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Abstract 
 
 
Goal: To provide an alternative to the usual bet-hedging explanation for delayed 
germination, one that takes account of known facts about germination in stable, fine-
grained environments. 
Context: Small patches with local environmental conditions (microhabitats) such that 
seedlings can establish themselves are customarily called safe sites.  
Key assumptions: We focus on a single species. Its safe sites become available 
randomly. Seeds that germinate outside safe sites all die as seedlings. All seeds are 
equal, i.e., their probability of dying over the year and probabilities to germinate when 
the right season is there do not depend on their age or any other aspect of their 
individual history. Moreover, we make the standard assumption of ESS theory that the 
population is genetically homogeneous but for the occasional mutant “testing the 
ESS”. There is a trade-off between the germination probability in safe sites and the 
probability not to germinate outside safe sites. For germination strategies close to the 
ESS the environment does not fluctuate. 
Procedure: Start with a simple population model, in which the yearly seed survival 
and the fraction of the area covered by safe sites are fixed quantities. For this model 
derive an optimisation principle satisfied by the Evolutionarily Steady Strategy vector 
consisting of the probabilities to germinate in safe sites and elsewhere. Using this 
optimisation principle, analyse the effect of various trade-offs using Levins’ fitness 
set technique. Analyse how the results extend to ESSs for general life histories and 
community dynamics subject only to the key assumptions. 
Conclusion: Seeds in safe sites should not all germinate on the first opportunity if the 
relation between the probability to germinate in safe sites and the probability to 
germinate elsewhere is accelerating and has a sufficiently steep slope at the highest 
germination probabilities.  
 
 
Key words: delayed germination, optimisation principle, Levins’ fitness set, life stages 
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1 Introduction 
 
 

The phenomenon that not all seeds germinate directly when conditions are suitable 
but that some delay germination for one to several years is usually referred to as just 
delayed germination. The standard explanation in the theoretical literature for this 
phenomenon, starting with the work of Dan Cohen (1966, 1967) through the work of 
Michael Bulmer (1984), Steve Ellner (1985a,b, 1986), Joel Brown and Larry Venable 
(1986, 1991; and in opposite order 1988), Dan Cohen and Si Levin (1987), ourselves 
with John Val (Klinkhamer et al., 1987), Mark Rees (1994), Larry Venable (1989), 
Andrea Mathias and Éva Kisdi (2002), Michael Easterling and Steve Ellner (2002), 
Sami Aikio, Esa Ranta, Veijo Kaitala and Per Lundberg (2002) to Angelo Valleriani, 
on his own (2005, 2006) and in collaboration with Katja Tielbörger (2006; and in 
opposite order 2005), is as a bet hedging strategy in time-varying environments.  

Bet-hedging models assume that environmental conditions vary in time but at 
each point in time are the same for all plants. Despite this uniformity, plants are 
predicted to develop adaptations that make that in a single germination window not all 
of their seeds germinate. Bet-hedging strategies may be realised by some coin flipping 
mechanism of the seed or by parents producing more types of seeds with different 
germination characteristics.  

We are more familiar with a different scenario. In our experience seeds 
germinate mainly as reaction to local disturbances, and hence selection may be 
expected to improve this reaction in order to let them end up as reproductive adults as 
often as possible. Seeds of foxglove (Digitalis purpurea) can survive in the soil for 
many years only to germinate after a disturbance, for instance due to a tree fall (van 
Baalen 2004). Our own field studies with spear thistle (Cirsium vulgare) and 
houndstongue (Cynoglossum officinale) also suggest that disturbances may 
dramatically increase germination (Klinkhamer and de Jong, 1988). For surveys of 
possible mechanisms see Baskin and Baskin (1998), in particular Chapter 4, and 
Fenner and Thompson (2005), and for a quick summary with a view towards ecology 
Rees (1997). Recent references are by Jankowska-Blaszczuk and Daws (2007), who 
analysed how high red : far red ratios can stimulate local germination propensity, and 
by Vandelook et al. (2008), who showed that local temperature-fluctuations as well 
light and nitrate availability can stimulate germination (the authors refer to “gap-
detection signals”). An entirely different type of mechanism again is through 
germination inhibitors in the endocarp that first have to leach away with the leaching 
process depending on local conditions; Hu et al. (2008) have shown that in addition 
other layers of the fruit may be involved in more indirect ways.  

