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The Dawn of Darwinian Fishery Management

UIf Dieckmann, Mikko Heino, and Adriaan Rijnsdorp suggest we are incurring a “Darwin-
ian debt” that will have to be repaid by future fishers and consumers.

Let us compare a livestock farmer and a fisher. The farmer selects and breeds individuals that
exhibit the most desirable characteristics. This is good practice, because it increases the preva-
lence of these characteristics in the next generation of the stock. In contrast, the fisher catches
large, fast-growing fish, so their desirable characteristics are less likely to be passed on to the
next generation of the stock.

Fish that grow quickly tend to be caught sooner and therefore may produce fewer offspring.
Fish that delay maturation tend to be caught before they have the chance to reproduce, so the
fish that are left to breed are those that mature at a younger age. Fish that limit their current
investment in reproduction in order to increase future reproductive success will often be har-
vested before such savings have a chance to pay dividends. The mortality imposed by fishing
can therefore act as a selective force that favours slower growth, earlier maturation, and
higher reproductive investment.

Clearly, the selections made by the farmer and the fisher work in opposite directions. The
farmer selects desired characteristics that improve his stock, whereas the fisher selects charac-
teristics that may inadvertently reduce a stock’s productivity and resilience. Therefore, fishery
scientists need to incorporate both ecological processes and evolutionary processes in their
research programmes in order to ensure the best scientific basis for fishery management.

The notion that fishing can affect the genetic composition of exploited populations has been
recognized for a century. Perhaps the earliest account can be credited to Cloudsley Rutter
(Rutter, 1904), a US salmon biologist, who warned more than a hundred years ago:

[A] stock-raiser would never think of selling his fine cattle and keeping only the runts
to breed from. ... The salmon will certainly deteriorate in size if the medium and larger
sizes are taken for the markets and only the smaller with a few of the medium allowed
to breed.

Yet, it was not until the 1980s that decreasing trends in the age and size at maturation of
Northeast Arctic cod and North Sea plaice renewed interest in this topic. In the UK, Richard
Law explored the implications of fishery-induced evolution for fishery yields, demonstrating
that maturation evolution in response to fishing could reduce productivity (Law and Grey,
1989). In the Netherlands, Adriaan Rijnsdorp (Rijnsdorp, 1993a) analysed changes in matura-
tion, reproductive investment, and growth in North Sea plaice in an attempt to quantify how
much of the observed changes in these life-history characteristics were caused by the envi-
ronment and how much could be attributed to evolution.

In ICES, the topic was discussed at a meeting of the Long-term Management Working Group
in 1993, chaired by Kevin Stokes. From 1995 onwards, various working groups were given
the task of reviewing the literature in this field. Intensified research, conducted since around
2000, led to theme sessions at the ICES Annual Science Conferences in 2002 and 2006 and
the establishment of the ICES Study Group on Fisheries-Induced Adaptive Change (SGFIAC)
in 2006. These activities, in turn, attracted more researchers to the field. Reviewing the evi-
dence for fishery-induced evolution and discussing its implications for fishery management,



the first SGFIAC report was summarized as a Policy Forum article in Science (Jgrgensen et
al., 2007).

Observed trends suggestive of fishery-induced evolution. Based on Jgrgensen et al. (2007) with modifications.
Copyright: ICES Insight.
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The evidence
The available evidence for fishery-induced evolution stems from three different sources:

e time-series analysis of long-term field data on maturation, reproductive investment,
and growth,

e experiments in controlled laboratory environments,

e model-based studies.

The illustration on the first two pages of this article provides an overview of empirical find-
ings suggestive of fishery-induced evolution across species and stocks (based on Jargensen, et
al. 2007 with modifications).

A challenge in the analysis of time-series of field data is that observable life-history character-
istics are influenced by environment and genetics. It is well known that similar genotypes can
give rise to a broad variety of phenotypes, depending on the environment that individuals ex-
perience. Trends caused by such phenotypic plasticity have to be taken into account before
residual trends can be interpreted as being indicative of genetic changes.

