, INITIATE,
MOTIVATE, or CAUSE. Definitions of causal relations have been
very vague so far in AI. It is useful to study the results of
logicians and philosophers {6,7]. 1In their work we find exact
definitions of causal concepts; and we need exact definitions
as soon as we deal with inferences.

The lack of a standardized subdivision of different kinds
of causality encouraged me to collect causal words from the German
language in order to have enough material for an extensive analy-
sis. In this paper I want to deal with prepositions only. But
that does not mean that prepositions are more important than
causal verbs (VERURSACHEN, FOLGERN, etc.), nouns (URSACHE, GRUND,
MOTIV, etc.) and, small words like conjunctions (DENN, WEIL, etc.)
and particles (NAMLICH, FOLGLICH, JA, etc.) which play a very
important role.

SOME CHARACTERISTICS OF PREPOSITIONAL NOUN PHRASES

The specific characteristics of prepositional noun phrases
need a twofold answer: one answer reflects the problems of the
generation of utterances; and the other deals with problems of
understanding a given noun phrase.

The Generation of Prepositional Noun Phrases

Wwhen a communicator Ci wants to tell his partner C2 of the
existence of some causal relation between two facts, he may build

-226-

a prepositional noun phrase and embed it in a sentence. This
prepositional noun phrase in German may appear at different
positions in the sentence. It is part of the sentence. The
prepositional part of the noun phrase puts the nominal part (to-
gether with its attributes) into relation with the rest of the
sentence. It often happens that a noun phrase does not express
all the details that would be expressed by a whole sentence.
Noun phrases sometimes demand ellipses in order not to be too
long.*

DER RECORDER IST INFOLGE DES NIEDERDRUCKENS VON
POWER (DURCH MICH) EINGESCHALTET.

(The part in brackets may be left out.}

In this example, C1 has to make decisions about the completeness

of his verbalization: he may or may not leave out the agent.

To a certain extent his decision depends on vocabulary. (He

may for instance use TASTENDRUCK instead of NIEDERDRUCKEN VON
POWER.]}] But his decision to leave out this or that part also
depends on the choice of prepositions: elements of meaning may
move from a nominal part of the noun phrase to the prepositional
part, as you can see from the following examples:

DER RECORDER IST WEGEN DES PLANS, PETER ZU ERFREUEN,
EINGESCHALTET.

DER RECORDER IST ZU PETERS SPASS EINGESCHALTET.

DER RECORDER IST PETER ZULIEBE EINGESCHALTET.

We cannot say that the last sentence is elliptical as compared
with the first one. We just find a short expression containing
all the information of the longer one. It is the use of a cer-
tain preposition (ZULIEBE) that makes it possible to save words
without losing information. Thus the generation and the form
of causal prepositional noun phrases depends on the meaning of
prepositions. A language having few causal prepositions offers
only a few possibilities for leaving out nominal parts without
loss of information.

Understanding Causal Prepositional Phrases

A well defined formulation of the meaning to be verbalized
was the starting point for our considerations of how to generate
noun phrases. Now, in the process of the rational reconstruction

*I must write most of the examples in German now, although I
know this will make the paper more disagreeable.

-227-

of the understanding of noun phrases, a formulation in NL is our
starting point, The formulation needs translation into some re-
presentation of meaning, When thinking of generating noun phrases,
it was possible to restrict the field of relations to be handled.
If, for instance, we disallowed the meaning "meeting somebody's
interests", nothing would be wrong. ZULIEBE would never be used.

In simulating the process of understanding, things are re-
versed: no meaning may be disallowed, for the hearer C2 cannot

hinder his partner C1 in wanting to convey some specific meaning.
Therefore it is the task of C2 to try to understand everything c,

says. In order to be able to do that, he needs procedures for
translating all words of his language into some other representa-
tion. The simulation of understanding processes drives us to the
systematization of vocabulary. In doing this, we become conscious
of the differences in the meaning of words. There is a result

of this activity relevant for the generation of prepositional

noun phrases: the inventory of concepts in our well defined area
increases as soon as we start systematical studies in lexicology.

When we want to solve some of the problems of the generation
of prepositional noun phrases, we should undertake two subsequent
steps-—~collect all causal prepositions of some language, and
judge their differentiation of meaning.

Inventory of Causal Prepositions in the German Language

I. Prepositions expressing causality but nothing else:

ANGESICHTS LAUT

ANHAND MANGELS
ANLASSLICH MITTELS (T)
AUFGRUND RUCKSICHTLICH
BEHUFS UM ... WILLEN
DANK VERMUGE
EINGEDENK VON ... WEGEN
ENTSPRECHEND WEGEN

GEMASS ZUFOLGE
HALBER ZULIEBE
HINBLICKLICH ZWECKS

KRAFT

I1. Prepositions expressing causality or something else:

AUF ... HIN (OB)

AUS UBER

BEI UM

DURCH UNTER

IN VON

MIT FUR

NACH VOR (LAUTER)

U

-228-

III. Prepositions dependent on certain verbs, nouns, and adjec-
tives that constitute a causal relation between the pred-
icate and an object:

ER LEIDET AN EINEM HERZFEHLER.,
SIE IST STOLZ AUF IHRE PRUFUNG, .
UBER DIESEN SPASS GAB ES VIEL GELACHTER.

Group I consists of 23 prepositions, and group II of 15.
Group III prepositions can only express causality when they are
in connection with other words: they lack any proper causal
meaning themselves and are ignored in the following. Of the 38
prepositions in groups I and II, what features can we find to
build a subcategorization?

Let us consider the following hypothesis that I want to use
during the analysis of prepositions:

- Precondition: Two prepositions are under consideration.
PREP1 has an extension such that it is wider than the
extension of PREP2 and includes the extension of PREP2.
Here we usually say that the intension of PREP2 is greater
than the intension of PREP1. (This would be the case
for instance with PREP1 = WEGEN and PREP2 = ZULIEBE.)

- Hypothesis: The preposition with the greater intension
has historically come into existence because it summa-
rizes a relatively complex causal relation that has to
be communicated frequently.

Prepositions with a great intension reflect the specific features
of causal relations essential for the praxis of some society.
This assumption may be thought of as having some relevance for
problems that arise in understanding NL. Let us take a verbal
expression that carries information about causality in an incom-
plete or inaccurate way. If C2 needs more exact information

about detailed causal features, for instance in order to be able
to go on acting, then he needs heuristics that tell him how to
complete his information. It seems quite natural that his sub-
jective heuristics accord with specific intensions proved to be
important for his society in so far as they are carried by prep-
ositions. The individual then could be thought of as following
exactly those heuristics that have got objective significance,
in so far as they have been put into the verbal form of preposi-
tions. The preposition is the outward form of certain heuristics
to gather information about causality. We learn heuristics for
language understanding in the field of causality by learning the
meaning of prepositions, which is their essence.

On the basis of this hypothesis our analysis of the meaning
of prepositions will have importance far beyond the field of
understanding prepositional noun phrases. The combination of

causal

-229-

features of prepositions would serve as patterns of the

activity of understanding, even when no prepositional phrase
appears. This is the case when somebody tries to complete his
information, or tries to find a more detailed specification of
causality than he could find explictly in some verbal expression.

In this paper I want to undertake only the first step to-
wards a verification of the hypothesis: I want to find a plau-
sible subcategorization of causal prepositions, and I want to
show its use during the process of understanding causal preposi-

tional

phrases that are elliptical.

SOME SYNTACTICAL PECULIARITIES OF GERMAN CAUSAL PREPOSITIONS

The word preposition is misguiding, for German prepositions

do not
lowing
found:

always appear in front of the noun phrase (NP). The fol-

possibilities for the position of prepositions can be
Position always in front of the NP, e.g. MITTELS;
Position in front of or at the end of the NP, e.g. WEGEN;

Two-part preposition with one part in front of, and the
other part at the end of the NP, e.g. UM ... WILLEN;

Position always at the end of the NP, e.g. HALBER;

Preposition consisting of several parts in front of the
NP, e.g. VOR LAUTER.

The second case sometimes carries ambiguity:

PETER ENTSINNT SICH DES RECORDERS WEGEN DER
TONBANDAUFNAHME .

This sentence can be understood in two different ways:

-—

DER ANBLICK DES RECORDERS ERINNERT PETER DARAN, DASS ER
EINE TONBANDAUFNAHME MACHEN WOLLTE. (WEGEN is being
considered as a preposition at the end of the NP.)

PETER ENTSINNT SICH DES RECORDERS, DER FUR DIE TONBAND-
AUFNAHME BENOTIGT WIRD. (WEGEN is being considered as
a preposition in front of the NP.)

Sometimes in German a preposition and an article, connected
with one another, form one word. We must distinguish between
two cases:

Indissoluble fusion, which needs not be analyzed; these
prepositions are special words, e.g. PETER IST BEIM
AUFNEHMEN.

-230-

~ Fusjion should be analyzed, e.g. PETER DRUCKT ZUM STARTEN
DES MOTORS AUF POWER,

One more peculiarity of prepositions that appear at the end
of the NP is that they sometimes are separated by attributes from
the NP that they really connect syntactically with the rest of
the sentence:

DER KONTROLLAMPE AM OBEREN RAND DES RECORDERS NACH
MUSSTE DER RECORDER EINGESCHALTET SEIN.

Morphosyntax of German NPs can be considered as being solved
to a high degree. There exist algorithms for an analysis that
goes far beyond the complexity of NPs of the sort being used in
contemporary AI systems [8]. In German some problems that in
English require semantic analysis can be solved by using syntax
analysis. But this is not the place to restart the debate whether
syntax or semantics are more fundamental in writing algorithms.

SEMANTIC SUBCATEGORIZATION OF CAUSAL PREPOSITIONS

Three questions were put in order to find a first, tentative
subcategorization: what is the specific quality of the first
state/event expressed by the sentence? What is the specific qual-
ity of the second state/event expressed by the NP? What is the
quality of the relation between them? An example for GEMASS:

PETER DRUCKT GEMASS PUNKT 3 DER BETRIEBSANLEITUNG
AUF POWER.

- First state/event: PETER DRUCKT AUF POWER~~classifica-
tion as an action;

- Second state/event: PUNKT 3 DER BETRIEBSANLEITUNG
SCHREIBT ETWAS VOR~~classification as a technical norm;

- Quality of the relation: an action is guided by a tech-
nical norm.

In Table 1 the semicolon divides each group into those pre-
positions that carry only causal meaning and those that might
carry other meanings as well (local, temporal, etc.). Note that
the members of one group cannot at will be replaced by some other
member of the same group for two reasons. The causal relations
have not been subcategorized according to every single difference
in their quality in order to get a limited number of groups; thus
prepositions rare in use were neglected a little. The subcate-
gorization does not contain information on what sort of ellipsis

-231-

Table 1. Preposition groups.

The first event is in the sense of physical causation brought about
by the second event: INFOLGE, ZUFOLGE, WEGEN; DURCH, VON.

The second state/event serves as a symptom of the first state/event:
NACH (at the end of the NP).

The first state/event is an action that has been initiated by the
second state/event: AUF ... HIN.

The first state/event is some conduct depending on the second state/
event which is some sensation of the same individual: VOR LAUTER;
AUS, IN, VOR.

The first state/event is an action guided by the second state/event
being some rule, convention, law, prescription: ANGESICHTS, ANHAND,
AUFGRUND, EINGEDENK, ENTSPRECHEND, GEMKSS, LAUT, VON ... WEGEN;
NACH.

The first state/event is an action, and the acting individual tries
to bring about the second state/event: BEHUFS, HALBER, ZWECKS,
HINBLICKLICH, EINGEDENK, ZULIEBE, RUCKSICHTLICH, UM ... WILLEN,
WEGEN, UM, FUR.

The first state/event is some conduct that may be interpreted as
the second state/event which is an action: ANLASSLICH, 2ZU.

The first state/event can only come about by the second state/event
which is a continuous precondition: DANK, KRAFT, VERMOGE, MANGELS;
UBER, BEI, UNTER, VOR LAUTER.

The first state/event is the opposite of some state/event, for which
the second state/event is a nonfulfilled precondition: MANGELS.

(Prepositions indicating the use of tools and means are omitted.)

is possible for the second state/event, expressed by the NP.
For instance ZWECKS and ZULIEBE are members of the same group,
but it can easily be shown that they cannot be used synonymously:

PETER SCHALTET DEN RECORDER EIN, DAMIT PAUL SICH FREUT.

This sentence can be paraphrased using NPs with ZWECKS or ZULIEBE:

PETER SCHALTET PAUL ZULIEBE DEN RECORDER EIN, (Not
possible: ZWECKS PAULS.)

PETER SCHALTET ZWECKS DER ERMUNTERUNG PAULS DEN
RECORDER EIN. (Not possible: DER ERMUNTERUNG PAULS
ZULIEBE.)

=232~

THE USE OF THE SUBCATEGORIZATION IN HEURISTICS FOR UNDERSTANDING
NPs

First we shall have to establish a definition of a situation.
I will use two ways of illustrating details of the definition:
the reductionistic representation of Schank [9], and the more
complex diagrams of Goldman [7, p. 30ff.]. I hope they are fa-
miliar to the reader.

The example of a story will give us an idea of the situation
we are talking about. The specific utterance will be translated
into Schank's and Goldman's diagrams. After that we will continue
the story with a question that will be answered by four alterna-
tive NPs, differing only in the prepositions. We will show how
the information underlying our subcategorization can guide the
understanding of the NPs.

Text PETER UND PAUL MACHEN EINE TONBANDAUFNAHME. PETER
STECKT DAS KABEL EIN, DRUCKT DIE POWER-TASTE, UND
SPULT ZURUCK, UM DEN RECORDER FUR DIE AUFNAHME
BEREITZUMACHEN. DANN VEREINBAREN PETER UND PAUL,
DASS PAUL ZU SPRECHEN BEGINNEN SOLL, SOBALD PETER
DIE AUFNAHME STARTET.

Schank's diagram

Peter PTRANS plug contact

result
Cable STATE 220V Peter PROPEL power-switch
ANC enable result

Recorder STATE 220V
Peter PROPEL rewind-switch
ANC|enable result
Recorder PTRANS tape
result
Tape LOC end

Peter MTRANS ... to Paul

Paul MTRANS ... to Peter

-233-

Goldman's diagram

Peter makes recordero

ready for use.
Peter puts cable o Peter puts recorder ™
®to voltage of 220V. to voltage of 220V. y
4
o Peter puts cable o Peter lights recorder.
to voltage. 1
1 1
oPeter puts in plug. o Peter presses power switchi)

Peter and Praul establish an arrangement.