The difference is, of course, that we work primarily in the Netherlands, which 
has a rather humid and stable temperate climate and fine-scaled vegetation structures, 
whereas Dan Cohen’s outlook was shaped by the dry climate of Israel where the good 
circumstances for germination arise only after rainfalls that affect relatively large 
areas.  

In this paper we describe a model covering the fine-scaled temperate outlook. 
We start with considering the simplest possible scenario, annuals with only seedling 
interaction. This interaction is idealised in that the world is divided up in places where 
seedlings cannot and so-called safe sites, small patches where they can survive (c.f. 
Skellam 1951; Pielou, 1975; De Jong et al., 1987; Geritz et al., 1988). In these safe 
sites seedlings compete, so that at most a few survive. Otherwise the plants do not 
interact. Safe sites come available unpredictably in space and in time. Seeds can 
distinguish between the two possible microhabitats, but only within a certain margin 
of error. Hence, increasing the germination probability in a safe site also increases the 
germination probability in the remainder of the habitat. As strategy variable we 
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choose the germination probability in safe sites. We rigged this eco-evolutionary 
model such that it satisfies an optimisation principle (De Jong et al., 1987; Mylius and 
Diekmann, 1995; Metz et al., 2008a), allowing for an easy calculation of the 
Evolutionarily Steady germination fraction. (We interpret the second symbol in ‘ESS’ 
as ‘Steady’ instead of the commonly used ‘Stable’. See e.g. Metz (2008) p. 1605 for 
an explanation: only ESSes in the subset of so-called Continuously Stable Strategies 
are indeed evolutionarily stable in the standard interpretation of the term stable.) The 
existence of an optimisation principle guarantees that the corresponding ESSes are 
moreover evolutionarily attracting (Continuously Stable). 

In principle, the existence of an optimisation principle excludes a plethora of 
potential evolutionary phenomena. However, for our purpose, to wit showing that a 
particular evolutionary explanation can work, this simplification is relatively 
harmless. (See the introduction of Metz et al. (2008b) for a more detailed discussion 
of when using simplifications of this type can be considered methodologically sound.)  

After having tackled the simple model we investigate which ecological 
restrictions of the simple model can be removed without changing the results. We cap 
off with a discussion of the experimental options for testing the theory. 
 
 
2 A simple eco-evolutionary model 
 
 

In following the ecological scenario described in the previous section we assume that 
both the dispersal distances and the area in which the population lives is so large that 
the use of a deterministic model is warranted. In that case the scenario translates into 
simple recurrences for the seed densities of a resident population and of a potentially 
invading mutant population. We shall use the following notation (when there is a need 
to distinguish between residents and mutants, resident parameters will be in UPPER 
CASE and mutant ones in lower case), based on a census of seeds just before 
germination and of plants at a time when seedling competition is just over: 
 

h :  density of safe sites available at germination time, 
a :  average area of such a safe site, 
k :  fraction of total area covered by those safe sites   (= ha), 
S :  yearly survival of seeds in the soil, 
Y :  seed production of a mature plant, 
U : survival of newborn seeds till their first germination opportunity, 
G, g: probability that a seed in a safe site germinates, 
F, f:  probability that a seed outside a safe site germinates, 
X, x:  overall seed density prior to germination, 
P, p:  density of mature plants (i.e., plants that survived seedling competition). 