For the process of maturation, therefore, a method has been developed to account for the im-
pacts of growth-related phenotypic plasticity and survival changes (Heino et al., 2002a;
Dieckmann and Heino, 2007). In this manner, maturation schedules (called probabilistic
maturation reaction norms, or PMRNS) can be estimated that describe the probability of an
individual reaching maturation at a given age and size, provided it has grown and survived to
that age and size. A shift in the PMRN, summarized by changes in the length-at-age at which
the maturation probability reaches 50% (Lys0), means that observed maturation trends cannot
be explained by growth-related phenotypic plasticity and survival changes alone. If such a
change is in line with predictions of life-history evolution (adaptation towards earlier matura-
tion under exploitation), it supports the hypothesis of fishery-induced evolution. Figure 1
shows the trend in Lyso for North Sea plaice females at the age of four years.

It should be noted that analyses of long-term field data cannot provide definite proof of evolu-
tionary change, because it is always possible that the observed residual trends may have been
caused by additional environmental factors that were not considered. Nevertheless, the broad
consistency of observed PMRN trends across a variety of different fish species, stocks, and
ecosystems, and the agreement of these trends with the predictions of general life-history the-
ory and of more specific models, makes an evolutionary interpretation likely. Empirical sup-
port for fishery-induced evolution in other life-history characteristics, such as reproductive
investment and growth, is more ambiguous, partly because the disentangling of phenotypic
plasticity and genetics is more complicated.

Definite proof that fishing mortality leads to evolutionary changes comes from studies that
manipulated mortality in experimental populations. In the US, David Reznick and colleagues
(Reznick et al., 1993) demonstrated that differences in mortality led to differences in genetic
life-history traits in guppies. David Conover and colleagues (Conover and Munch, 2002) ex-
posed experimental laboratory populations of Atlantic silversides, a small pelagic species, to
different types of size-dependent mortality and demonstrated a variety of genetic responses, as
well as associated effects on yields.



Support from model-based studies

Further support for fishery-induced evolution stems from model-based studies. These range
from simple age-structured models (e.g. Law and Grey, 1989), to age- and size-structured
models that account for growth-related maturation plasticity (Ernande et al., 2004), to eco-
genetic models that combine the ecological processes of growth, maturation, reproduction,
and survival with the quantitative genetics of the underlying life-history traits (Dunlop et al.,
2009).

Although simpler models can help to corroborate expected directions of evolutionary re-
sponses to fishing, reliably estimating the pace of such adaptations requires models that are
more advanced. To be credible, such models need to do sufficient justice to the ecological and
evolutionary complexities of natural stock dynamics, and they should be based as closely as
possible on empirical measurements. Models accounting for these requirements can then be
used to forecast the direction, speed, and outcome of future fishery-induced evolution, thus
revealing the evolutionary implications of current management regimes. Studies of this kind
have demonstrated that the selection patterns of current fisheries can indeed lead to fishery-
induced evolution over a decadal time-scale and that such changes do affect the productivity
of stocks.

The utility of models for studying fishery-induced evolution goes further.

First, models can help us to understand past fishery-induced evolution. In particular, they can
provide a means of testing whether or not the observed life-history trends attributed to such
adaptation are compatible with the selection pressures imposed by the life cycle of a stock and
the fishing regime.

Second, fishery managers can use the information provided by models to support decisions
regarding the prioritization of regulations and research. Specifically, a stock’s evolutionary
vulnerability differs with its current life history, the life-history trends that it may already
have undergone, the amount of genetic variation that it currently harbours, and the detailed
characteristics of its current fishing regime. These contingencies limit the value of one-size-
fits-all models of fishery-induced evolution and, instead, underscore the importance of devel-
oping stock-specific models.