Peter starts arranging Paul answers
something. O Peter in a
| | positive sense.

3 3

o Peter says something. o Paul says something.

Continuation of the story

DANN BETRITT MARIA DEN RAUM. ALS SIE PAUL SPRECHEN
SIEHT, FRAGT SIE, WARUM ER SPRECHE. PAUL ANTWORTET:

- GEMASS EINER ABMACHUNG.
- AUF EINE ABMACHUNG HIN.
- ZU EINER ABMACHUNG.

- ZWECKS EINER ABMACHUNG.

What would be a correct result of understanding the different
answers? Note that in the NPs nothing has been said about the
agents, the time, and the contents of the arrangement (ABMACHUNG) .
In the diagrams you will find much more information about the
arrangement than is expressed in the NPs. The information can
only be found if the features of the subcategorization are used
as additional hints during the process of understanding.

The skeleton of the state/event expressed in the NP is the
following:

Agent X and agent Y arrange at time t1 that agent X/Y

will perform an action at time t1+n. (n 2 1)

-234-

GEMASS (Cf. Table 1.)

Hints for the interpretation: Look for some convention,
arrangement, law, etc. in which Paul is one of the agents. The
time of the second state/event is before the time of the action
being the second state/event. The contents of the convention,
etc. must be the same as the action that is the first state/event.

Paul starts talking ac¢cording to an arrangement.

X and Paul arrange that Paul
will start talking at time t

14n° o Paul starts talking
o o according to an
arrangement.
o X says something o Paul says o Paul says something.
something.
t t14n
Paul MTRANS...
Paul MBUILD
t1+n
reason Arrangement at t1 between X and Paul that

Paul MTRANS at t1+n.

Paul MTRANS...
In both diagrams the information verbally expressed is underlined.

All other information comes from the specific features of the
German preposition GEMASS.

AUF ... HIN (Cf. Table 1.)

Hints for the interpretation: Look for the second state/
event in the past tense or the present. There need not be any
identity of the agents of the first and second state/event.

X and Y arrange something.
(o 2) o Paul reacts to some
+ event which is an
arrangement at t, or
t

1-n°

o X says something. ¢ Y says something. o Paul starts talking.
t t

or t

1 1-n 1

-235-

Arrangement between X and Y.
initiate
Paul MTRANS...

Paul MBUILD
Arrangement between X and Y

reason ?

Paul MTRANS...

ZU (Cf. Table 1.)

Hints for the interpretation: The first state/event is
some conduct of Paul that may be interpreted as an action
(= second state/event) of Paul.

© Paul arranges something.

Paul MTRANS (Arrangement

3 between Paul and X.)

o Paul talks.

ZWECKS (Cf. Table 1.)

Hints for the interpretation: Connect the first state/
event (= action) with the intention of the agent to bring about
the second state/event. Establish some position of expectance

for the second state/event at t1+n.

Paul brings about an arrangement

X and Y arrange something.
© Paul wants to bring o o

about an arrangement

between X and Y.

3

o Paul talks. OX talks Y Talks.

t1 t1+r1

Paul MTRANS ...

initiate
result

Arrangement between X and Y.

-236-

In our example it was Maria's task to decide with respect
to the following specifications of the situation: Who are the
agents of the arrangement? When did/does/will the arrangement
happen? 1Is there a logical connection between the contents of
the arrangement and the first state/event? Can the arrangement
be considered a fact? The quite different structure of the dia-
grams shows us the differences brought about by the use of dif-
ferent prepositions. All information not underlined could be
inferred by means of the features of the subcategorizations of
prepositions.

REFERENCES

[1] Piaget, J. Urteil und Denkprozess des Kindeg, Padag. Vlg.
Schwann, Disseldorf, 1972.

[2] Maas, U., Kann man Sprache lehren?, Rogner & Bernhard,
Frankfurt, 1976.

[3] Bobrow, D.G., and A.M. Collins, eds., Representation and
Understanding, Academic Press, New York, 1975.

[4] Schank, R.C., The Structure of Episodes in Memory, in
D.G. Bobrow and A.M. Collins, eds., Representation
and Understanding, Academic Press, New York, 1975.

[5] Rumelhart, D,E., Notes on a Schema for Stories, in
D.G, Bobrow and A.M. Collins, eds., Representation
and Understanding, Academic Press, New York, 1975.

[6] wvon Wright, G.H., Explanation and Understanding, Cornell
University Press, Ithaca, New York, 1971.

[7] Goldman, A.I., A Theory of Human Action, Prentice-Hall,
Englewood Cliffs, New Jersey, 1970.

[8] Morphosyntaktische Voraussetzungen fiir eine maschinelle
Sprachanalyse des Deutschen, in Forschungsberichte
des Instituts fiir deutsche Sprache, Band 18, Ids,
Mannheim, 1974.

[9] Schank, R.C., Causality and Reasoning, Technical Report 1,
Mimeo, Institute for the Study of Semantics and Cog-
nition, Castagnola, Switzerland, 1973.

SYSTEM ASPECTS AND CONSIDERATIONS

-239-

A Domain Oriented Natural Language
Understanding (DONAU) System for Man-Machine
Interaction with Dynamic Data Bases

M. Bernorio, M. Bertoni, A. Dabbene, and M. Somalvico

1. INTRODUCTION

Natural language understanding (NLU) has been for many years
one of the central research goals of artificial intelligence (AI)
[1,4]. This paper is intended to provide a conceptual and experi-
mental contribution to this field, based on the invention of a
particular modular architecture for an NLU system, and centered
on the realization and experimentation of DONAU (Domain criented
natural language understanding) system, in a version intended to
provide NL programming of a robot [5,13]. The study of the prob-
lem of NLU with the goal of obtaining a highly modular system of
general validity [6,7,10] is intended to be able to extract from
an NL input sentence (IS), information useful for constructing
an order to be executed by a robot or a query for a data base
[16,17,18].

A preliminary version of the DONAU system has been developed
and experimented with on the UNIVAC 1108 of the Milan Polytechnic
AI Project (MP-AI Project) [9,12]. At the present time, a DONAU
version devoted to the semantic domain (SD) of robotics is work-
ing; a new version devoted to the SD of the IIASA data base will
be developed next. The DONAU system is based on general criteria,
on which there have already been experiments, and which allow the
development of different DONAU versions devoted to different SDs.

The DONAU version on robotics has not reached a final stage
of development. Study and evolutional changes are being carried
out in order to increase and improve the modularization of the
system, and to make more practicable and simple any change of SD
of application.

The reason the first DONAU version has been devoted to robot-
ics is related to the existence, within the MP-AI Project's Robot-
ics Laboratory, of the SUPERSIGMA robot devoted to the assembly
of complex mechanical systems. 1In the near future, it will be
possible to interact with SUPERSIGMA in Italian. The possibility
of programming a robot in NL represents an example of an interest-
ing connection between the researches of AI and the technical
exigencies of robotics. The SD of robotics in relation to NLU
presents a practical and realistic environment (namely industrial
robotics) that helps clarify some controversial points about how
to face such research problems.

-240-

After having chosen the SD of robotics, a simple assembly
robot has been simulated on the UNIVAC 1108 computer for the
development of a first DONAU version. This simulated robot cor-
responds in many ways to the SUPERSIGMA robot, so that, in the
future, a direct connection between DONAU and SUPERSIGMA should
be easily established. The simulator has been developed by using
both LISP and MICROPLANNER languages [2,3,14].

The commands that can be executed by the robot are expressed
by means of patterns of MICROPLANNER theorems and so this is the
control language at present [8,11,15]. It will be possible to
replace this simulator with a module of command of SUPERSIGMA
later.

In order to develop a new DONAU version to work on a data base,
the robot-oriented module will be replaced by another module that
can deal with the queries of a data base. After the construction
of the robot's simulator, we selected a definitive set of sen-
tences, related to man-machine interaction, called the interac-
tion protocol (IP). The various modules for performing semantic
analysis have been constructed with the guidance of the IP. Such
goal oriented construction of the semantic analyzer constitutes
one of the innovative characteristics of our system. Moreover
examination of each IS of the IP enables a deeper understanding
of the NL subset related to the actual SD considered by the DONAU
system. All the peculiarities, ambiguities, and problems related
to NLU are considered in a more precise and realistic way by us-
ing IP.

The understanding analysis of an IS is done by syntactic
analysis, semantic analysis, operative information extraction,
legality control, and finally interaction execution, The syn-
tactic analysis makes use of the PIAF system, developed at the
University of Grenoble, France, that works also for the Italian
language. To an IS the PIAF system produces as output a few
syntactic structures (SSs). The semantic analysis is performed
by a semantic discrimination network (DN) based on a hierarchy
of model lists (MLs); the DN is an important part of the modular
architecture of the DONAU system. A uniform technique has been
developed that enables the construction of a different DN for
a different SD and, hence, a different IP (i.e. a different DONAU
version) is selected. The operative information extraction is
performed by another module which operates on the results of the
matching between the different SSs and the DN. The results, con-
tained in information lists (ILs), are processed automatically
within another module by means of elimination rules based on
domain oriented information sets specifying the partial ordering
of information content assigned to various words of the lexicon.

Information sets, too, can be changed within a general tech-
nique when a new SD, and hence a new DONAU version, is developed.
Legality control is made to check that the extracted operative
information (OI) is consistent with the interaction world. It

-241-

can eliminate operational ambiguities and produces at its output
the executable interaction (EI). The module for such control is
general; its output is provided to the robot's simulator, which
then executes the commands.

In Section 2, we illustrate the role of syntactic and se-
mantic analysis in NLU in a restricted SD. In Section 3, the
functional and internal architecture of the DONAU system is pre-
sented. In Section 4, a detailed example of understanding of
an IS is presented. 1In Section 5, the experimental results and
implementation characteristics of the DONAU system are discussed.
In Section 6, the design criteria of a DONAU version for query
of data bases are illustrated. Appendix 1, MICROPLANNER charac-
teristics [3], concludes the paper.

2. NATURAL LANGUAGE UNDERSTANDING IN A RESTRICTED SEMANTIC
DOMAIN

In this section we describe, in a general way, how structured
NLU and the analysis of an NL IS is performed by the DONAU system.
The NLU process can be divided into the following phases:

- syntactic analysis;

- semantic analysis:

- operative information extraction:;
- legality control; and

- interaction execution.

The syntactic analysis is made by the PIAF system developed at
the University of Grenoble [7,8] which works currently for French
but can be adapted to ITtalian, as well. Thus we have organized
the syntactic and semantic analyses as two independent activities
performed by two autonomous modules [cf. 4]. We have not con-
sidered a solution by a close interaction between two analyses,
as suggested by Winograd and other authors [1,2], and there is

a consequent decrease of efficiency arising from the lack of co-
operation between the two analyses. Our decision was influenced
by our having already available a module for performing the syn-
tactic analysis; we thus avoided the need to develop such a module
ourselves. A more important reason is that the PIAF system can
provide for one IS, only a very limited number of output SSs, and
so it is not cumbersome to examine all of them. Such a design
criterion enables one to proceed with a system that has a modular
structure that can be modified and improved without a change on
one module influencing another.

The idea of considering the DONAU system as a software system,
with all the most advantageous technological results of software
engineering research, such as modularization, is one of the main

-242-

characteristics of our research, One inconvenience of having
syntactic analysis independent of semantic analysis could be that
an IS, not permissible at the syntactic level, could be eliminated
during the syntactic analysis and it might contain the informa-
tion necessary for providing a command to the robot. This would
be unacceptable, because it would make the formulation of ISs too
difficult.

The PIAF system allows nonpermissible ISs to be analyzed
within limits and construction of the corresponding SSs. Seman-—-
tic analysis of such SSs then occurs to effect the understanding
process. This PIAF characteristic is a great advantage that has

not yet been fully exploited. It will provide in the future
interesting improvements.

The complexity of the Italian language makes it impossible
for machine understanding at a completely general level. NLU
should always be founded on a well defined (and, hence, neces-
sarily formalized) NL subset and on a precise semantic domain
(SD) of application. For the first version of our DONAU system
we selected the 8D of robotics because we have the SUPERSIGMA
robot devoted to the assembly of complex mechanical systems in
our laboratory. Thus we get a direct NL interaction between the
user and the programming of SUPERSIGMA for processing and execut-
ing an assembly algorithm. The mechanisms will be discussed in
the next section.

The general criterion we used was the adoption of a nonde-
terministic language for processing the various SSs in order to
discriminate which of them should be considered as the correct
one, and hence eliminating syntactic ambiguities. We selected
MICROPLANNER as a language in which the semantic DN devoted to
such disambiguating tasks has been constructed; hence the DONAU
system is programmed both in LISP and MICROPLANNER. We have
designed the DN under the guidance of a very simple subset of
understandable NL, called interaction protocol (IP), made up of
a number of model lists (MLs), hierarchically arranged, whose
selection and definition is based and guided by the IP. The
latter has been defined with the idea of using some typical ISs
from which an unambiguous meaning should be obtained and an
executable operative information extracted. Obviously, the IP
selection should not limit the extension of the Italian subset
that can be utilized in the NL interaction. This is true in our
case, since the IP is simply a subset of the understandable NL.

Thus our DONAU system is modular and each module is designed
with some general technique and with some SD orientation. The
IP plays the role of orienting the construction of the DN towards
the selected SD. Information extraction is the next phase of the
understanding process. It is executed by a separate module whose
input is the information constructed by the matching between the
various SSs of an IS, and the DN. Such constructed information,
contained in ILs is processed to eliminate semantic ambiguities,
by this module, which is based on the operation of particular

-243-

elimination rules. The module is based, like the preceeding

two modules devoted to the syntax and semantic analyses, on an
orientation towards the selected SD. Such guidance is provided
by information sets dependent on the SD, that specify the appli-
cation of the elimination rules. We obtain as the output of this
module operative information (0I) which corresponds to interac-
tions with the real world (in our case commands to a robot, but,
in another case, queries to a data base).