 
The quantities h to U are supposed to be constant parameters. With this notation the 
recurrence for the resident population becomes 
 

X´ = S[1-kG-(1-k)F]X + UYP,    (1) 
 

with, when there are no mutants around yet, 
 

P = h Φ(GX),     (2) 
 

Φ(GX)  the expected number of surviving seedlings in a safe site if the average density 
of germinating seeds in a site is GX.  In words, the seeds of next year, the density of 
which is denoted as X´, will consist of this year’s seeds that neither germinate nor 
succumb plus the surviving new seeds from this year. P equals the density of safe sites 
times this year’s average number of survivors of seedling competition in a site. If in 
each site exactly one out of any positive number of seedlings remains, seeds are 
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distributed randomly over space, and the area of all safe sites is the same,  
 

             Φ(Z) = (1-e-aZ).    (3) 
 

Now suppose that a mutant is introduced. The mutant seed density satisfies  
 

x´ = S[1-kg-(1-k)f]X + UYp,    (4) 
 
where p is calculated by multiplying the following ingredients: 
 

expected number of surviving seedlings in a safe site:   Φ(GX+gx), 
 

probability that a randomly chosen seed is of the mutant type:  gx/(GX+gx). 
 
A similar argument applies to the resident in a combined mutant resident population, 
giving 

P = hΨ(GX+gx)GX,      p = hΨ(GX+gx)gx,   (5) 
with 

        Ψ(Z) :=  Φ(Z)/Z.     (6) 
 

If Φ increases and decelerates, as is the case in the example, then the pure 
resident recurrence has a unique globally attracting internal equilibrium if and only if 

 

S[1-kG-(1-k)F]+ UYhΨ(0)G > 1   and    lim
Z →∞

′Ψ (Z ) < 1 .  (7) 
 
We shall from now on make the assumption that the former is the case. The internal 
equilibrium satisfies 

    1 = S[1-kG-(1-k)F]+ UYhΨ(GX*)G.   (8) 
Therefore 

  UYhΨ(GX*) = [1 - S(1-kG-(1-k)F)]/G.   (9) 
 

Whether a mutant can invade or not has to be judged from the linearised 
recurrence for the mutant at the pure resident equilibrium: 
 

x´ =  S[1-kg -(1-k)f ]x + UYhΨ(GX*)gx 
    =  {S[1-kg -(1-k)f ] + (g/G)[1 - S(1-kG-(1-k)F)]} x. (10) 

 
A mutant will invade if  
 

      S[1-kg -(1-k)f ] + (g/G)[1 - S(1-kG-(1-k)F)] > 1,   (11) 
 

or equivalently 

        g/{1-S[1-kg-(1-k)f]} > G/{1-S[1-kG-(1-k)F]},   (12) 
 

and only if 

        g/{1-S[1-kg-(1-k)f]} ≥ G/{1-S[1-kG-(1-k)F]}.   (13) 
 

Apparently evolution maximises  
 

      M(G,F) := G/{1-S[1-kG-(1-k)F]}.   (14) 
 

 
 

3 Calculating the Evolutionarily Steady Strategy 
 

 

The optimisation principle M increases in G and decreases in F. So, if there are no 
further constraints, G will increase to its maximal value 1, and F will decrease to its 
minimal value 0. In reality, increasing G will no doubt also increase F, one possible, 
time honoured (see e.g. De Jong and Klinkhamer, 2005), relation between F and G 
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being  

 F ≥ αGβ,   with   α  ≤ 1.    (15) 
 

 
For this trade-off, with G* the Evolutionarily Steady value of G, 

    for β > 1 and α(β − 1) >
1 − S

(1− k)S
:       0 < G* =

1− S
Sα(1− k)(β − 1)

⎛
⎝⎜

⎞
⎠⎟

1/β

< 1, 

     else:                            G* = 1.   (16) 
 

In other words, under the first conditions even in safe sites only a fraction of the seeds 
should germinate, since increasing the germination fraction beyond this optimal value 
would lead to too great a cost from inopportunely germinating seeds. Else, seeds in 
safe sites should just germinate, independent of the cost that this incurs through seeds 
also germinating elsewhere. 
 A more general analysis is possible using Levins’s idea of fitness sets (Levins, 
1962, 1969; see Rueffler et al., 2004, for an extension to cases without optimisation 
principle). According to tradition, in such an approach the axes should correspond to 
life history parameters in which the evolutionarily maximised quantity increases. 
Moreover, it helps when the contour lines of the optimisation principle are straight 
lines. This naturally leads to the choice of G and 1-F, with as formula for the fitness 
contours 