Third, and perhaps most importantly, models of fishery-induced evolution can assist fishery
scientists and managers in the investigation of the evolutionary implications of alternative
management scenarios. As changes in yield and sustainability depend on a complex interplay
of life-history trends induced by fishing, responsible forecasts will often have to be model-
based. In this regard, advanced models can be likened to flight simulators, allowing safe tink-
ering with a modelled stock, which would be far too costly or dangerous to implement with-
out prior model-aided assessments.

The good news and bad news

Fishery-induced evolution is adaptation fishing, and the better adapted the fish, the more
progeny it is likely to produce. This sounds positive, at least from the perspective of the fish,
but it is not always the case.



An increased avoidance of fishing gear among fish can be regarded as an evolution-aided “es-
cape” from fishing. The evolution of reduced adult body size can also be seen from this per-
spective because fish below the minimum legal landing size are typically less attractive fish-
ing targets.

In contrast, fishery-induced evolution of traits such as maturation schedules can be interpreted
as a means of coping with the inevitable: the primary effect of such changes is not a dimin-
ished exposure to fishing but the increased production of offspring under conditions of fish-

ing.

In both cases, fish stocks that have adapted to fishing through evolution can be expected to be
more resilient to fishing than those lacking such adaptations. This prediction is supported by
recent model-based studies: fishery-induced adaptation allows populations to sustain greater
fishing pressures than would be possible without such adaptation (see for example Heino,
1998; Enberg et al., 2009).

The advantage of enhanced resilience, however, comes at a cost.

First, stocks that become better adapted to fishing usually do so at the expense of becoming
less well adapted to their “natural” environment. In particular, populations may become less
resilient to long-term variations in their environment. For example, a long lifespan is usually
interpreted as an adaptation to unpredictable variations in recruitment success, but fisheries
favour individuals that live fast and die young, as illustrated in Figure 2.

Second, theoretical and empirical studies suggest that the effects of fishery-induced evolution
on fishing yields are largely negative. Total biomass yield usually declines when fish redirect
the investment of energy from body growth into reproduction. Consequently, a greater pro-
portion of the catch will consist of small, and therefore less valuable, fish.

Third, fish that are forced to reproduce early in life often do so less successfully than their
older conspecifics, making the same spawning stock size less valuable in terms of the stock’s
reproduction. For these reasons, fishery managers will often want to minimize fishery-induced
evolution.

Turning it around

What options are there for slowing or reversing unwanted fishery-induced evolution? Possible
solutions fall into two categories.

First, reducing fishing effort, while keeping its selectivity unchanged, will almost certainly
help to slow the pace of fishery-induced evolution. If the reduction is large enough, and con-
ditions are especially favourable, the unwanted evolution might even be reversed. A reduction
in fishing effort is often compatible with more traditional management goals: many fish
stocks are overexploited, so, in the long term, reduced exploitation is likely to generate higher
yields with lower costs and emissions and reduced ecosystem effects.

Second, changing the selectivity of fishing mortality is more likely to stop or reverse fishery-
induced evolution, because — in principle — it allows fishery managers to fine-tune selection



pressures so as to achieve this. Models are currently being developed to support fishery scien-
tists and managers in accomplishing this task.

A conceptually straightforward approach would be to make the size selectivity of fishing mor-
tality similar to that of natural mortality. However, this simple strategy usually has two disad-
vantages.

First, when the size selectivity of fishing mortality matches that of natural mortality, the extra
mortality resulting from fishing will continue to cause fishery-induced evolution. (At this
point, it is helpful to recall that fully size-independent mortality still induces selection pres-
sures, because such uniform mortality still devalues reproduction late in life.)

Second, as natural mortality is typically much greater for small fish than large fish, changing
fishing selectivity to match such a pattern is liable to cause recruitment overfishing, which
undermines yields.

Therefore, fishery managers need to adjust fishing selectivity in order to minimize fishery-
induced evolution for traits that are considered important without sacrificing too much yield.
How best to achieve this must be evaluated on a case-by-case basis, which will usually re-
quire the investigation of stock-specific models.