The next phase, called the legality control, is performed
by another module which processes the OI and eliminates the oper-
ative illegalities in those ISs that are correct both at the
syntactic and the semantic level, but that are inconsistent with
the actual status and configuration of the interaction world (the
robot or the data base). This module, too, is strongly related
to the selected SD. The output, EI, is processed by the last
module of the DONAU system, which, in our DONAU version on robot-
ics, is the robot simulator, but later will be the interaction
execution module connected to the SUPERSIGMA robot.

The syntactic analysis is performed by the PIAF system,
while the successive phases (semantic analysis, etc.) are carried
on by the DONAU system. While the DONAU activity will be dis-
cussed in greater detail in the following section, it is worth-
while to illustrate here the output of the PIAF system, which
constitutes the input of the DONAU system at present.

The PIAF system receives the IS to be analyzed, and provides
as its output a small number of SSs as alternative candidates of
the syntactic interpretation of the IS.

It is the task of further DQONAU semantic analysis to choose
the one correct candidate, not only syntactically, as anyone of
the SSs, but semantically as well, as the selected SS is. While
an SS, actually outputted by the PIAF system, is a tree, the in-
put to the DONAU system is a parenthetical description of the
same tree. Thus to the tree:

AN

will correspond the list (a b ¢ ¥ d), i.e. a list defined recur-
sively such that the first element is the root of the tree, and
the asterix separates the left subtrees from the right ones. The
PIAF system constructs an SS in such a way that the root of a
tree corresponds to an NL word which, in the IS, is preceeded by
words contained in the left subtrees and is followed by the words
contained in the right subtrees.

In order to illustrate the output of the PIAF system in a
better way, let us examine the following simple example of IS:

-2044~

METTI LA CROCE SUL TAVOLO

(which, in Italian, means: put the cross on the table).

The PIAF system provides, as its output, the following two SSs:
METTI_ (verb)
CROCE (subc) SUL (prep)
LA (artds) TAVOLO (subc)
((METTI verb)* ((CROCE subc) (LA artds)*) ((SUL prep) * (TAVOLO subc)))
METTI (verb)
CROCE (subc)
LA (artds) SUL (prep)
TAVOLO (subc)
((METTI verb) * ((CROCE subc) (LA artds) * ((SUL prep) * (TAVOLO subc))))
In this example of IS, we can identify three parts: the verb
(METTI (put)), the object (LA CROCE (the cross)), and the place
(SUL TAVOLO (on the table)). It is easy to see that only the

first of the two SSs, presents a clear identification of these
three parts.

These are the criteria that will guide the algorithms devoted

to the semantic analysis, as will be illustrated in the next sec-
tions.

3. ARCHITECTURE OF THE DONAU SYSTEM

In this section we describe the architecture of the system
from two points of view: one related to the functional aspects
of the system, and the other to the implementation and program
organization of the system. As we have seen we distinguish be-
tween syntactic and semantic analysis. The PIAF system does the
first analysis and provides, at its outputs, some SSs in the form
of LISP lists. Whenever the IS has a syntactic ambiguity, PIAF

=245=-

gives as output more than one SS. The semantic analysis does
the necessary discrimination between the alternative SSs.

To achieve this, the semantic analysis has been programmed
within a nondeterministic programming language MICROPLANNER.

Figure 1 shows the logical organization on which the DONAU
system is based. The input of the DONAU system is the set of the
SSs output from the PIAF system. The output of the DONAU system
is the assembly algorithm for the robot and the answers to the
questions; in the case of misunderstanding of the input, some
diagnostic message can be given as output as well.

In the MICROPLANNER problem base we find the morphological
model (MM) given by the PIAF system and inserted with the PIAF/
MICROPLANNER translator. The semantic model (SM) is divided in
two blocks: the functional model (FM) and the interaction model
(IM).

The FM is the fundamental part of the SM and is permanently
inserted within the system and represents the robot's world and
the SD in which we operate. If a different SD, like the manage-
ment of a data base is chosen, the FM will contain the structure
and the model of the data base. At present, the FM is inserted
directly in MICROPLANNER, but, in the future, it will be inserted
in NL through PIAF and a PIAF/MICROPLANNER translator. In the
case of robotics, the FM contains that fundamental information
which concerns the part of the world the robot cannot change.

The FM also contains the information necessary to solve syntactic
ambiguities, i.e., to select one SS within the input set of SSs
corresponding to a given IS, and includes the knowledge adopted
for extracting, from the chosen SS, all the OI useful to communi-
cate in a formal language a command to be executed by the robot.

The IM contains all the information on the fundamental mech-
anical component parts (called modules) used by the robot during
the assembly process. The content of the IM is continually added
to by inserting descriptions of new component parts that are
built by the robot within the man-machine interaction. The IM
includes information useful to answer questions asked of the sys-
tem. The MICROPLANNER interpreter makes use of the information
in the problem base and does semantic analysis to produce OI pro-
viding a command to the robot. It, too, modifies and enriches
the IM. It answers questions and these are translated into NL
by a MICROPLANNER/NL translator.

Thus, from an information processing standpoint, the SM is
a unique model; a strong interaction exists between the FM and
the IM.

Figure 2 shows the program architecture of the DONAU system.
The modular organization and the division into different blocks
is clearly shown. The input is the set of SSs corresponding to
the IS, which are discriminated by the filter block (1) written
in MICROPLANNER. The filter eliminates syntactic ambiguities and

-246-

‘wasAS NVNOA 2Y1 Jo ainpoayole weadolg -7 aindig

(%)
39VNINY 1
10BN
] w
KynyeBayir asijesado — (10q04)
i
AynBique 31juewas §31033x3
™ T3)}
S13S H01JVHLX3 (sauueyd ~d)
l—————
NOIHLYWHOIN NOLLYWHDIN] JALLVHIA0 83114 5,58
Y
(5)
8311041803
ALITY931
(L) (9) ()
0H0M 3KL NI NOILYINISIBAIY 1811
a0ILYALIS
SOOMYVINVISKI TVIISAKd a140m 13000

‘wasdg NYNOQ 94 Jo uoneziuesio [ardor] ‘1 aindig

YWIISH3dNs
10804
VIHLSAQNI
YW NI
WHLIH09TY
ATBHISSY
vo(jn\os ._z\zuzzjm-; ?‘_mz.,_mzcs
__ wajqoud uoijaesajul jo
uatjdiaasap
LETELLLEIL]
B3NNV 13-
T Seuuedd w)
' aseq-wajqo.d |
']
! 1300 !
! vouvean | 4NNV 14-1 / 3v)d W
> < + ja—————
' 23008 . 1¥id {suoijsanb)
H | uoljaRIauI o
1 TYI900HAHON | | vol}dilasap
m "
1 1
1 I
1 1
! 1300n !
' TVNOILINAS | HINNV -1 [3vid N
; [i suoljauny
_" 1300K ! v 21juewas jo
i VII19010HH0W ! voydisasap
1 1

e — Jauve(d-d

-247-

selects one SS by using block (2), which contains the MLs and
which is the DN constructed under the guidance of the IP. From
the matching between the discriminated SS and the DN, the ILs are
constructed and are provided as input to block (3), the operative
information extractor. This eliminates the semantic ambiguities
and extracts from the ILs the OI by using block (4), which con-
tains the ISs constructed under the guidance of the IP. The re-
sult obtained from the extraction activity is provided as input
to block (5), the legality controller. This block verifies the
consistency between the 0I and the SD oriented contents of block
(6), called world representation, and of block (7), called phys-
ical instantaneous situation in the world, which contain both the
static and the dynamic descriptions of the robot's functional
ability and operative activity. When this control succeeds, the
EI is obtained and is provided as input to block (8), called for-
malizer, which, by means of block (9) containing the robot language
description, constructs the executable program for block (10),
called executer, which corresponds to the robot. When the pro-
cessing activities of either block (3) or block (5) fail, an

NL diagnostic message, related either to a semantic ambiguity

or to an operative illegality, is provided by the block (8) as
well.

It is important to note that the program architecture of the
DONAU system is highly modular. Blocks (2), (4), (6), (7), (9),
and (10), related to a specific SD, have to be changed when a
new SD is selected. However, either the new SD or the correspond-
ing new selected IP provide guidance for constructing, within the
use of the same general techniques, these SD oriented blocks.
Blocks (1), (3), (5), and (8), related to different phases of the
NL. understanding process, are of general validity and do not have
to be changed when a different SD is chosen.

At present, we are working on enhancing the modular program
architecture of the DONAU system, either by improving the defini-
tion of each module or by clearly specifying the interfaces be-
tween every two connected modules. Thus advantage can be taken
of all technological improvements proposed by software engineer-
ing.

4. THE ANALYSIS OF NL INPUT SENTENCES

In this section we discuss how the problem of the extraction
of the OI from an IS can be solved.

As the DONAU's input we have some SSs, provided by PIAF,
that are represented for our convenience as LISP lists. We have
to elaborate these lists in such a way that we can recover the
useful elements for the construction of a MICROPLANNER command
for the robot. Before examining in detail the mechanism that
guides the semantic analysis, we want to point out how in an IS
that is apparently clear and easily understandable for the human
intelligence there can quite often be ambiguities and lack of

-248-

information. This is because man often expresses himself with
either sentences containing redundant information or with sen-
tences requiring some deductive activity. The computer, on the
other hand, in order to operate in a correct way, needs precisely
described information--neither inadequate nor redundant. It is
therefore necessary to insert in the modules that deal with the
analysis of the SSs, complete knowledge of the world in which

the robot operates. This will allow the computer to understand
the IS, i.e., to make the necessary deductions from the infor-
mation contained in the 1IS.

We will now show how the analysis of the SSs has been real-
ized. First, we discriminate from the set of SSs provided by
PIAF a certain number of parenthetical structures; second, we
extract from such structures sufficient information from the IS
to build the command to the robot; third, we make the extracted
information consistent with the physical reality of the robot's
world.

Let us examine a simple example of this process. The fol-
lowing IS to be analyzed:

PRENDI UNA TI DAL TAVOLO
(take a TI from the table)

The first word the filter will consider is the verb; in our case:
PRENDI (take). Associated with this verb are some MLs correspond-
ing to possible structures of a command beginning with this verb;
here, the following two MLs:

(OBJ)
(OBJ PLACE)

The MLs indicate, as elementary semantic models, that the verb
PRENDI must necessarily be associated with the information of the
object to be taken and optionally with the information of the
place where the object to be taken is located.

In our example, we have two groups of words corresponding
to OBJ and to PLACE. One SS provided by PIAF is:

(PRENDI* (TI UNA*) (DAL*TAVOLO))
(take *(TI a *) (from-the*table))

The elements OBJ and PLACE, belonging to the considered ML, are
called meaningful elements (MEs), each one of which is associated
with a set of MLs which indicate the various ways in which they
can be further developed. We have the following correspondences:

-249-

OBJ - (SUBS ART)
PLACE -~ (PREP SUBS)

The elements SUBS, ART, and PREP cannot be further developed;
therefore they are called basic meaningful elements (BMEs).

At this point, it is clear how we can make a first choice of
the SSs given by PIAF. Each SS is examined, and at each level of
the syntactic tree, it is matched with the MLs equal in length to
the number of syntactic subtrees whose roots belong to that level.
This matching procedure is repeated recursively at all levels of
the SS, and, if the matching succeeds, then the SS examined is
the correct one.

The set of MLs has been defined on the basis of the example
IP, but is has a more general validity, because it enables the
understanding of a large set of ISs which includes the IP as a
small subset of its own. Neither the insertion of new MLs, nor
the modification of already existing ones presents any excessive
difficulty.

We will now discuss how the filter's discrimination process
produces the ILs that constitute the basis for the continuing ex-
traction of the OI. During the semantic analysis, each BME en-
countered is used for further processing. Indeed, each BME ob-
tained guarantees the IS is so far correct. It contains infor-
mation very useful for building a command to the robot. The ques-
tion now arises of identifying the BMEs that are really of inter-
est, and of how to process their useful information. To solve
these problems, we associate to each BME encountered a property
that depends on:

- the position of the BME, namely the ME from which the
BME has been derived;

- the group of Italian language words to which the BME
belongs (e.g., proper noun, common noun, couple of co-
ordinates, etc.).

Particular lists, namely the ILs, are associated with these and
each BME is inserted in the corresponding IL.

Intuitively, we identify two categories of BMEs: those that
provide information related to the considered part of the SS
(such BMEs--e.g., prepositions--give some information on which
MLs have to be examined in the sequence of the discrimination
process to decide whether the considered SS is a correct one);
and those that contain the information necessary to formalize
a command to the robot. Only the latter are inserted in the ILs.

We can examine a simple example in order to illustrate the
content of the ILS. The following IS is to be analyzed:

-250-

PRENDI IL MODULO TI DAL TAVOLO
(take the module TI from~the table)

The correct SS, given by the PIAF system, is the following:

(PRENDI* (MODULO IL*TI) (DAL*TAVOLO))
(take * (module the*TI) (from-the * table))

The correctness of this sentence is controlled by using the MLs

as previously illustrated. The semantic analysis will eventually
provide a certain number of BMEs that we briefly discuss. MODULO
(module) and TI (TI) are BMEs which both satisfy the same property
of deriving from the same ME OBJ, and of belonging to the group

of substantives in the lexicon of the system. Because of this
latter property, P1 the two BMEs are inserted in a corresponding

IL, IL,., which contains all the information concerning the object

of the action. 1IL (the) is a BME that satisfies a different
property, P2, since it derives from the same ME OBJ, but belongs

to the group of articles in the lexicon of the system; therefore,

it is inserted in a different IL, IL2. The BME TAVOLO (table)

again satisfies the property of belonging to the group of sub-
stantives, like MODULO (module) and TI (TI). However, it has
been derived from the ME PLACE, and, therefore, it is inserted

in a new IL, IL3, which contains all the information on the place

of the action. The BME DAL (from-the) is a preposition and it
is utilized only in order to more easily identify the MLs associ-

ated with the considered SS; it is inserted in a new IL, ILH'

Thus, when we have completed the examination of the correctness
of the SS, we have constructed the following ILs:

IL

(MODULO TI) (module TI)

1
IL2 = (IL) (the)
IL3 = (TAVOLO) (table)
ILU = (DAL) (from~the)

IL1 and IL, are of particular interest for the construction of

the command to the robot. Even in this simple example the infor-
mation obtained is still in a rather complex form, mainly because
two BMEs belong to the same IL1.