         1 − F =
1 − kS + (kS − M −1)G

(1 − k)S
.    (17) 

 

The trade-off we denote as 1-F ≤ T(G). Since 
 

1− kS
(1− k)S

> 1     (18) 
 

and any reasonable trade-off satisfies T(0) = 1, the Levins style pictures will look like 
Figure 1a in cases where seeds should not all germinate.  When the fitness set is 
concave instead of convex, seeds should always germinate, and the same is the case 
when for a convex fitness sets  (see Figure 1b) 

 

 T (1) −
dT
dG

(1) <
1− kS

(1− k)S
    (19) 

(with the physiological and ecological parameters collected on different sides of the 
inequality sign). 
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1-F

G

1− kS
(1− k )S

1

10
0

G*

1-F*

1 − F =
1 − kS + (kS − M −1)G

(1 − k)S

(a) 1-F

G

1− kS
(1− k )S

1

10
0

G*=

1-F*

1 − F =
1 − kS + (kS − M −1)G

(1 − k)S

(b)

 

Figure 1: Two possible convex fitness sets together with a sample of contour lines of 
the optimisation criterion. The left configuration leads to an internal ESS, the right 
one to a boundary ESS.            
 
 

In the case of the example F ≥ αGβ, with α  ≤ 1, condition (19) translates into 

α(β − 1) >
1 − S

(1− k)S
, as found before. 

To interpret the criterion (19), observe that at G = 1 at the population 
dynamical equilibrium X*  the pay-off, in seeds next year, of germinating when in a 
safe site equals UYhΨ(GX*) = 1-S[1-k-(1-k)F] = 1-(1-k)(1-T(1))S; see (9). With this in 
mind the criterion (19) can be rewritten as  

 

 1− (1− k)T (1)S > S k + (1− k)
-dT
dG

(1)⎛
⎝⎜

⎞
⎠⎟

.   (20) 
 

In words: at G = 1 for seeds in safe sites the average pay-off of germinating is larger 
than the marginal pay-off of not germinating. This marginal pay-off has to be 
calculated for an average seed, not for the seed under consideration. It is composed of 
two terms depending on whether a seed finds itself in a safe site, which is the case 
with probability k, or elsewhere.  The term  − dT dG   equals the marginal change in 
1-F, the probability that a seed outside a safe site does not germinate and hence does 
not succumb in the germination window. After adding, the result is multiplied with S 
in order to get the seeds of next year. 

In general, (9) tells that the equilibrium  pay-off  of germinating is     
UyhΨ(GX*)  =  {1-S[1-kG-(1-k)F]}/G = {1-S[(1-k)T(G)+k(1-G)]}/G.  Internal ESSes 
satisfy (c.f. Figure 1a) 

   T (G*) =
1 − kS + (kS − M −1)G*

(1 − k)S
   &   dT

dG
(G*) = −

kS − M −1

(1 − k)S
, (21) 

which can be rewritten as 
 

1 − S (1 − k)T (G*) + k(1 − G*)( )
G* = S k + (1 − k)

-dT
dG

(G* )⎛
⎝⎜

⎞
⎠⎟

.  (22) 
 

In words: at internal ESSes for seeds in safe sites the average pay-off of germinating 
is equal to the marginal pay-off of not germinating. 

 7



 
 In all cases evolution minimises the pay-off of germinating in a safe site in 
accordance with Result 3 in Mylius and Diekmann (1995) and Proposition 3.2 in Metz 
et al. (2008a): When the relevant environmental variables, in this case GX , affect the 
expected lifetime reproductive output of an individual in a monotone one dimensional 
manner (through the function ), the feedback loop through the environment makes 
that evolution lets the organisms end up in the worst possible world. 