As long as some sacrifices are made, slowing down unwanted fishery-induced evolution is
relatively straightforward. Reversing it is another matter. This is because reverse evolution
would often have to rely on natural selection. Law and Grey (1989) have already suggested
that natural selection for delayed maturation is relatively weaker than fishery-induced selec-
tion for earlier maturation.

This idea was corroborated by recent, more realistic models (Dunlop et al., 2009; Enberg et
al., 2009), which demonstrate that the rate of evolutionary recovery is much lower than the
rate of fishery-induced evolution. In other words, evolutionary “damage” usually occurs much
faster than it can be repaired. Model results suggest that, for each year during which current
exploitation patterns continue, several years of evolutionary recovery, under the best of condi-
tions, may be required; this implies the build-up of a “Darwinian debt” that will have to be
repaid by future fishers and consumers.

Given the social and political difficulties encountered when trying to implement major
changes to current exploitation patterns, fishery-induced evolution could essentially be irre-
versible on time-scales that are of interest to fishery management (from years to a few dec-
ades). It seems self-evident that this observation should trigger the attention of managers sub-
scribing to the precautionary approach to fisheries.

Looking forward

Despite the fact that evolutionary theory has been the cornerstone of biology since the publi-
cation of On the Origin of Species 150 years ago, the implications of Darwin’s dangerous idea
for fishery science have sparked a lively debate (Hilborn, 2006; Marshall and Browman,
2007; Kuparinen and Merild, 2008). This debate does not so much question whether or not
fishery-induced evolution occurs, but focuses on the strength of the empirical evidence and on
the expected rate of fishery-induced evolution.



Although there may be some residual scepticism within the community of fishery scientists,
and although the practical implications of fishery-induced evolution have yet to be examined
more closely, the evidence supporting the likely and widespread occurrence of fishery-
induced evolution has become sufficiently strong that fishery scientists and managers can no
longer ignore the evolutionary dimension of fisheries.

This conclusion agrees with the precautionary approach to fisheries (FAO, 1995), which pre-
scribes the exercise of

...prudent foresight to avoid unacceptable or undesirable situations, taking into ac-
count that changes in fisheries systems are only slowly reversible, difficult to control,
not well understood, and subject to change in the environment and human values.

This approach also requires managers of over-utilized fisheries to

...take immediate short-term action even on the basis of circumstantial evidence about
the effectiveness of a particular measure.

In the long term, evidence for fishery-induced evolution is likely to be strengthened by mod-
ern genetic techniques based on the extraction and analysis of DNA sequences from historical
otoliths or scales. Such approaches can document and quantify changes in gene frequencies
over periods of several decades. In particular, changes in genes that are linked to life-history
processes, such as growth, maturation, and reproduction, will be of interest. This does not
mean, however, that we can expect to obtain definite proof of fishery-induced evolution by
applying such techniques, because changes in gene frequencies may be caused either by fish-
ery selection or by selection that is the result of other environmental factors, such as climate
change.

Accordingly, the conclusive attribution of causal interpretations to correlative evidence is
practically impossible for uncontrolled field observations, such as those obtained from fisher-
ies. In addition, current knowledge of the full genetic underpinning of complex life-history
processes, such as maturation, remains woefully incomplete. Therefore, for most species and
stocks, it seems safe to assume that fishery scientists and managers must continue to rely on
correlative phenotypic evidence for fishery-induced evolution for the next decade, if not
longer. Mitigating actions cannot be postponed that long.

Reflecting on the considerations above, we propose three courses of action.

First, the monitoring of salient life-history characteristics, such as growth rates, maturation
schedules, and reproductive investments, should be integrated into routine stock assessments.

Second, stock-specific models need to be developed and calibrated that take into account the
genetics as well as the ecological processes involved in the dynamics of the stock under ex-
ploitation.

Third, such calibrated stock-specific models should be used to explore and evaluate the impli-
cations of alternative patterns of fishery selection on the life history, productivity, and resil-
ience of stocks.



