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Abstract  

Background 

While the impact of climate fluctuations on the demographic histories of species 

caused by changes in habitat availability is well studied, populations of species from 

systems without geographic isolation have received comparatively little attention. 

Using CO1 mitochondrial sequences, we analysed phylogeographic patterns and 

demographic histories of populations of five species (four gastropod and one 

amphipod species) co-occurring in the southwestern shore of Lake Baikal, an area 

where environmental oscillations have not resulted in geographical isolation of 

habitats. 

Results 

Species with stronger habitat preferences (gastropods B. turriformis, B. carinata and 

B. carinatocostata) exhibit rather stable population sizes through their evolutionary 

history, and their phylogeographic pattern indicates moderate habitat fragmentation. 

Conversely, species without strong habitat preference (gastropod M. herderiana and 

amphipod G. fasciatus) exhibit haplotype networks with a very abundant and 

widespread central haplotype and a big number of singleton haplotypes, while their 

reconstructed demographic histories show a population expansion starting about 25-

50 thousand years ago, a period marked by climate warming and increase in diatom 

abundance as inferred from bottom-lake sedimentary cores. 

Conclusions 

In agreement with previous studies, we found that species reacted differently to the 

same environmental changes. Our results highlight the important role of dispersal 

ability and degree of ecological specialization in defining a species’ response to 

environmental changes. 
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Background  
Many studies have demonstrated the strong influence of climate fluctuations on the 

patterns of genetic diversity of species. Continental glaciations resulted in geographic 

isolation of terrestrial species by affecting habitat availability [1, 2]. After the climate 

warming, some species experienced demographic expansions and occupied newly 

created habitats [3-5]. Additionally, climate cooling was linked with low level of 

oceans and lakes [6]. When the water level decreased, marine species could 

experience range contractions and this again resulted in change of their 

phylogeographic patterns [7, 8]. On the other hand, low ocean level affects the 

connectivity of islands and the distribution of species inhabiting them [9]. However, 

analysis of the demographic histories of species from northeastern Pacific showed that 

half of them were not affected by climatic changes in the Pleistocene [10]. This 

suggests that, even if the majority of studies consider geographic isolation as a driving 

force of changes in demographic histories, impact of climate cooling on ecological 

systems could be more complex. For example, switches in oceanic thermohaline 

circulation could change distribution and abundance of food and result in a bottleneck 

[11]. Furthermore, in systems where environmental changes resulted in isolation of 

populations, the present genetic structure of populations will reflect to a great degree 

the changes in genetic diversity due to random evolution in these isolated populations. 

As such, analysis of current patterns of diversity will be affected by this, as well as by 

the demographic histories of the populations, or the presence/absence of selective 

pressures. Conversely, in systems where geographical isolation is absent one can 

distinguish the effect of genetic drift in small isolated populations from the 

demographic changes brought about by the environmental changes themselves. It 

therefore seems appropriate to study ecosystems that are known to be affected by 
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environmental changes, but where these changes did not lead to geographic separation 

of populations. 

Ancient lakes are famous for their high level of biodiversity. Whereas many 

studies on speciation were devoted to the fauna of ancient lakes, reconstruction of 

their demographic histories received little attention (but see e.g. [12]). Lake Baikal is 

the largest freshwater continental ecosystem [13], and given its high-latitude location 

it is particularly sensitive to climatic variations [14]. Despite the great depth of the 

lake (c. 1650 m), its water is well oxygenated throughout, creating unique habitats. 

The sediments of the lake are one of the most valuable continental climatic archives 

having uninterrupted record back to Late/Middle Miocene [15, 16]. The paleoclimatic 

history of Lake Baikal was reconstructed based on records of diatom and associated 

biogenic silica in sediments, their variation corresponding to the Marine Isotope 

Stages (MIS) of climate change [17-23]. Additionally, sedimentary photosynthetic 

pigments provide more data about past productivity of the lake by representing the 

whole assemblage of phytoplankton [24, 25]. Numerous strong environmental 

changes were identified during the Upper and Middle Pleistocene [21, 26-29] and the 

Holocene [18, 30, 31]. Also there is evidence for water level fluctuations during 

periods of climatic cooling [32, 33]. While Lake Baikal is known to have been 

affected by environmental changes, the lake’s geological structure suggests that these 

changes have not affected the connectivity of habitats. Previous studies on the genetic 

variation of invertebrates from the lake revealed variation of population dynamics 

presumably caused by geological events (tectonic shifts), changes in global climate 

and related changes in sedimentation rate [34].  

Recent studies comparing the demographic histories of multiple co-occurring 

species [10, 35, 36] found that populations of these species responded in different 
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ways to the same environmental changes. However, exact causes for such differences 

were often difficult to distinguish given the numerous biological differences between 

the investigated species. We thus compare, in this study, species with very similar 

biological traits and life-history characteristics, allowing us to identify the factors 

responsible for the species’ differential response to environmental changes. This 

approach has already proved valuable in understanding key aspects of the response of 

species to fluctuation of environmental conditions (e.g. see [37, 38]). We focus on 

four gastropod species of the family Baicaliidae: Baicalia carinata (W. Dybowski, 

1875) is an abundant sand dwelling species with a circum-lacustrine distribution; 

Baicalia carinatocostata (W. Dybowski, 1875) is often found in sandy habitats 

together with B. carinata but usually in smaller numbers; Maackia herderiana 

dominates the rocky surfaces but is also found in lower abundance in sandy and silty 

substrates in the southwestern shore of the lake [39]; and Baicalia turriformis (W. 