Ψ

 
 
4 Removing the ecological simplifications 

 
 

To see which of the ecological simplifications made earlier are essential for reaching 
the conclusions from the previous section, we fall back on the following general 
argument (expounded in Example 6.2 of Metz et al., 2008a): “Let the life history 
consist of a number of subsequent stages. Call a stage reproductive if reproduction is 
possible during, or before as well as after that stage, and all preceding stages pre-
reproductive.  If there is no overlap between the sets of pre-reproductive stages 
affected by, respectively, the strategy vector Q and the environment E, and the 
reproductive stages are affected by at most one of those two variables, the average 
lifetime offspring production can be expressed as R0(Q,E) = φ(E) R0(Q,E0), E0 some 
arbitrary reference environment. Therefore evolution within those confines maximises 
R0(·,E0).” This suggests considering life histories of the form depicted in Figure 2.   

 

fresh
seeds

seedbank

seedlings

plants

 
 

Figure 2: A generalised plant life history with the restriction that all seeds are initially 
equal, and so are all seedlings. 

 
The essential characteristic of the life histories symbolically represented by 

Figure 2 is their decomposability into two stages between which no information is 
transferred, as all seedlings are equal and so are all newly produced seeds. Within the 
two stages the seeds and plants are differentiated in e.g. (age, depth in soil)- 
respectively (age, size above ground, size below ground)-classes. Moreover, one can 
decompose the environmental influences on an average individual plant into three 
components, (1) influences on the seeds, to be represented by a vector  (consisting 
of e.g. seed predation pressures and fungal and bacterial attack rates at different 
depths; b from belowground), (2) influences on the seedlings, including their own 
average initial density in safe sites Z, to be represented by a vector E , and (3) 
influences after the seedling stage, to be represented by a vector  (capturing all 
direct and indirect competitive influences within the community through shading, 
nutrient depletion and changing predation pressures; a from aboveground). Since the 
birth of a safe site necessarily coincides with the demise or a state change of one or 
more plants in the community it may also be assumed that determines the fraction 
of the area covered by safe sites. Therefore, for a full description of the eco-

Eb

s

Ea

Ea
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evolutionary model the following quantities and functions are needed: 
 

X, x: vector of densities of seeds in different states, 
P, p: vector of densities of plants in different states, 
U(Eb): state distribution of a new seed just prior to germination time, 
S(Eb): matrix of survival and state transition probabilities of seeds, 
h(Ea): density of safe sites available at germination time, 
k(Ea):  fraction of total area covered by those safe sites, 
G, g: state dependent probabilities that a seed in a safe site germinates, 
F, f:  state dependent probabilities that a seed outside a safe site germinates, 
Ψ(Es): average number of seedlings in a safe site that survive seedling competition 

divided by the average density of novel seedlings in safe sites, 
J(Ea): state distribution of young plants that have survived seedling competition, 
A(Ea): matrix of survival and state transition probabilities of plants, 
Y(Ea): seed production by plants in different plant states. 

 
Note that the probability distribution of the state of a newborn seed at the next 
germination time, encoded in the vector U, will in general be defective (i.e., has total 
mass smaller than one) due to seed mortality. Note also that in most concrete 
instances the probability distribution of plant states after seedling competition, 
encoded in the vector J, will probably be concentrated on but a single plant state: 
small juvenile. J by definition has full mass as the probabilities of seedling death are 
all accounted for by Ψ(Es). 

The resident population state satisfies the following recurrences 
 

′X = S(Eb ) I − k(Ea )diag(G) − (1− k(Ea ))diag(F)( )X + U(Eb )YT(Ea )P,

′P = A(Ea )P + J(Ea )h(Ea )Ψ (Es )G
TX,

 (23) 

with  

 

diag
v1

M
vk

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

:=

v1 0 L 0
0 O O M
M O O 0
0 L 0 vk

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    and     

 

v1

M
vk

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

T

:= v1 L vk( ). 