In order to construct the command, it is necessary to isolate
one object of the action performed by the robot. Therefore, the
system should be able to recognize the fact that TI is a partic-
ular module and, hence, that it contains all the information

-251-

required for providing the command to the robot. This activity,
executed by the operative information extractor, is performed by
utilizing a set of ISs; each IS is associated with one BME, a
substantive, and it isolates the information associated with
that BME.

In our example, the two BMEs TI (TI) and MODULO (module) are
associated with the two following ISs:

TI - {TI, MODULO,PEZZ0} {TI,module, piece}
i.e., each TI is a module and is a piece;
MODULO -+ {MODULO,PEZZO} {module,piece}

i.e., each module is a piece. By simple set inclusion operations
on the ISs, the OI can be extracted on the basis of the ILs.
More precisely, a binary relation of dominance <, defined on the

set of BMEs, is introduced. Given two BMEs, X, and Xy, We say

that X, < Xy when the two corresponding ISs, IS1 and ISZ’ satisfy
the relation IS1 C Isz. Hence x, is dominated by Xy i.e., Xy

has a greater information content than x This dominance rela-

7+
tion is iteratively applied to the BME of the same IL, by elim-
inating each time a BME dominated by another one. Thus, in our
example, since MODULO (module) is dominated by TI (TI), we obtain
the following new IL,:

IL.l = (TID (TI)

In order to verify the correctness of the OI extracted from the
IS, and to construct the order for the robot, the system must
know the world in which the robot operates and its situation at
that moment. Thus the legality controller, which checks the
correctness of the O0I, must be strictly dependent on the parti-
cular SD chosen.

To decide whether the OI is correct, we start the processing
activity again by considering the verb contained in the IS. Each
verb is associated with some MLs, which characterize the order to
the robot related to the use of that verb. In our example, PRENDI
(take) is related to the following ML:

(OBJ PLACE)

-252-

We try to construct this type of order with the use of the OI.
If it can be done, the 0I is sufficient if not, more detailed
information will be requested.

Controlling the sufficiency of the OI is not necessarily
the only activity of the legality controller: the consistency
of the OI with the situation of the world at that time has to
be checked. For instance, the following IS:

PRENDI LA TI DAL TAVOLO
(take the TI from-the table)

leads to the construction of the following OI:

(PRENDI TI TAVOLO)
(take TI table)

Because of the article LA (the), we also have to verify that
there is only one TI (TI) on the table so that the order can
actually be executed. Then the 0OI is legal and it becomes the
EI ready for execution.

Whenever the 0OI is controlled and found to be sufficient
and consistent, it becomes the EI communicated to the formalizer
which, by using robot language, provides the command to the
executor, i.e. the robot, for execution.

In conclusion, let us consider what happens when more than
one SS is accepted by the filter:

- Either all the accepted SSs lead to the construction of
the same command;

- Or different SSs correspond to different commands.

In the first case, we have ambiguity only at the syntactic level;
it is disambiguated by the next semantic analysis. 1In the second
case, the ambiguity is also at the semantic level, i.e. the IS
actually has more than one meaning; here the system asks for more
information by providing an error message of semantic ambiguity.

In a similar way, when the OI examined by the legality con-

troller is either not sufficient or not consistent, an error mes-
sage of operative illegality is provided.

5. EXPERIMENTAL RESULTS

The experimental activity developed has first been devoted
to the simulation of the robot (that is, to the construction of
the block 10, the executor, of Figure 2). However, all the

-253-

various blocks of the DONAU architecture, shown in Figure 2 have
been implemented successfully. Here we describe the character-

istics of the executor; an example of interaction is provided in
Appendix 1.

The task of the simulated robot is the assembly process of
a mechanical system (and, if necessary, of complex component
pieces); the assembly takes place on the table (TAVOLO). The
components that can be handled by the robot are shaped with ele-
ments oriented horizontally or vertically with respect to the
table. Thus, the table is a plane divided into an array; each
segment of the array has the length of the element (LATO) by
which a piece (PEZZ0) is made up. Each element of the array can
be uniquely defined by two Cartesian coordinates (x,y). The
dimensions of the array are usually assumed by the executor to
be of fixed value; it is however possible to modify such dimen-
sions during the robot's activity.

The placement or the replacement of a piece on the table is
considered as being composed of two distinct actions, namely the
grasping of the piece by the robot's hand (MANO), and the sub-
sequent repositioning of the piece on the table.

A stand-by place (RIPOSTIGLIO) is also available to the robot
for the temporary placing of pieces (or of subpieces during the
assembly of a piece), and in certain cases the robot can place
a piece in its hand in the stand-by place without being explicitly
ordered to do so.

Usually, the assembly process of a mechanical system is
executed by using particular pieces, typically of simple struc-
ture, called modules, available to the robot in fixed places
called boxes. As each type of module (MODULO) is arranged in a
corresponding box (SCATOLA), only the type name has to be indi-
cated to the robot. The robot can only grasp a module from box;
it cannot put it back. Thus, the box simulates the loader of
one component part of a mechanical system, which will be utilized
during the assembly process.

The hand enables the robot to grasp a piece, to rotate it
90°, 180°, or 270°, to position it on the table or in the stand-
by place, and to connect (by screwing or welding) and disconnect
(by unscrewing].

In order to connect or disconnect, it is sufficient to indi-
cate only the place (i.e., the two coordinates), where such opera-
tion has to be executed. The executor automatically controls the
legality of the operation before executing it. The hand can grasp
only one element of a piece and, if no other specific indication
is provided, the piece is grasped at the first element mentioned
in the piece's internal description. The hand can also eliminate
pieces by putting them in the waste place, where they cannot be
grasped anymore.

-254-

The internal description of a piece (or of a module) is
done in such a way that the piece is thought of as occupying
some segments of the table, indicated by increasing integers.
One element of the piece is selected as corresponding to the
first integer in the internal representation, and is the stan-
dard reference element for the operation of placement on the
table. 1In fact, the position (i.e. the two coordinates) indi-
cated in the placement of a piece corresponds to the position
of the standard reference element of that piece, which corre-
sponds to the beginning of a path that completely covers the
piece. The increasing integers reproduce the order in which the
path covers the piece.

The path is described with a list made up of the operators
L (left), R (right), U (up), and D (down). When a fork is en-
countered, sublists are opened within a given list. Thus the
module TI, which has the shape indicated by its name can be
considered as made up of three elements connected by the path
(R (D) (R)). The first operator (R) corresponds to the standard
reference element of the module TI (i.e., the leftmost element).
Since the user does not necessarily know what the internal repre-
sentation of a given piece is, it is possible for him to query
the robot in NL for having such an internal representation as
answer. This answer, called the characteristics (CARATTERISTICHE)
of the piece (or of the module), is made up of the correspondence
between the segments of the path covering the piece, and the
increasing integers.

Proper names can be attributed to pieces (and to modules) for
better identification and handling. Similarly a particular ele-
ment of a piece (or of a module) can be given a proper name (cor-
responding to a particular integer of the characteristics of the
piece).

The description of a module is inserted in the MICROPLANNER
problem base (see Figure 1) by means of an assertion. For in-
stance, in the case of the module TI:

(THASSERT (TI (R(D)(R))))

Also the descriptions of the pieces' positions on the table and
of the executed assembly operations are entered in the MICROPLAN-
NER problem base by using assertions. When a piece is already

on the table, all the information concerning the piece is bound
to the particular position which the piece occupies. Thus, the
processing of assembly operations related to the piece is made

in a very efficient way. But on the other hand, this fact can
make a change in this information difficult, when the piece's
position changes during the assembly process.

To solve this problem, the information on the execution of
an assembly operation is structured in a way that makes it inde-
pendent from the piece's positions. The information on a piece

~255-

on the table is transferred in specifically designed transport
lists when the piece is grasped by the robot's hand. When the
piece is repositioned by the hand in a new place on the table,
the piece's information, stored in the transport lists, is modi-
fied appropriately. The request for the execution of a command
to the robot corresponds to the associative call of a correspond-
ing theorem contained in the MICROPLANNER problem base.

We will now illustrate briefly an example of interaction.
We will first give here the sequence of ISs that constitute the
example of interaction:

PRENDI LA TI DALLA SCATOLA
(take the TI from~the box)

METTI LA TI NEL POSTO (9 4)
(put the TI in-~the place (9 4)

PRENDI LA TI DALLA SCATOLA
(take the TI from-the box])

METTI LA TI SUL TAVOLO
(put the TI on-the table)

PRENDI LA TI DAL TAVOLO
(take the TT from—-the table)

PRENDI UNA TI DAL TAVOLO
(take a TI from-the table)

PRENDI IL MODULO TII CHE E' NELLA SCATOLA
(take the module TII which is in-the box)

DAMMI LE CARATTERISTICHE DELLA TII
(give-me the characteristics of-the TII)

CHIAMA IL LATO 2 DELLA TII CHE E' in MANO PIPPO
(call the element 2 of the TII which is in hand PIPPO)

AVVITA LA TI E LA TII NEL POSTO ((1 2))
(screw the TI and the TII in-~the place ({1 2)})}

SALDA IN ((3 2))
(weld in ((3 2)))

CHIAMA CROCE IL PEZZ0 CHE E' SUL TAVOLO
(call CROCE the piece which is on-the table)

The first command is grasping the module TI from.the box.
Then it is placed with its standard reference element in posi-
tion (9 4) of the table, and a second module TI is grasped from
the box. This time, the command of positioning it on the table

-256-

does not indicate a specific position, so the robot automatically
places the module in the lowest leftmost free position of the
table--position (1 2) of the table. The following command of
grasping the (LA) TI from the table, is not executed by the robot,
which signals the existence of an operative ambiguity; since two
TI's are already placed on the table the article the is ambiguous.
However, the next command, of grasping a (UNA) TI, can be exe-
cuted: the robot automatically grasps the TI placed in (9 4).
Then the command of grasping the module TII (i.e., a module, sim-
ilar to TI, but with a right element of double length) from the
box is given. Since the hand is already holding the TI, the
robot first eliminates this TI, by automatically putting it in
the waste place, and then grasps the TII from the box. Wote that
the legality controller will check that TII is indeed a module,
as stated in the IS. Next, the robot provides, upon request, the
characteristics of the TII so that the user can make reference

to a particular element of this module. The following command

is naming element 2 of the TII PIPPO. Then the TII is positioned
on the table with PIPPO in place (3 2). This is a new way of
specifying where to position a module, because the indicated
place is not one of the standard reference elements of the module.
The next two orders are for connecting TI and the TII, first by
screwing in place (1 2), and second by welding in place (3 2).

At this point, the two previously distinct modules are now con-
nected together irreversibly, thus yielding a new piece which,
with the last command, is named CROCE.. All the commands encoun-
tered in this example of interaction are either physical or non-
physical commands, depending on the involvement of actual move-
ments of the hand and pieces, and on the execution of assembly
operations.

6. TOWARD A DONAU VERSION ON DATA BASE QUERY SYSTEM

We will now discuss how to build a DONAU version for querying,
in Italian, a data base. This problem appears to be very similar
to that of programming a robot. The various phases of the NL
understanding process are easily applicable to this new and very
important use. Moreover, as it has been illustrated in Section 3,
the architecture of the DONAU system (see Figure 2) is highly
modular. We have clearly divided the SD independent blocks (1),
(3), (5), and (8)) from the SD dependent blocks ((2), (4), (6),
(9), and (10)). The latter blocks need to be changed and new
ones, oriented toward the new SD of data bases, have to be de-
veloped and put in their place. In this way, a new DONAU version
can be built by utilizing a large part of the old DONAU version.
For both robotics and data bases, it is convenient to divide the
ISs of an interaction into the following three classes: orders,
questions, and descriptions. Orders relate to the specification
of the activity that the artificial system (either a robot or a
data base) has to perform (either an assembly operation or a data
input/output. Questions refer to the request to the artificial
system for some characteristics and information about its struc-
ture and status needed by the user for a better knowledge of its

-257-

artificial behavior and available operating procedure. Descrip-
tions indicate the specifications and modifications that the user
operates on the structure and configuration of the artificial
system.

As we have illustrated in Section 3, the first step to be
accomplished to develop the SD dependent blocks, is the identi-
fication of a good IP. It is important to choose a set of typical
ISs that are examples of common interaction--in our case queries
that the new DONAU version can deal with.

We will now illustrate an example of an IP oriented to data
bases. This example is reduced to a minimum for providing an
understanding of its main characteristics.

DAMMI LA PRODUZIONE DI PETROLIO DEL KUWAIT DEL 1975
(give-me the production of oil of-the KUWAIT of-the 1975)

DAMMI LA PRODUZIONE DI PETROLIO DEL 1975
(give-me the production of oil of-the 1975)

DIMMI QUALE E' IL MAGGIOR PRODUTTORE DI PETROLIO
(tell-me which is the greatest producer of oil)

DAMMI LA PRODUZIONE DI PETROLIO DEI PAESI ARABI
(give-me the production of o0il of-the Arab countries)

DIMMI QUANTI SONO I PRODUTTORI DI PETROLIO
(tell-me how-many are the producers of oil)

Careful study of such an IP, together with the analysis of the
SSs provided by PIAF corresponding to each IS of the IP, consti-
tutes the basis for the design of block (2), i.e. for the selec-
tion of the MLs that provide the semantic representation of the
SD. The MEs that appear in the MLs related to the new SD of data
bases are almost the same ones that have been adopted in the MLs
related to the old SD of robotics, but the BMEs of these new MLs
are almost completely different.

We shall now examine two ISs, and illustrate how the DONAU
version on data bases will perform the NL understanding process
on these two examples:

DAMMI LA PRODUZIONE DI PETROLIO DEL KUWAIT DEL 1975
(give-me the production of o0il of-the KUWAIT of-the 1975)

DAMMI LA PRODUZIONE DI PETROLIO DEL 1975
(give-me the production of oil of-the 1975)

-258-

While the first query requests only the oil production of Kuwait
in 1975, the second query asks for the oil production of the whole
world in 1975. The correct SS given by the PIAF system for the
first IS:

(DAMMI* (PRODUZIONE LA*(DI*PETROLIO)(DEL*(KUWAIT*(DEL*1975)))))
(give-me* (production the* (of*oil) (of-the* (KUWAIT* (of-the*1975)))))

The first ML associated to DAMMI (give-me) is:

(OBJ)

This ML indicates that the verb DAMMI must be associated with the
information to be given. In fact, in the considered SS, the root
of the tree (i.e. DAMMI) is followed by only one subtree, namely
a right subtree, which corresponds to the only ME OBJ of the
matched ML.