This calls for close collaboration between life-history modellers and fishery scientists who
assemble data and give management advice. We expect that case studies integrating the three
components recommended here — life-history monitoring, model calibration, and strategy
evaluation — will provide useful examples of how fishery management can develop its long
overlooked evolutionary dimension.
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Box 1: Effects of fishery-induced evolution on reference points

Biological reference points quantify limits between desirable and undesirable states in fishery
systems. Typically, reference points describe either the status of a stock (e.g. spawning-stock
biomass) or the pressure exerted on it (e.g. fishing mortality). To account for uncertainty, ref-
erence points are often set on a precautionary basis. Good reference points are insensitive to
short-term variability of a fishery system, but may require adjustment when long-term
changes in a fish stock or its fishery are occurring, e.g. as a result of climate change.

The ICES Study Group on Fisheries-Induced Adaptive Change (SGFIAC) is preparing an ar-
ticle titled “Can fisheries-induced evolution shift reference points for fisheries management?”,
which explores the different routes through which fishery-induced evolution may affect refer-
ence points: by biasing the estimation of indicators on which reference points are based (e.g.
by biasing SSB estimates) and/or by changing a stock’s dynamics (e.g. by changing the SSB-
recruitment relationship). As a result of changes along either route, a reference point might
become more precautionary than intended — a safe mistake. More troubling, fishery-induced
evolution might also covertly shift a reference point in the direction of danger, thereby caus-
ing a false sense of safety. Which outcome is more likely depends on the considered reference
point and on particulars of the fish stock and its fishery.

Box 2: Evolutionary impact assessment

Fishery-induced evolution may change the utility of fish stocks, e.g. by altering utility com-
ponents such as fishery yields, stock stability, recovery potential, trophic interactions, geo-
graphical distributions, genetic diversity, touristic benefits, and the intrinsic values of species
and ecosystems. Such changes modify the ecosystem services through which living aquatic



resources provide value to society. Therefore, quantifying and characterizing the evolutionary
effects of fishing is important for both economic and ecological reasons.

The ICES Study Group on Fishery-Induced Adaptive Change (SGFIAC) is preparing an arti-
cle titled “Evolutionary impact assessment: accounting for evolutionary consequences of fish-
ing in an ecosystem approach to fishery management”, which describes evolutionary impact
assessment (EvolA; Jargensen et al. 2007) as a set of methods for assessing the evolutionary
consequences of fishing and for evaluating the merits of alternative management options.
EvolAs (i) contribute to the ecosystem approach to fishery management by clarifying how
evolution alters stock properties and ecological relations, (ii) support the precautionary ap-
proach to fishery management by addressing a previously overlooked source of uncertainty
and risk, and (iii) help realize the Johannesburg summit’s commitment to the restoration of
sustainable fisheries by assisting fishery managers to cope with the evolutionary implications
of fishing.
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Figure 1. Changes in the probabilistic maturation reaction norm (PMRN) of female North Sea plaice at the age
of 4 years. The figure shows how the body lengths at which female plaice of this age mature have dropped pre-
cipitously throughout the 20th century (blue curves, 10% probability; green curves, 50% probability; red curves,
90% probability). Based on Grift et al. (2003; jagged curves) and van Walraven et al. (2009; straight curves).
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Figure 2. The timing of maturation has a large influence on the size of females spawning for the first time (illus-
trated by the large fish above the red growth curves) and their expected reproductive success. The latter is deter-
mined by two components, relative clutch size (illustrated by clutches becoming larger as females grow) and
probability of surviving to produce a clutch (illustrated by the fading colour of clutches). Which maturation age
is evolutionarily favoured depends on natural mortalities and fisheries mortalities (illustrated by gradients at the
bottom and top of each panel). (a) In the absence of fishing, large fish face little mortality. Under such condi-
tions, delayed maturation and growth to a large size are advantageous. Fishing turns this situation around by tar-
geting large fish. (b) Fish that delay maturation end up trying to reproduce at ages when they are at high risk of
having been fished. (c) Fish that reproduce early and invest their resources into reproduction instead of growth
are favoured by fisheries-induced selection.
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