 

A verbal rendering of these equations mimics that for the scalar case. (By default the 
earlier assumption that the resident population dynamics converges to an equilibrium 
stays in place.) By the same token, the mutant population state satisfies 
 

    (24) 
′x = S(Eb ) I − k(Ea )diag(g) − (1− k(Ea ))diag(f )( )x + U(Eb )YT(Ea )p,

′p = A(Ea )p + J(Ea )h(Ea )Ψ (Es )g
Tx.

 
These equations should be combined with equations for the remainder of the 
community to determine (Ea,Es,Eb). As it turns out, this model is still a bit too general 
to allow the ES germination strategy to be determined from an optimisation principle. 
However, it is only by considering more general models that it is possible to delineate 
the crucial assumptions underlying the results from the previous section. 

At the resident equilibrium the average lifetime offspring number of a resident 
equals 1. The calculation of this average lifetime offspring number can be broken 
down into a number of steps. First we calculate the average number of full seasonal 
cycles (measured between end-of-seedling-competition time points) that a survivor 
from the seedling stage lives through during its lifetime, split up according to the state 
the plant was in at the end-of-seedling-competition moments.  From the general 
Markov chain results in Kemeny & Snell (1960) it follows that these numbers are 
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given by the vector , with (  the 
equilibrium environment, to be determined from the full community dynamical 
equations for the resident strategy (G,F). Hence, the average number of seeds that a 
plant that just germinated in a safe site will produce over its lifetime 
is . Similarly, the average number of 
germination moments that a seed experiences while in various seed states equals 

. Therefore, 
the probability of a seed germinating in a safe site instead of dying or germinating 

elsewhere equals G

(I − A(Ea,G,F
* ))−1J(Ea,G,F

* ) Ea,G,F
* ,Es,G,F

* ,Eb,G,F
* )

YT(Ea,G,F
* )(I − A(Ea,G,F

* ))−1J(Ea,G,F
* )Ψ (Es,G,F

* )

I − S(Eb,G,F
* ) I − k(Ea,G,F

* )diag(G) − (1 − k(Ea,G,F
* ))diag(F)( )( )−1

U(Eb,G,F
* )

T I − S(Eb,G,F
* ) I − k(Ea,G,F

* )diag(G)− (1− k(Ea,G,F
* ))diag(F)( )( )−1

U(Eb,G,F
* ). 

Multiplying these two numbers gives 
 

1 = R0 (G,F;Ea,G,F
* ,Es,G,F

* ,Eb,G,F
* ) = YT(Ea,G,F

* )(I − A(Ea,G,F
* )−1J(Ea,G,F

* )Ψ (Es,G,F
* ) ×

                    GT I − S(Eb,G,F
* ) I − k(Ea,G,F

* )diag(G) − (1− k(Ea,G,F
* ))diag(F)( )( )−1

U(Eb,G,F
* ).

           (25) 
Hence, 
 

      

Ψ (Es,G,F
* ) =

                         YT(Ea,G,F
* )(I − A(Ea,G,F

* )−1 J(Ea,G,F
* ) ×

GT I − S(Eb,G,F
* ) I − k(Ea,G,F

* )diag(G) − (1− k(Ea,G,F
* ))diag(F)( )( )−1

U(Eb,G,F
* )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

.

           (26) 
 

Similarly, we find for the average lifetime offspring production of a mutant, after 
substituting the expression for  and cancelling terms that appear in both 
numerator and denominator, 

Ψ (Es,G,F
* )

 

R0 (g, f;Ea,G,F
* ,Es,G,F

* ,Eb,G,F
* ) =

             
gT I − S(Eb,G,F

* ) I − k(Ea,G,F
* )diag(g) − (1− k(Ea,G,F

* ))diag(f )( )( )−1
U(Eb,G,F

* )

GT I − S(Eb,G,F
* ) I − k(Ea,G,F

* )diag(G) − (1− k(Ea,G,F
* ))diag(F)( )( )−1

U(Eb,G,F
* )

.
 