Next, the DONAU system selects the following MLs when trying
to match the considered SS with the hierarchical arrangement of
the MLs:

OBJ -+ (SUBS ART SPEC PLACE-SPEC)
SUBS + (PRODUZIONE) (production)
ART - (LA) (the)

SPEC +~ (PREP SUBS)

PREP -+ (DI) (of)

SUBS -+ (PETROLIO) (oil)
PLACE-SPEC -+ (PREP PREP-SPEC)
PREP + (DEL) (of-the)
PREP-SPEC + (SUBS TIME-SPEC)
SUBS -+ (KUWAIT) (KUWAIT)
TIME-SPEC + (PREP SUBS)

PREP -+ (DEL) (of-the)

SUBS + (1975) (1975)

It is easy to ensure that the topology of the discrimination tree
(i.e. the hierarchical organization of the previously indicated
MLs) completely matches the topology of the SS (i.e. the corre-
sponding syntactic tree described parenthetically--see Section 2).

The correct SS given by the PIAF system for the second IS

is:

(DAMMI*PRODUZIONE LA* (DI*PETROLIO) (DEL*1975)))
(give—me¥* (production the* (of*o0il) (of-the*1975)))

-259-

Again the first ML associated to DAMMI (give-me) is:

(OBJ)

and the DONAU system selects the following MLs which completely
match the SS when hierarchically arranged:

OBJ - (SUBS ART SPEC TIME-SPEC)
SUBS - (PRODUZIONE (production)
ART - (LA} (the}

SPEC + (PREP SUBS)

PREP - (DI} (of})

SUBS » (PETROLIO)} (oil}
TIME-SPEC > (PREP SUBS}
PREP > (DEL) (of-the)
SUBS > (1975) (1975)

From this semantic analysis, the DONAU system constructs the ILs
as described in Section 4. The following ILs correspond with the
first 1IS:

IL, = (PRODUZIONE PETROLIO)} (production oil)
IL, = (KUWAIT) (KUWAIT)
IL3 = (1975) (1975)

The following ILs correspond with the second IS:

IL1 = (PRODUZIONE PETROLIO) (production oil)
IL2 = (NIL)
IL3 = (1975} (1975}

In IL1, it is clear that the BME PETROLIO (0il) also contains

the information expressed by PRODUZIONE (production). The opera-
tive information extractor (see Section 4) by applying the follow-
ing dominance relation:

PRODUZIONE < PETROLIO
(production < o0il}

reduces IL1 to

IL] = (PETROLIO) (0il)

-260-

Thus to correspond with these two ISs, the OI and, after the
activity of the legality controller, the EI is provided to the
formalizer as the two following patterns of MICROPLANNER theorems:

(PETROLIO KUWAIT 1975)
(oil KUWAIT 1975)

(PETROLIO NIL 1975)
(oil NIL 1975)

We have assumed the internal formal query language of the
data base is MICROPLANNER. If a different formal language is
utilized, then the formalizer will present the EI appropriately.

REFERENCES

[1] Winograd, T., Procedures as Representation of Knowledge in
a Computer Program for Understanding Natural Language,
MAC-TR-84, Project MAC, MIT, Cambridge, Mass., 1971.

[2] Woods, A., Transition Network Grammars for Natural Language
Analysis, Comm. ACM, 13 (1970), 591-606.

[3] Hewitt, C., Procedural Embedding of Knowledge in Planner,
Memo, AI Lab., MIT, Cambridge, Mass., September 1971.

[4] Erchov, A., P. Mel' Chuk, and N. Nariniany, RITA - An
Experimental Man-Computer System on a Natural Language
Basis, presented at the 4th IJCAI, Tbilisi, August 1975.

[5] Bullwinkle, C.L., Picnics, Kittens and Wigs: Using Scenarios
for the Sentence Compilation Task, presented at the 4th
IJCAI, Tbilisi, August 1975.

[6] Miller, P.L., An Adactive and Natural Language System that
Listens, Asks, and Learns, presented at the 4th IJCAI,
Tbilisi, Augqust 1975.

[7]1 Courtin, J., Un Systeme d'Analyse des Langues Naturelles:
Application a la Correction Interactive de Textes,
Université de Grenoble, Laboratoire de Informatique,
Grenoble, 1973.

[8] Grandjean, E., System PIAF Detecteur de Fautes d'Ortographe,
PIAFDET, Université de Grenoble, Grenoble, 1974.

[9] Gini, G., M. Gini, and M. Somalvico, Emergency Recovery in
Intelligent Industrial Robots, presented at the 5th
ISIR, Chicago, September 1975.

[10]

(111

(12]

[13]

[14]

[15]

[16]

(171

(18]

-261-

Schwind, C., Generating Hierarchical Semantic Networks from
Natural Language Digcourse, presented at the 4th IJCAI,
Tbilisi, August 1975.

Yoshida, S. On the System of Concepts Relations and Outline
of the Natural Language Systems, presented at the 4th
IJCAI, Tbilisi, August 1975.

Bernorio, M., M. Bertoni, A. Dabbene, and M. Somalvico,
Interazione Uomo Macchina in Linguaggio Quasi Naturale,
in Proceedings Annual AICA Conference, Milan, October
1976.

Creg, W., Scragg, Answering Process Questions, presented at
the 4th IJCAI, Tbilisi, August 1975.

Hewitt, C., How to Use What You Know, presented at the 4th
IJCAI, Tbilisi, August 1975.

Courtin, J., Organization d'un Dictionaire pour l‘'Analyse
Morphologique, presented at the Seminaire de Théorie
des Automates et Traitment Automatique des Langues,
IRMA, Grenoble, 1973.

Hays, D.G., Dependency Theory: A Formalism and Some Obser-
vation, Memorandum PM-4087-Ph, The Rand Corporation,
Santa Monica, California, 1974.

Veillon, G., Modéles et Algorithmes pour la Traduction
Automatique, Thése d'Etat, Université de Grenoble,
Grenoble, 1974Q.

Bernorio, M., M. Bertoni, A. Dabbene, and M. Somalvico,
Quasi Natural Language Understanding in the Semantic
Domain of Robotics, in Applied Robotiecs 77, Plsen,
Czechoslovakia, October 1975.

-262-

Appendix 1. Illustration of the MICROPLANNER Language

The programming language PLANNER was designed by Carl Hewitt
as a goal-oriented procedural language. It operates on a set of
assertions and it has a special mechanism for handling them ef-
ficiently. It can include every complex information that can be
expressed in first order predicate calculus and, more generally,
in w-order logic. It is typical of PLANNER that complex infor-
mation is represented in the form of procedures, called theorems,
that can include all types of knowledge expressed in the best
way for proving statements, i.e. for reaching a goal.

Since PLANNER is goal-oriented, it does not have to deal
with all the details of different procedures. For example, if
we have to verify a statement, it is not necessary to specify
which theorem the system must use. This is done automatically
by the PLANNER interpreter which operates an associative call,
called pattern matching, of theorems and assertions. However,
we can indicate which procedure should be used first to get a
faster answer,

Wwhen a new theorem is added to the problem-base (i.e. the
set of stored theorems and assertions), the system can use it
without further specification. PLANNER theorems can be written
independently of each other, without concern about how or when
they will be called, or about what other theorems and assertions
will be needed for reaching a goal or subgoal. The great advan-
tage of using PLANNER is the possibility of representing complex
information by a procedural problem base.

The MICROPLANNER language is a subset of PLANNER implemented
by Winograd, Charniak, and Sussman. The best way to understand
MICROPLANNER is to see how it operates on a simple example. Con-
sider the following sentences:

(a) The TI is a module;
(b) All the modules are on the table;
(c) The TI is on the table.

In order to assert sentence (a), we can enter:

(THASSERT (MODULE TI))

In this MICROPLANNER instruction, THASSERT is a function that
simply adds its argqument to the problem-base. Sentence (b) is

-263-

entered as a theorem in the following way:

(PUT THEOREM1 THEOREM (THCONSE (X)
(TABLE $?X)
(THGOAL (MODULE 8?2X))))

where g?X means that X is a variable. Now our goal is to prove
statement (c), i.e.

(TABLE TI)

We use a THCONSE theorem, i.e. a consequent theorem, which means
that when we want to prove a goal of the form:

(TABLE 87?X)

We can do it if we have first succeeded in proving a goal of the
form:

(MODULE g2?X)

Proof of statement (c) can be requested by asking the MICROPLANNER
interpreter to process the expression (d), which asks for proof of
goal (c):

(THGOAL (TABLE TI) (THTBF THTRUE))

If we had asked the MICROPLANNER interpreter to process the follow-
ing expression:

(THGOAL (MODULE TI))

it would have looked in the problem~base to see whether the cor-
responding assertion existed and the search would have succeeded.
However (TABLE TI) is not asserted and, therefore, we need a
theorem for proving it. The specification (THTBF THTRUE) allows
the MICROPLANNER interpreter to try, one after another, all the
available theorems in the problem~base. Thus, in order to process
statement (d), it finds theorem THEOREM1, proves goal (MODULE TI),
and succeeds. If we had asked: "Does any module exist on the
table?", the corresponding MICROPLANNER statement would have been:

-264-

(THPROG (Y) (THGOAL (TABLE g?Y) (THTBF THTRUE)))

where the THPROG has the function of an existential quantifier.
When the theorem is called, the variable Y will be bounded with
TI, and the answer will be:

(TABLE TI)

The MICROPLANNER interpreter can prove other goals. For
instance, we can add the two following assertions to the problem
base:

(THASSERT (MODULE EL))
(THASSERT (PIECE EL})

We can now ask: "Is there any piece on the table?", which corre-
sponds to the following MICROPLANNER statement:

(THPROG (X) (THGOAL (TABLE g7?X) (THTBF THTRUE))
(THGOAL (PIECE g?X)))

The first goal can be satisfied, as before, and the variable X is
bounded to TI. But, since the assertion (PIECE TI) is not in the
problem-base, the second goal fails and TI is not the piece we
want. We have a backup; the MICROPLANNER interpreter comes back
to the last successful goal and looks into the problem-base for

a new value that can be bound to X. He finds EL, which also
satisfies the second goal, and therefore the answer is the value
of the second goal, namely

(PIECE EL)

MICROPLANNER theorems can be thought as subroutines, but
they are called by a general procedure of pattern-matching that
performs the associative search on the basis of the goals they
are adapted to satisfy. The MICROPLANNER interpreter is written
in LISP and has a success-and-failure mechanism capable of explor-
ing the subgoal tree.

-265-

Ideas About the Design of Natural Language
Interfaces to Query Systems

G. Guida

INTRODUCTION

The ability to converse in natural language with a data base
system will enable the naive user to utilize the large set of
formulated data contained in it without the necessity for special-
ized training. The validity of this statement requires a short
discussion. The syntactic and semantic characteristics of natural
language (richness, incompleteness, ambiguity, graduality) make
them essentially inappropriate for communicating with computer sys-
tems having a limited set of commands and requiring precise, cor-
rect, and unambiguous inputs [1]. Therefore the situations in
which the use of the natural language can be considered as valu-
able must have quite particular characteristics. For example,
natural language interfaces would be very profitable in unstruc-
tured situations where the user is unfamiliar with the problem
domain and the operative characteristics of the system. Moreover,
they could be useful in interactive problem solver systems where
the computer is used for processing unstructured and unfamiliar
information in a goal-oriented manner.

More precisely, we can argue that the utility of natural
language becomes relevant in uncertainty situations of one of the
following types:

- uncertainty about the content and the use of the system;
- uncertainty about the domain of the problem.

A natural language interface will allow a user to start work on

a problem in spite of these uncertainties. Such natural language
interfaces are intended to bring into communication with a com-
puter system not experienced programmers or habitual users but
casual users, whose interaction with the system is irregqular in
time and not motivated by their job or social role [2]. Such
users cannot be expected to be knowledgeable about computers,
programming, computability, or logic, or to be willing to learn
an artificial language, even if it is oriented towards nonpro-
grammers.

The purpose of this paper is to propose new design criteria
for natural language interfaces to query systems. The design of
such systems does not imply the implementation of a system able
to understand natural language, which is in fact a very ambitious

-266-

and quite unrealistic goal at the present state of research in
this field [11]. It only requires the design of a much more sim-
ple functional block that can capture and extract the operative
information contained in natural language queries. The user's
requests are therefore not understood in all their details and
nuances, but only their operative meaning is taken into account.
In this way, free use of natural language, Or more precisely the
illusion of free use, is allowed to the user.

It is our opinion that the design of efficient systems satis-
fying these conditions is not a task exceeding the present pos-
sibilities of the art. 1In the next section we shall present in
detail the block structure of a natural language interface reflect-
ing the basic ideas outlined above. We shall then go further into
the model proposed by means of a simple design example.

BLOCK STRUCTURE

This section presents and discusses in detail the fundamental
structure of a natural language interface to a data base system,
and outlines the basic design criteria for each functional block
in it. Let us first present some preliminary notions.

The information required for starting the design of a natural
language interface to a data base system can be summarized as
follows:

- information about the data base: data logical structure,
access keys, information retrieval commands proper to the
query language of the data base;

- information about the problem domain: natural language
key words and fundamental logical links between them,
possible user's requests;

- information about the natural language: basic logical-
syntactic structure of the language, vocabulary with
semantic interpretation of the words.

The first step toward the design of the interface is the
definition of the subset of the natural language that the system
must be able to understand correctly. This subset can be con-
sidered as composed, from a conceptual point of view, of two parts:
a semantic block, containing a vocabulary and a collection of pos-—
sible semantic links between the words, and a syntactic block,
defining the basic logical structure of the sentences. The prob-
lem of defining an adequate subset is of basic importance [1], [3],
[41, [5]. In fact from this subset determines the efficiency of
the whole system. If this subset is too wide the parser becomes
complex and inefficient; if it is too small the system meets in-
surmountable difficulties in understanding the user's requests and
the clarification dialogue becomes heavy and meaningless.