           (27) 

Hence, ESSes can be determined by optimising (G,F) in 
 

        
�M (G,F;k,S,U) := GT I − S I − kdiag(G) − (1− k)diag(F)( )( )−1 U  (28) 

 
in dependence on (k,S,U), and solving the community dynamical equilibrium 
equations together with .  (G,F) = (G,F)opt (k(Ea,G,F ),S(Eb,G,F ),U(Eb,G,F ))

If and only if G and F do not influence the equilibrium values of the seed state 
transition and survival probabilities and the fraction of the area covered by safe sites, 
S(Eb,G,F

* ) = S , U(Eb,G,F
* ) = U  and k(Ea,G,F

* ) = k , the function  (G,F) a %M (G,F;k ,S,U)  
is an evolutionary optimisation principle, in accordance with the general result 
described in Example 6.2 of Metz et al. (2008a).  

In the special case that all seeds are equal,  �M (G,F;k,S,U)  reduces to 
M (G,F;k,S) =  G 1− S 1− kG − (1− k)F[{ ]} and the graphical considerations from 

the previous section apply also for the ESS, with the modification that S  and 
 are no longer constants, but depend on the community dynamical 

(Eb,G,F
* )

k(Ea,G,F
* )
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equilibrium for that value of (G,F). In particular, also in this more general case only a 
fraction of the seeds in safe sites should germinate when the fitness set 
0 ≤ 1− F ≤ T (G) ≤ 1 is convex and at G = 1 the average pay-off of germinating for 
seeds in safe sites is smaller than the marginal pay-off of not germinating, with the 
minor complication that these pay-offs are not a priori specified parameters but 
depend on the community dynamics through  and . However, 
since in applications (assuming boldly that these will once occur) it will rarely be 
possible to estimate all parameters of a mechanistic model predicting k and S so that 
these quantities will in all probability be estimated directly from field data, the latter 
difference has greater conceptual than practical significance. 

k(Ea,1,T (1)
* ) S(Eb,1,T (1)

* )

If, and only if, the seeds are all equal and the equilibrium seed survival 
 and the equilibrium fraction of the area covered by safe sites  are 

not influenced by G or F, the theory from the previous section applies without 
modification. 

S(Eb,G,F
* ) k(Ea,G,F

* )

 
 
5 Experimental tests? 

 
 

Although the mathematical results are pretty clear-cut, there is still the problem how 
well they relate to biological reality. First of all, it may be that seeds in the right 
season and given seemingly extremely favourable conditions just always germinate. 
For instance, in our experience the fresh seeds of common mullein (Verbascum 
thapsus), a plant species with a well-developed and long-lived seed bank, without 
exception germinate in light exposed Petri-dishes. If yet in the field not all seeds 
germinate in apparent safe sites this may be due to such extreme germination 
conditions never occurring in nature, or to a fraction of the seeds from the field 
observations actually not being in safe sites. Which scenario is the case can only be 
inferred by comparing germination results from laboratory experiments with results 
from patches with optimal and poor conditions for seedling survival that are 
experimentally created in the field. 
 It may also be that the dichotomy between safe sites and deadly remaining 
territory is too gross an oversimplification, and that the non-germinating seeds, 
although located in safe sites, may still be in a lesser position as competitors, for 
example since they have to spend more energy to push their cotyledons up from a 
greater depth. The reaction to light shown by many seeds provides an instrument to 
respond to such a situation. If indeed light were the only signal it may well be 
technically impossible for a seed to show the best possible reaction to depth due to the 
fast fading of the signal. This would also explain why seeds use more than one clue to 
base their decisions on. Note that when seeds are thus differentiated according to soil 
depth, the assumption that all seeds are equal no longer holds good. In the previous 
section we wrote down a model that in principle can handle such more complicated 
mechanisms, but only in order to show what structural properties of the model lead to 
the existence of an optimisation principle. As a tool for making concrete predictions 
such a model will soon contain too many parameters, so that judging whether seeds 
indeed play a strategy close to an ESS will unavoidably be thwarted by experimental 
noise. Evolution uses larger sample sizes than any experimenter, so one may expect it 
to draw finer lines than humans ever can.  
 Data supporting the assumption that all seeds are equal may be found in Figure 
4/11 of Harper (1977), Figure 7.4 in Baskin and Baskin (1998), and Figure 5.8 in 
Silvertown and Charlesworth (2001). Figure 7.7 in Rees (1997) shows one case 
supporting the assumption and three graphs for cases where it fails to hold true. 

Finally, for many species the dichotomy between safe sites and deadly 
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remaining territory will be an oversimplification in a different respect, with the degree 
of safety being more gradual, requiring our model to be extended in a different way. 
In our view the dichotomy appears not too unreasonable a first approximation for at 
least a fair number of species, although in any specific case this remains up to the 
field biologist concerned to decide. 
 But possibly for the sharp dichotomy between safe sites and deadly remaining 
territory, the ecological ingredients of the general model introduced from the previous 
section are pretty indisputable. This is less so for the physiological ingredients 
introduced one section earlier. In order to comply with the traditions of Levin’s 
method we moreover had to represent the trade-off in a non-intuitive way. Figure 3 
shows what the notions of convex and concave fitness sets mean in terms of the 
relation between G and F: a convex fitness set corresponds to a convex relation 
between G and F (and a concave trade-off between G and 1-F). Somehow, intuitively 
a concave relation between G and F feels more natural. However, the only proof of 
the pudding is in the eating. One possible set of observations that would allow judging 
the shape of the trade-off would be to compare the realised germination propensities 
of seeds that genetically differ, for example since they come from areas with different 
values of k or S, (1) in patches overgrown by natural vegetation, (2) in artificially 
cleaned patches and (3) in the laboratory under circumstances most favourable to 
germinating. A final approach could be to try to develop a model that translates 
known facts about germination inducing stimuli and the behaviour of those stimuli in 
patches that clearly act as safe sites and patches that do not into a trade-off curve, 
using the data reviewed in Chapter 4 of Baskin and Baskin (1998) and Fenner and 
Thompson (2005) and gleaned from more recent literature. (Germination physiology 
is a thriving topic. See the introduction for a sample of recent references.)  
 The unfortunate upshot is that attempts at testing the theoretical results of this 
note will probably require major research efforts.  
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Figure 3: Connection between the relation between G and F and the corresponding 
fitness set. According to standard mathematical terminology when the relation 
between G and F is convex the trade-off between G and 1-F is concave and the fitness 
set is convex. Similarly, when the relation between G and F is concave the trade-off 
between G and 1-F is convex and the fitness set is concave. 
 
6 Discussion 

 
 

So far the theoretical research community has primarily kept refining ever more the 
model of Cohen (1966) for the evolution of delayed germination. However, 
alternative explanatory schemes, such as kin selection in viscous populations 
(Kobayashi and Yamamura, 2002; see also Venable and Lawlor, 1980; Westoby, 
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1981; Ellner and Shmida, 1981; Ellner, 1986), also should be considered. The 
potential explanation proposed in this note aims at reflecting more of the results of a 
large body of empirically oriented literature from temperate regions (Harper, 1977; 
Fenner, 1985; Rees, 1997; Baskin and Baskin, 1998; Silvertown and Charlesworth, 
2001; Fenner and Thompson, 2005). It turns out that under the envisioned scenarios 
evolution may in principle also lead to germination probabilities smaller than one, 
even if we consider only seeds that happen to be in the best possible circumstances for 
producing a functioning adult plant. The reason is that too large a willingness to 
germinate in such more fortunate circumstances has to be paid for by a risk to 
germinate when there is no chance that the resulting seedling will ever be successful. 
Making no further assumptions than that all seeds are equal, leaving open all other 
details of the plant life cycle, we showed that only a fraction of the seeds in safe sites 
should germinate when the relation between the probability to germinate in safe sites 
and elsewhere is convex and has a sufficiently steep slope at the highest germination 
probabilities. Remains the, unfortunately awesomely difficult, empirical question how 
common such trade-offs are in the real world. 
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