-267-

This problem has been discussed by Watt [4] under the name
of habitability. He defines the following two subsets [1]:

- adequate subset that allows one and only one way of ex-
pressing each kind of request that the user may wish to
make to the system;

- fully habitable subset within which a user can carry out
a dialogue about the problem domain without overstepping
its bounds.

The optimal subset must be wider than the adequate subset and
smaller than the fully habitable one. It is often referred to

as a comfortably habitable subset [1] and its definition depends,
at the present state of research, primarily on the ingeniousness,
experience, and intuition of the designer. Here we emphasize the
merely operative understanding capabilities of the system, and
shall denote the resulting interfaces as natural oriented lan-
guage systems.

Let us now present the basic structure of the natural lan-
guage interface we propose (see Figure 1). Figure 2 summarizes
in a flow-chart the fundamental model of operation of the system.

The first block of our model, the interpreter, receives as
input the user's request and must be able to generate a symbolic
expression indicating the data, the procedures, and the correct
logical links between them necessary to construct a correct answer.
To this end it must analyze the user's natural language request
by means of a semantic-based parsing strategy [8] controlled by
a logical syntactic monitor system. The first part of the analy-
sis is semantically oriented: the words (content words and func-
tion words [8], i.e. substantives, adjectives, and verbs) are
recognized, their meaning is evaluated by means of the vocabulary
and the semantic templates of the system, and pointers are gener-
ated to the symbolic names of the records, record fields, and
procedures stored in the data base that contains the information
they denote. All words not recognized by the system, i.e. not
in its vocabulary, are ignored. The concept of semantic-based
parsing has already been widely discussed in [8]. We generally
agree with the simple model proposed which seems to ensure good
efficiency and sufficiently high understanding capabilities.
Nevertheless, we believe that a syntactic check of the logical
structure of the queries can make the parser much more reliable
avoiding trivial misunderstanding. Hence, after the semantic-
based parsing, a logical-syntactic monitor is activated which
controls the logical links between the data elements discovered
during the semantic analysis and connects the data items together
in the correct way. It takes into account the logical connectives
between the words and the propositions (conjunctions, prepositions),
looks up their meaning in the vocabulary of the system, retrieves
their arguments, and recognizes the correct logical structure of
the sentence.

-268-

USER
QUERY qF ANSWER
CLARIFICATION
DIALOGUE A
NATURAL LANGUAGE
INTERFACE
DIALOGUE
INTERPRETER CONTROL
PROGRAM ANSWER]

SYNTHESIZER SYNTHESIZER

DATA BASE

Figure 1. Block structure of a natural language interface.

-269-

USER’S QUERY

SEMANTIC—BASED PARSING

{ FAILURE?)- YES

NO
LOGICAL-SYNTACTIC CHECK ST ATIEICATION
A
(FAILURE? y—E
NO

YES
INFORMATION RETRIEVAL
AND PROCESSING
PROGRAM SYNTHESIS

{ FAILURE?)

ANSWER SYNTHESIS

ANSWER

Figure 2. Mode of operation of the system.

-270-

The parsing of the user's request must allow the interpreter
to identify two different types of information; what data must be
retrieved in the data base, and what procedures, if any, are re-
quired for answering the request. Therefore the output of the
interpreter will be an (unambiguous) expression having as argu-
ments the symbolic names of the formatted data and of the proce-
dures in the data base, and as connectives logical and operative
symbols.

The program synthesizer is devoted to translating the sym-
bolic expression it receives from the interpreter into appropriate
information retrieval programs for the data base and to select
and activate the utility programs required for processing the
retrieved information. The internal structure of the program
synthesizer is not much different from that of a very simple in-
terpreter, and does not require a wide discussion. We only recall
the information retrieval program generator proposed by Gerritsen
[9] which utilizes typical artificial intelligence techniques,
such as problem solving and goal-oriented languages (LISP-MICRO-
PLANNER) .

The answer synthesizer receives as input the information
extracted from the data base and processed in the appropriate
way and constructs the reply to the user's request. Its activity
is fundamental from a functional point of view, but it is not
transparent to the user. 1In fact, the purpose of this block is
to constitute a bridge between the data base and the interface.
The answer synthesizer receives from the data base the data that
constitute the conceptual content of the answer and the control
of the system, and activates the appropriate output routines.
From the point of view of the user its activity is quite trivial;
it simply adds to the results received from the data base a short
illustrative sentence, chosen within a given collection.

Less deterministic and more powerful answer synthesizers can
be conceived, but we do not believe that such a block is worth
greater design effort.

Let us now discuss the functions of the dialogue control.
This block is activated in the following situations:

- the interpreter fails in the semantic-based parsing (e.g.
no word is recognized) or in the logical-syntactic check
(e.g., ambiguities in the user's request cannot be elim-
inated by the interpreter);

- any failure occurs during the information retrieval or
processing stage;

- after the answer has been communicated to the user, an
incorrect matching between the answer and the user's
request appears;

-271-

- after the user has communicated to the system a mismatch-
ing or a correct matching between his request and the
answer received.

In each one of the above outlined situations the dialogue
control receives the control of the system and starts with the
user a short clarification dialogue. The clarification dialogue
can request the user to express his query in a simpler or less
ambiguous way, or to substitute some word, or else to answer some
specific query of the system. It also communicates to the user
the causes of any failure.

The activity of the dialogue control is defined in a quite
deterministic way by the commands it receives. The sentences
it needs for setting up the clarification dialogue can be simply
chosen within a given collection, or can be constructed following
some simple sentence schemata. The mode of operation of this
block is controlled by a logical structure that activates, and
completes if necessary, the appropriate dialogue elements in
correspondence to the different commands received.

After the clarification dialogue is terminated the dialogue
control returns the control to the appropriate block of the
system.

The learner should be able, first of all, to take advantage
of the past experience of the system and, hence, of storing in
an appropriate way the most significant elementary components of
its activity. Then, it should apply this information for dynam-
ically improving the capabilities and the behavior of the system.
An efficient way to obtain this result is, in our opinion, to
allow the learner to manage in a dynamic way the vocabulary of
the system, acting both on its ordering and on its content. The
new information the learner needs for such a purpose can be ob-
tained from an appropriate clarification dialogue, which repre-
sents therefore the most important source of experience for the
system. However, our basic point of view is that simple proto-
types of natural language interfaces do not require such high
level capabilities. Only when the implementation of the block
structure proposed has reached a good level of efficiency and
low cost can the design of an additional learner be started. For
this reason we have omitted such a block in our model (Figure 1).

A DESIGN EXAMPLE

In this section we go further into the model proposed by
means of a simple design example, the purpose of which is to allow
the reader to critically evaluate the relative importance of the
different functional blocks of the model, and to determine the
crucial points of the design. Moreover, the simple solution pro-
posed can constitute a helpful base to develop more advanced and
efficient design techniques. We shall focus our attention on
the design of the interpreter which is, in our opinion the heart

-272-

of the whole system. For the other blocks, which have a quite
simple logical function and the relevance of which is primarily
bound to implementation reasons, only elementary design examples
will be proposed.

Let us assume that the user's request is the following one:

I WOULD LIKE TO KNOW HOW MANY STUDENTS IN THE DEPART-
MENT OF MATHEMATICS ARE AGED OVER 25 YEARS.

The first step of the interpreter activity is the semantic~based
parsing. The interpreter scans the user's request in order to
recognize the content words and the function words contained in
it. For each word in the request the interpreter executes first
a searching in the content words part of the vocabulary of the
system.

The content words part is a collection of couples (X,Y) such
that:

- X is a list of content words, i.e. of natural language
words referring to a particular record or record field,
or to the content of a particular record field;

- Y is the symbolic name of the record (RY) or record field
(FY) to which the words of X refer, or if X denotes the
content of a record field, the symbolic name of the
record field (CFY) in which X can be contained.

Examples of such couples are:

((DEPARTMENT (S)), FDEP)

((LOGIC, MATHEMATICS), CFDEP)
((LOGIC, MATHEMATICS), CFEXAM)
((STUDENT (S))} , RSTUD)

((AGE (D)), YEAR(S)), FAGE)

Please note the particular use of the parentheses inside a con-
tent word to denote several possible forms of a given word.

Whenever a content word is recognized the Y part of the
couple in which it appears is bound to it. 1If it appears in more
than one couple (in our example the word MATHEMATICS) all the
appropriate Y's are bound to it. If no content word is recognized
the dialogue control is activated (flag 1, see Table 1).

In our example the content words recognized are:

STUDENTS -+ RSTUD
DEPARTMENT -+ FDEP

-273-

Table 1. Dialogue control.

flag -~ parameters

clarification dialogue

control

I CAN NOT UNDERSTAND YOUR
QUESTION

WOULD YOU RESTATE IT IN A
DIFFERENT WAY?

interpreter

2 - Xl,Xz,...,Xn

I CAN NOT UNDERSTAND

THE WORDS Xl,XZ,...,Xn

CAN YOU RESTATE YOUR
QUESTION?

interpreter

3 - X.,X

1 2""'Xn

THE WORDS Xl,XZ,...,Xn

CAUSE AMBIGUOUS INTERPRETATION
CAN YOU RESTATE YOUR QUESTION?

interpreter

4 - X, ,X ,...,Xn

I CAN NOT CORRECTLY CONNECT
TOGETHER THE MEANING OF THE

WORDS X)Xy, .-. X

CAN YOU RESTATE YOUR QUESTION?

interpreter

I CAN NOT RETRIEVE IN THE DATA
BASE THE INFORMATION NEEDED TO
ANSWER YOUR QUESTION

interpreter

DOES THE ANSWER OBTAINED MATCH
CORRECTLY WITH YOUR QUESTION?

PLEASE REPLY YES OR NO ONLY

dialogue

control

SYSTEM READY FOR OPERATION

interpreter

YOU MAY TRY TO RESTATE YOUR
QUESTION IN A DIFFERENT WAY

interpreter

-274-

MATHEMATICS » CFDEP, CFEXAM
AGED > FAGE
YEARS > FAGE

After all the words in the user's request have been tested for
being content words, the interpreter starts another similar search
in the function words part of the vocabulary.

The function words part is a collection of couples

(X,Y (D1,D2,...,Dn - R1,R2,...,Rm)) such that:

X is a list of function words, i.e. of natural language
words referring to a particular processing the system is
able to perform on the information contained in the data
base;

- Y is the symbolic name of the particular processing to
which the words of X refer:

- D1,D2,...,Dn denote the number, the type, and the correct

correspondence of the input paramters, i.e. the data, of
the process Y;

- R1,R2,...,Rm denote the number, the type, and the correct

correspondence of the output parameters, i.e. the results,
of the process Y.

An example is:
((HOW MANY, THE NUMBER OF) , (NUM(RECLIST, INUM)))

Please note that a function word can also be constituted by a
sequence of words. Whenever a function word is recognized the

Y(D1,D2,...,Dn - R1,R2,...,Rm) part of each couple in which it

appears is bound to it.

After these searching activities are terminated, if any
function word has been recognized the interpreter starts a match-
ing process. For each function word it verifies whether content
words which have been recognized can constitute correct input
parameters for the function word considered. Each input parameter
is bound to all the content words of the correct type. If some
parameter remains unbound the dialogue control is activated
(flag 2), and the function words x1,x2,...,xn with unbound para-

mneters are communicated to the dialogue control.
In our example the only function word recognized is HOW MANY

and its input parameter RECLIST (list of records) is bound to the
only content word of type record STUDENT,

=275~

At this point the second step of the interpreter activity,
the logical-syntactic check, begins. The user's request is
scanned once again in order to discover the logical-syntactic
connectives contained in it. To this purpose the interpreter
executes a searching in the connectives part of the vocabulary.

The connective part is a collection of couples (X,Y) where:

- X is a list of connectives, i.e. of natural language
words which denote a particular syntactic or logical
relation between content words,

- Y is a symbolic expression denoting the meaning of the
connectives X and, if it is the case, the number, type,
and correct correspondence of their arguments.

Examples of connectives are:

((OVER), GT (-NUMBER))
((OF), (FIELDY, CONTENTY))
((IN), (RECORD, FIELD))

The purpose of the logical-syntactic check is to connect in the
correct way the content words and to eliminate any ambiguous
bond occurring in the preceding stages of the parsing. In our
example the connective OF allows the removal of the only ambig-
uous binding.

MATHEMATICS -+ CFDEP, CFEXAM
to
MATHEMATICS -+ CFDEP

Moreover, the connectives IN and OVER allow all the content words
recognized to be connected in the correct way.

If the logical-syntactic check fails in the connection of
the content words or in the elimination of the ambiguities the
dialogue control is activated (flag 3 and flag 4 respectively),
and the words X1,X2,...,Xn with ambiguous bonds or which cannot
be correctly connected are communicated to the dialogue control.
All the words in the user's request not recognized as content
words, function words, or connectives, and not numbers, are
ignored.

-276-

Before proceeding further let us outline the fundamental
importance of the vocabulary in the design of the whole system.
From it depends primarily the efficiency and the understanding
capability of the interface. Its definition is a critical point
of the design. The correct way for defining the vocabulary should
be an incremental process, which, starting from a small set of
words assigned a priori, gradually modifies its content and struc-
ture during an appropriate testing stage of the system. Moreover,
such a process should be considered as a first step toward the
definition of learning strategies.

To complete its parsing activity the interpreter needs three
more tables:

a record table, in which for any symbolic name of a record
field the symbolic name of the record to which it belongs
is indicated;

a file table, in which for any symbolic name of a record
the file in which it is stored and the retrieval keys are
indicated;

a function table, which specifies for any symbolic name of
a particular processing bond to a function word, the
library programs that perform the processing and the cor-
rect way in which they must be activated.

Examples of such tables are:

DEP STUD
AGE STUD
NAME STUD
STUD FILEA NAME
[
NUM PROG 1 RECLIST > X1, 1INUM -> X2

The interpreter is now able to generate the correct parsing of
the initial user's request, which is a symbolic expression of
the following type:

-277-

RETRIEVE IN FILEA ON NAME

STUD (DEP=MATHEMATICS, AGE GT 25)
EXECUTE PROG 1(X1 = STUDLIST, X2)
RETURN X2

The above expression is then supplied as input to the program syn-
thesizer. This block translates the expression it receives into
a program in the query language proper to the data base to which
it is connected. Its activity is quite simple since it must only
insert the appropriate parameters into a parametric program model.

An example of such a model for a simple query language could
be of the following type:

OPEN FILE X

RETRIEVE XR,,XR,,...,XRN ON K1,K2,...KN
CLOSE FILE X

ACTIVATE SUBROUTINE S' (Y1,Y2,...,¥YM)
EXECUTE S(Y1',¥2',...,¥YM')

RETURN DATA AND CONTROL
In our case we would have:

OPEN FILE A

RETRIEVE STUD (DEP = MATHEMATICS, AGE GT 25) ON NAME
CLOSE FILE A

ACTIVATE SUBROUTINE PROG1 (Y1, Y2)

EXECUTE PROG1 (STUDLIST, X2)

RETURN X2 AND CONTROL

After this program has been generated control is assumed by the
base management system which executes it. If any failure occurs
during the execution of the information retrieval or processing
programs the control is returned to the interface and the dialogue
control is activated (flag 5 and flag 6 respectively).

When the control and the data return to the interface the
answer synthesizer is activated. It simply communicates to the
user the results obtained and possibly, it adds to the data an
illustrative sentence chosen, at randomr or according to some con-
trol signal generated by the interpreter, in a given list. 1In
our example a simple standard answer could be:

THE ANSWER TO YOUR QUESTION IS ...

-278-

After the answer has been generated the answer synthesizer acti-
vates the dialogue control (flag 7), which asks the user about
the correct matching between his request and the answer obtained.
If the user communicates a correct matching (YES -~ flag 8) the
interface concludes its activity, the control returns to the in-
terpreter, and the system is ready to examine another request.
Otherwise, the dialogue control is activated once again (NO -
flag 9).

The activity of the dialogue control can be defined in a
simple way by means of a deterministic table. A simple example
of this is presented in Table 1.

CONCLUSIONS

Implementation problems have not been directly taken into
account in this paper. The model proposed is implicitly oriented
toward a software implementation. It could be appropriate for
interfaces devoted to connect users with large data base systems
implemented on big computers. The most relevant problems related
to software implementation are choice of the appropriate language
and management of the control transfers between the interface,
the data base management system, and the operating system of the
computer. Artificial intelligence languages, such as LISP or
MICROPLANNER, which can be usefully adopted for the design of
simple prototypes, are not valuable for the implementation of
real systems.

Hardware implementations of the model proposed are also pos-—
sible and constitute a promising and stimulating research direc-
tion. Such an implementation would allow the design of a natural
language interface with a fully independent and modular peripheral
unit composed of three blocks:

- a core block, comprising the interpreter, the answer
synthesizer, and the dialogue control;

- a vocabulary, devoted to tune the system into different
semantic domains;

- a data base interface, comprising the program synthesizer,
devoted to connect the system to different computer and
data base management systems.,

Many problems have been raised and left unanswered. Examples
are the definition criteria for the comfortably habitable subset
and for the vocabulary, the techniques for eliminating the parsing
ambiguities, and the choice of an adequate intermediate language
for expressing the output of the interpreter. Nevertheless, the
notions presented should be adequate for experienced programmers
to visualize several approaches to the design of prototypes and
of real systems. Moreover, we hope that the model proposed can
show clearly the new idea on which it is based and can contribute
to further progress in this field.

-279-

REFERENCES

[1] Malhotra A., and I. Wladawsy, The Utility of Natural Language
Systems, IBM Research RC 5739 Computer Sciences, IBM,
White Plains, New York, 1975.

[2] Codd, E.F., Seven Steps to Rendeavous with the Casual User,
IBM Research RJ 1333, IBM, White Plains, New York, 1974.

[3] Montgomery, C.A., Is Natural Language an Unnatural Query
Language?, Proceedings of an ACM National Conference,
Association of Computing Machinery, New York, New York,
1972.

[4] Watt, W.C., Habitability, American Documentation, 19, 3 (1968).

[5]1 Malhotra, A., Design Requirements for a Knowledge-Based

English Language System for Management: An Experimental
Analysis, TR 146 Project MAC, MIT, Cambridge, Mass.,
1975.

[6] Guida, G., Tecniche di Intelligenza Artificiale per il Pro-
getto di Banche di Dati, in Proceedings Annual AICA
Conference, Milan, October 1976.

[7] Andrew, A.M., Artificial Learning Systems and QAS, in Con-
ference on Artificial Intelligence: Question-Answering
Systems, CP-76-6, International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1975.

[8] Burger, J., A. Leal, and A. Shoshani, Semantic-Based Parsing
and a Natural Language Interface for Interactive Data
Management, in Proceedings 13th Annual Conference of
the Association for Computational Linguistics, Boston,
1975.

[9] Gerritsen, R., The Application of Artificial Intelligence to
Data Base Management, presented at the 4th IJCAI, Tbilisi,
August, 1975.

[10] Antonacci, F., P. Dell'Orco, and V.N. Spadavecchia, 4n Arti-
ficial Intelligence Approach to the Semantic Evaluation
of Natural Language Querties, IBM Italia, Bari Scientific
Center, Bari.

[11] Crespi Reghizzi, S., and D. Mandrioli, Basi, Problemi e
Prospettive della Elaborazione Automatica del Linguaggio
Naturale, Rapporto interno 76-10, Istituto di Elettro-
tecnica ed Elettronica del Politecnico di Milano,
Laboratorio di Calcolatori, Milan 1976.

Two Paradigms for Natural Language
And Data Bases*

R. Stamper

I should like to draw attention to the way in which we have been
using the expression "natural language" during this meeting. Our
usage will seem quite appropriate to members of the intellectual
communities concerned with artificial intelligence and computa-
tional linguistics. However, I propose that for business users
of data bases, "formal languages with structures approximating

to those of natural language" would be a more correct description.
This other intellectual community has a different set of problems
to solve. The difference of viewpoint can be explained by in-
dicating the two paradigms that might be employed when studying
the design of data base systems.

The paradigm, for the study of natural language for inter-
action with data bases, implicit in all the papers presented at
this meeting, might be depicted by Figure 1.

USER
CONCEPTS)?
NATURAL LANGUAGE INTERFACE
COMPUTER
CONCEPTUAL
MODELS

Figure 1. Paradigm for computational linguistics or artificial intelligence.

*Report of an informal presentation.

-281-

The empirical methods suggested by this model are directed towards
discovering structures in the language that users would like to
employ when communicating with a data base. One aim is to iden-
tify the concepts needed. The individual is presumed to arrange
these concepts mentally in ways that can be modeled by network,
relational, or other structures within a computer. The interface
is the "natural language™ we have been talking about at this
Workshop.

This way of using the words "natural language"” is apt in the
context of our present discussions which have taken place from
a point-of-view of linguistics and artificial intelligence. The
guest has been for structures in language utterances that might
be related to computationally convenient structures in a data
base. The result is to devise some specialized languages that,
for the benefit of the user, approximate natural language struc-
turally. The limitations of these languages must not be over-
looked lest we apply the results inappropriately. For the typical
business user of data bases it might be better to admit that they
are formal languages.

There is another paradigm better fitted to business systems
design. This places the data base language problem in a different
context and uses the expression "natural language" differently.
Figure 2 depicts this model. It distinguishes three system levels:

- the real world in which we focus upon a limited subset
of things, the object system, relevant to some practical
problem;

- natural language can then be used to attend to this prac-
tical problem and it is employed by people in an infor-
mal way within the discourse system;

- 1if necessary, we can add a formal system in which signs
are used according to explicit rules and definitions.

In this second paradigm there is a profound distinction between
formal and natural language. Natural language exists by virtue
of human social behavior; within the discourse system, signs,
including language signs, acquire their meanings as social norms;
explicit definitions are not necessary.

Formal systems are added for two major reasons. For perform-
ing some large-scale tasks, the discourse system is defective
because informal norms are not easily imposed uniformly on a large
community for a long span of time. 1In such circumstances, special
words and usages can be supplied by explicit definitions and rules
(as in administrative law). We were familiar with formal systems
for this first reason before the computer's advent. People could
be employed, typically as clerks, to manipulate words and numbers
in mechanical ways according to formal rules. Today, we can em-
ploy computers for this work and, because computers are unable to
acquire socio-linguistic norms, we can employ them only in formal

-282-

FUNCTIONS PERFORMED BY
MACHINES ON EXPLICITLY DE FINED

DATA ACCORDING TO EXPLICIT RULES
FORMAL

SYSTEM

MACHINE—-LIKE DATA PROCESSING
ACTIVITIES PERFORMED BY PEOPLE

USE OF INFORMATION BY PEOPLE IN
NATURAL LINGUISTIC COMMUNITY

ACCORDING TO NORMS ESTABLISHED
BY SOCIAL INTERACTIONS DISCOURSE

ASSIGNMENT OF TRANSLATION OF SYSTEM
SIGNS TO SIGNS INTO
REFERENTS: BEHAVIOR:
OBSERVATION ACTION

ENTITIES RELEVANT OBJECT SYSTEM
TO ATASKORA
PROBLEM IN THE REAL WORLD

'REAL"WORLD

Figure 2. Paradigm for practical data processing.

-283-

systems. This is the second major reason for adding formal sys-
tems to our natural ones: to enable us to exploit our new infor-
mation technology. The difference between the two paradigms is
not merely one of terminology: the "natural language" of para-
digm 1 being replaced by "a special class of formal language"

in paradigm 2. It is more significant that problems of semantics
are approached differently according to the paradigm one adopts.
With paradigm 1, meanings are explicated structurally. An example
that arose in Solovitz's presentation was the expression HOT DOG*
which has two different meanings depending on whether it is re-
garded as a species of canine or a species of sandwich. These
may be represented by appending the same words to different parts
of a semantic structure: HOT DOG as a unary expression will be
the idiomatic name for a kind of sandwich; HOT will also be a
permitted description or specializer for DOG. This type of analy-
sis may be arrived at by asking how HOT DOG, HOT, and DOG are

used in the realm of natural language. Interface and storage
structures will then be constructed appropriately to embody the
meanings of these expressions.

With paradigm 2, notions of meanings are almost literally
brought down to earth. One cannot say what words mean within
the discourse system by giving formal definitions or logical
structures; that would be to retreat to an abstract level of
analysis away from the tangible world of the practical problem-
solver. To make him confident that words and numbers are being
correctly used, one has to demonstrate meanings ostensively and
show that signs are effective tools for solving practical problems.
These are problems with well-defined outcomes and if language is
to be necessary, they involve people in solving them collectively.
The meanings of words depend upon the contexts established by
these problems, the actions to be performed, and the results de-
sired. 1In a greyhound-racing stadium, for example, a person ask-
ing for a "hot dog" would be sent to the cafeteria to assuage his
hunger, to the kennels to treat a sick animal, and to a tipster
to find a competitor worth betting on.

To resolve disputes about meaning in paradigm 1 we may employ
a competent user of the language to arbitrate. 1In paradigm 2,
however, the criteria for resolving semantic disputes are objec-
tive tests of whether the meaning is suitable for performing some
task, solving some problem, or attaining some goal. Even with
the simplest problem of data base semantics, the identification
of physical objects [1], paradigm 2 leads to multiple solutions
that would not readily be distinguished in paradigm 1 by a com-
petent user of the language on grounds of purely linguistic know-
ledge. For example, appearances may be deceptive as when a body
continues its physical existence whilst the existence of a person
ends and the existence of a corpse begins; modern medical tech-
niques have removed the relative clarity of this change.

*This example was used in the oral presentation by P. Solovitz
but is not used in the paper by Solovitz et al. in these pro-
ceedings.

-284-

Alternatively, we ignore the physical transmutation of, say, a
production line, although it has been totally replaced part by
part, and treat it as the same object because of its systemic
continuity. These semantic problems must be resolved by the
information analyst working on a business application: he is

the person responsible for choosing the appropriate "myth of
physical objects"™ (to use Quine's expression). The myth is "real"”
enough only if it serves to get a job done correctly.

The two paradigms are not competitors. They are both rele-
vant for understanding and designing data base systems but only
paradigm 2 is necessary. The correct operational links between
data and the things they represent are not merely desirable but
indispensable if the data base is to generate the correct organi-
zational behavior. On the other hand, an interface with linguis-
tic properties that assist the user may be highly desirable but
it is not essential. Surprisingly, little research has yet been
done on the more important problem of the operational semantics
of paradigm 2.

The same linguistic solution may serve the interface designer
for many different operational problems. In this respect, the
two paradigms lead to techniques that can be used cooperatively.
The danger is that conceptual models based upon the linguistic
paradigm 2, which correspond to the linguistic norms of different
subsets of the user population who are trying to solve different
problems but are using the same words. One way of handling these
variants was described by Stonebraker whose INGRES system permits
control of VIEW, ACCESS, and INTEGRITY; these functions supply
the kind of structure necessary for avoiding confusion among oper-
ational meanings.

The two paradigms are also mutually helpful in another way.
Paradigm 2 leads one to think in terms of contexts distinguished
by the purpose for which the data are being used. A system that
does not permit the ambiguity of purpose suggested by the risk
of confusing "overheated canine" with "sausage sandwich" would
eliminate the linguistic problem of HOT DOG.

If they allow us to tackle effectively two smaller sets of
problems, then two paradigms are better than one. The error would
be to adopt one exclusively, ignoring the other. A devotee of
the linguistic paradigm 1, who is trying to simulate such marks
of intelligence as the disambiguation of expressions, may be
tempted to ignore the pedestrian solutions of the operational
analyst. The latter's narrow definition of the purpose for which
the data base is used, may eliminate many fascinating problems
of disambiguation with which an intelligent person can deal.
Frankly, I am in favor of ignoring such fascinating problems of
individual artificial intelligence if we can direct our energies
toward the equally fascinating, far more urgent but overlooked
problems of building a shared, public intelligence. This seems
to me to be the main practical purpose of data base technology.
It leads us in another direction. Perhaps another workshop could
point the way.

-285-

REFERENCE

[1] Stamper, R.K., Physical Objects, Human Discourse and Formal
Systems, in Proceedings of IFIP T(C2 Working Conference,
January, 1977.

APPENDIXES

-289-

Appendix A

The IIASA Energy Resources Sample Data Base

The IIASA energy resource sample data base was a very simple
and partial representation of various resources and resource ref-
erences. It was a simple relational data base consisting of
eleven relations. These along with the field names, some sample
values, and a "natural" language explanation are given in Tables
1-11.

Table 1. RCOUNTRY--Identification of countries.

COUNTRY * COUNTRYN ALPHAZ2 PMREG Field Name

I4 2b A24 2b A2 2b I2 Fortran format
code (B = blank)

40 AFGHANISTAN AF 9
101 ALBANIA AL 5
1 ALGERIA DZ 7

*Key underlined

THE COUNTRY AFGHANISTAN IS IDENTIFIED EITHER BY THE NUMBER 40 OR BY THE CODE
AF AND IS LOCATED IN THE PM REGION 9 (PESTEL-MESAROVIC).

Table 2. RPRODDEP--Production by deposits.

DEPO YEAR RES QUANTITY CUMQUANT WELLS REF
NO NO 55 columns
I7 5b I4 5b I1 4 F7.1 2b F7.1 2b I7. 2B I2
1 1973 1 293 1393 63 1
1001 1973 2 9l 179 -1* 1
1002 1973 2 109 436 5 1

*-1 = no data

REFERENCE 1 REPORTS THAT IN THE YEAR 1973 AN AMOUNT OF 293 UNITS OF RESOURCE
1 WERE PRODUCED USING 63 WELLS. THE CUMULATED PRODUCTION UP TO THE YEAR
1973 WAS 1393 UNITS OF RESOURCE 1.

-290-

Table 3. RRESERVE--Characterization of reserves.

DEPO | DEPONAME COUN-+| RES |(RESERVE|(PAY DEPTH | API |[DISC REF 80
NO TRY NO DATE
columns
14 H|A20 1B I316| I11B[F6.0 1B A20 1b |F6.1 b [F5.1b (14 b Il
1 |MURBAN BAB |186 1 1733 L LK 8600 | 38. |1960 1
1002 ([HASSI R'MEL 1 2 53564 RIASSIC|2072.6| -1 1956 1

-1 = No Data
(-0.3) Available
(~1.0)

DEPOSIT NUMBER 1, CALLED "MURBAN BAB", IS LOCATED IN COUNTRY 186 AND CONTAINS
AN ESTIMATED RESERVE OF 1733 UNITS OF RESOURCE NO.1 (OIL) OF AN API GRAVITY
OF 38 DEGREES IN A MEDIUM DEPTH OF 8600 FEET, GEOLOGICALLY CHARACTERIZED AS
"LK". THE DEPOSIT WAS DISCOVERED IN THE YEAR 1960. THE DATA REFERENCE IS 1.

Table 4. RRESOURC.

RES NO RES NAME QUANT
DIM
I2 2b A20 2b Al0
1 CRUDE OIL MEGA BL 36 columns
62 WATER, INTAKE MEGA CUM

EXAMPLE: THE RESOURCE "CRUDE OIL" IS IDENTIFIED BY THE RESOURCE NUMBER 1 AND
EVERY QUANTITY OF THE RESOURCE IS GIVEN IN MEGA BL (MILLIONS OF
BARRELS) .

-291-

Table 5. Identification and definition of facilities--RFAC.
FAC NO| FAC NAME FAC [ACT CAP [caP |IN IN oUT OUT
CLASS QUANT [UNIT |RES | RES RES RES
NO QT NO oOT
I3 b A45 1b Al 1b|4A 1B | I4 1B |A2 1D (I21Db| I4 1B I11b| F5.3
101 RESIDUAL FUEL P EPGE 800 MW 29 1578 5 |5.256
OIL POWER PLANT
102 COAL FIRED POWER | P EPGE 800 MW 29 1626 5 [|5.256
PLANT WITH LIME
SCRUBBER FLUE GAS
DESULFURIZATION
103 LIGHT WATER L EPGE | 1100 | Mw 42 | 2582 5 [7.227
REACTOR
EXAMPLE: THE FACILITY "RESIDUAL FUEL OIL POWER PLANT", IDENTIFIED BY NUMBER
101, IS A P-CLASS FACILITY (POWER PLANT), BELONGS TO THE ACTIVITY
EPGE (ELECTRIC POWER GENERATION), HAS A CAPACITY OF 800 MEGAWATTS,
NEEDS 1578 UNITS OF RESOURCE 29 (COAL) TO PRODUCE 5.256 UNITS OF
RESOURCE 5 (ELECTRICITY).
Table 6. RWATERPC.
LAST COUNTRY | AVPRECIP AVRUNOFF | INRIVER | OUTRIVER | REF
YEAR
[MM/y] [MM/yl | [curm/y]l | [CURM/Y]
I4 1b I3 15 F5.3 1b I3 1b I2 1B I2 15 Il
1967 101 1.200 350 3 13 3
1966 63 1.191 661 35 90 3
1966 64 850 360 5 16 3

THE AVERAGE
AND AVERAGE

AND THE

FOR COUNTRY

PRECIPITATION OF 1.200 MM/YEAR AND AVERAGE RUNOFF OF 350 MM/YEAR
FLOW OF RIVERS 3KM3/Y RECEIVED FROM COUNTRIES SITUATED UPSTREAM

AV. FLOW OF RIVERS LEAVING THE COUNTRY 13KM3/Y IS REPORTED BY REF. 3

101 USING MEASUREMENTS UP TO THE YEAR 1967.

-292-

Table 7. Construction time and lifetime of facilities--RCLTIME.

FAC NO CONTIME REF LIFETIME REF

I3 1b I1 15 I2 ¥ I2 512 I
101 5 10 30 10
102 5 10 30 10
103 9 10 30 10

FACILITY 101 HAS A LIFETIME OF 30 YEARS AND A CONSTRUCTION TIME OF 5 YEARS.
SEE REFERENCE 10

Table 8. Required resources for the operation of facilities--

ROPERREQ

FAC NO RES NO RESQUANT REF

I3 1b 12 1% F7.3 1B 12
103 60 18.975 10
103 70 1.207 10
103 71 0.207 10
103 52 112 10
101 60 8.16 10
101 70 1.080 10
101 52 84 10

18.975 UNITS OF RESOURCE 60 ARE REQUIRED TO OPERATE THE FACILITY 103
ACCORDING TO REFERENCE 10.

Table 9. Construction requirements for facilities-—-RCONREQ.

FAC NO RES NO RESQUANT REF
I3 1B I2 1B F10.3 1B 12 1B
101 52 4400 10
102 52 5250 10
103 52 12000 10
101 70 1.08 1Q

ACCORDING TO REFERENCE 10, ONE NEEDS 4400 UNITS OF RESOURCE 52 TO
CONSTRUCT THE ENERGY FACILITY 101.

-293-

Table 10. Publications used as a data source--RPUBLICA.

IIASANO AUTHOR TITLE PUBLISH YEAR PUBLNO
A5 aAl6 1 A29 A23 I4 b I1
R2879 MCCASLIN, JOHN C. |INTERN. PETRO- | PETR. PUBLIC.| 1974 1

LEUM ENCYCL. co.

-1 CARASSO, M ENERGY SUPPLY | BECHTEL CO. 1975 2
PLANN. MODEL S.F.

A PUBLICATION WITH THE IIASA LIBRARY ACCESSION NUMBER B2879 WRITTEN (OR
EDITED) BY JOHN C. MCCASLIN HAS THE TITLE "INTERNAT. PETROLEUM ENCYCLOPEDIA",
WAS PUBLISHED BY "PETROLEUM PUBLISHING COMPANY" IN 1974 AND IS IDENTIFIED

BY NUMBER 1.

Table 11. RREFERNC--Data reference within a publication.

REF PUBLIC STARTPAG COMMENT, (PRIMARY DATA SOURCE)
NO NO
I2 1b I1 1B I3 16 A54
1 1 216 MAJOR OIL FIELDS AROUND THE WORLD
10 8 -1
3 7 -1 PRIMARY DATA SOURCE: ECONOM. COMMISSION FOR
EUROPE 1967

Example: REFERENCE NO. 3 IS AN INFORMATION SOURCE SPECIFICATION DEFINING
A PUBLICATION WITH THE NUMBER 7 AND A PAGE NUMBER WITHIN THIS
PUBLICATION. INDIVIDUAL COMMENTS ARE ASSOCIATED.

-295-

Appendix B

List of Participants

Prof. W. Abraham
Fakultiet der Letteren
Rijksuniversiteit

Groningen
Grote Kruisstraat 21
NETHERLANDS

Prof. H. Andersin

Helsinki University of
Technology

Otaniemi

Espoo

FINLAND

Dr. F. Antonacci

IBM Centro di Ricerca
Via Cardassi 3

Bari

ITALY

Dr. J. Bankowski

Institute for Scientific
Technical and Economic
Information

Warsaw

POLAND

Dr. G. Berry-Rogghe

Institut fiir deutsche Sprache
Friedrich-Karl-Strasse 12
Mannheim

FRG

Dr. S. Braun

Institut fir Informatik
Technische Hochschule Miinchen
Arcisstrasse 21

Munich

FRG

Dr. V. Briabrin
Computing Center
Academy of Sciences
40 vavilova Street
Moscow

USSR

Dipl. Ing. M. Burghardt
Siemens AG

D AP GE
Boschetsriederstr. 41
Munich

FRG

Dr. A. Butrimenko
ITIASA

Schloss Laxenburg
Laxenburg
AUSTRIA

Dr. V. Cherniawsky

Technische Universitat Berlin
Berlin

FRG

Dr. Dehtiarenko

Minsk Institute of Technical
Cybernetics

Minsk

USSR

Dr. P. Dell'Orco
IBM Italia SPA
Centro di Ricerca
Via Cadassi

Bari

ITALY

Dr. M.J. Ferguson
IIASA

Schloss Laxenburg
Laxenburg
AUSTRIA

Dr. G. Gell

Universitatsklinik fiir Radiologie

Auenbruggerplatz 9
Graz
AUSTRIA

-296-

Dipl. Math. G. Goerz
Universitdt Erlangen-Nirnberg
Rechenzentrum

Martensstrasse 1

Erlangen
FRG
Dr. G. Guckler

Seminar f£. Allg. u. Vgl.
Sprachwissenschaft

Postfach 3980

Mainz

FRG

Dr. G. Hendrix

Stanford Research Institute
333 Ravenswood Ave.

Menlo Park, California

USA

Dr. O. Itzinger

Institute for Advanced Studies
Stumpergasse 56

Vienna

AUSTRIA

Ms. M. King

Istituto Per Gli Studi
Semantici e Cognitivi
Fondazione, Dalle Molle
Université de Geneve

17 Rue De Candolle

Geneva

SWITZERLAND

Mr. D. Kolb

Institut fir deutsche Sprache
Abt. IDV
Friedrich-Karl-Strasse 12
Mannheim

FRG

Dr. K.-D. Krégeloh
Universitdt Karlsruhe
Institut fir Informatik II
Karlsruhe

FRG

Dr. G. Lau

Osterreichische Computer GesmbH
Schottengasse 3/1

Vienna

AUSTRIA

Dr. E. Lehmann

Academy of Sciences of the GDR
Rudower Chaussee 5

Berlin

GDR

Dr. H. Lehmann
IBM Wissenschaftliches Zentrum
Tiergartenstrasse 15

Heidelberg

FRG

Phys. M.S. G. Liebisch

Industrieanlagen-
Betriebsgesellschaft mbH

Einsteinstrasse

Ottobrun

FRG

Dr. Mikulich

Moscow Institute of Control
Sciences

Moscow

USSR

Dr. G. Marini

Systems Engineer

IBM Scientific Center
Dorsoduro 3228

Venice

ITALY

Prof. H.W. Meier

Academy of Sciences of the GDR
Rudower Chaussee 5

Berlin

GDR

Dr. D.A. Pospelov
Computing Center
Academy of Sciences
40 vavilova Street
Moscow

USSR

Dr. G.S. Pospelov
Computing Center
Academy of Sciences
40 vavilova Street
Moscow

USSR

-297-

Dr. W. Rauch

Institut fiir Sozio-Okonomische
Entwicklungsforschung

Fleischmarkt 20

Vienna

AUSTRIA

Dipl.
IIASA
Schloss Laxenburg
Laxenburg
AUSTRIA

Ing. G. Rahmstorf

Prof. P. Rivera
Politecnico di Milano
Pizza Leonardo da Vinci 32
Milan

ITALY

Doz. Dr. L. Reisinger

Institut flir Statistik der
Universitat Wien

Rathausstrasse 19/4

Vienna

AUSTRIA

Dr. Schubert

Academy of Sciences
of the GDR

Zentralinstitut fir Kybernetik
und Informationsprozesse

Rudower Chaussee 5

Berlin

GDR

Prof. M. Somalivico

Politecnico de Milano

Milan Polytechnic Artificial
Intelligence Project

Piazza Leonardo da Vinci n 32
Milan

ITALY

Mr. R. Stamper

London School of Economics
and Political Science

Houghton Street

London

UK

Dipl. Ing. P. Staudigl
Technical University of Vienna
Dept. Organization and Computer
Karlsplatz 13

Vienna

AUSTRIA

Prof. M. Stonebraker

College of Engineering

Dept. of Electrical Engineering
and Computer Science

University of California

Berkeley, California
USA
Dr. J. Sturc

Computing Research Center
Bratislava
CZECHOSLOVAKIA

Dr. Subieta
Computer Center
Academy of Sciences
POB 22

warsaw

POI.AND

Dr. P. Szolovits

MIT Laboratory for Computer
Sciences

545 Technology Square

Cambridge, Massachusetts

USA

Dr. E. Tyugy
Tallinn Institute of Cybernetics

Tallinn
USSR

Mr. D. Vargha

Computing Center of the Hungarian
Planning Office

angol u. 27

Budapest

HUNGARY

Dr. Wang

Technische Universitdt Berlin
Berlin

FRG

Mr. E. Warman
Perkins Engines Co. Ltd.,
Frank Perkins Way

Peterborough
UK
Prof. A. Zampolli

Linguistics Division

Istituto Del Consiglio Nazionale
Delle Ricerche

CNUCE

36 Via St. Maria

Pisa

ITALY