Dybowski, 1875) inhabits rocks along the same shoreline as M. herderiana 

(Lindholm, 1909). The four species also use different egg-laying substrate: B. 

carinata lays its eggs on the surface of the shell of other conspecifics; B. 

carinatocostata lays its eggs in sand; M. herderiana uses cavities of stones; and B. 

turriformis attaches its eggs to smooth surfaces of rocks [40, 41]. Juveniles of these 

gastropods emerge directly from egg capsules and therefore the dispersal ability of 

these species is low when compared to other gastropods with free-swimming, 

planktonic larvae. For comparative purposes, we included in this study data from the 

amphipod Gmelinoides fasciatus (Stebbing, 1899). It is found in high abundances in 

sandy and rocky bottoms in almost all littoral zones of the lake at water depths 

between 0 and 5 meters. This species is a successful invader that rapidly increases its 

population size when introduced in new ecosystems [42, 43] and this suggests that it 
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might represent a good proxy for habitat and food availability. All four gastropod 

species and G. fasciatus are suspension feeders and have similar dietary preferences. 

Observations on the stomach content of the gastropods showed that they mainly 

consume planktonic diatoms Aulacoseira baicalensis, A. islandica, Cyctotella 

baicalensis and C. minuta [44]. These diatom species significantly contribute to the 

paleo-record of the lake and their abundance reflects the bioproductivity of the 

ecosystem. It therefore seems appropriate to use the paleoclimatic history (based on 

record of sediments) to study the impact of past environmental changes on the species 

herein investigated. 

 In this study we investigated how demographic histories of several co-occuring 

species with different ecological preferences were affected by environmental changes 

in an ecosystem where these changes did not cause geographical separation of fauna. 

To this end we collected mitochondrial DNA data (CO1) from populations of five 

species from the southwestern shore of Lake Baikal. We examined phylogeographic 

patterns and performed comparative analysis of the demographic histories of these 

populations in view of the known past environmental changes.  

Results  
Our taxon sampling included 222 individuals from the five targeted species 

collected from 13 localities. The list of sampling localities is shown in Table 1 (for 

details please see Additional file 1). Haplotype networks for the investigated species 

show different patterns of genetic variation (Figure 1). Most of M. herderiana 

individuals carry the same haplotype and there is a number of singleton haplotypes, 

this suggests population growth. The same pattern is exhibited by G. fasciatus, with a 

dominating haplotype and a small number of less abundant haplotypes. Conversely, 

haplotypes found in B. carinata, B. carinatocostata and B. turriformis are very 
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diverse and distributed throughout the network. In B. carinata and B. carinatocostata 

very different haplotypes were found in several localities, some of which were 

resolved in separate networks. 

Tables of pairwise FST values and their significance levels for each studied 

species are shown in Additional file 2. The studied species exhibited variable level of 

geographic structuring, from total absence of significant FST values between pairs of 

localities (G. fasciatus) to significant FST values between almost all of these 

comparisons (B. turriformis). 

Results of comparative analysis of mismatch distributions [45, 46] for each 

species are depicted in Figure 2. Mismatch distributions of M. herderiana and G. 

fasciatus exhibit similar shape with most pairwise comparisons having small genetic 

distances, showing a relatively good fit to the expected mismatch distributions under 

the model of population growth. Conversely, the mismatch distributions of B. 

carinata, B. carinatocostata and B. turriformis are rather multimodal and ragged, and 

contain a higher proportion of comparisons resulting in larger genetic distances. 

Table 2 summarizes the intraspecific statistics estimated for each species: 

number of sequences, number of segregating sites, number of haplotypes, nucleotide 

diversity, haplotype diversity and average number of nucleotide differences. 

Felsenstein [47] suggests that eight haplotypes randomly sampled from a single 

panmictic population allow accurate estimates of population genetics’ parameters. 

Therefore, our sampling effort seems adequate (only for B. turriformis were less than 

8 haplotypes recovered in this study). Despite small sample sizes, B. turriformis and 

B. carinatocostata exhibited high nucleotide diversity, while the lowest nucleotide 

diversity was found in M. herderiana (0.0019).  
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Maackia herderiana is the only species for which classic tests rejected the 

hypothesis of neutrality, with Ramos-Onsins’ R2 test against population expansion 

being significant (see Table 3). G. fasciatus exhibited low, though non-significant, p-

values for Ramos-Onsins R2 and Tajima’s D tests. H test showed no purifying 

selection for any of the investigated species.  

Figure 3 summarizes results of Bayesian skyline reconstructions of demographic 

histories for sand dwelling (a) and for rock dwelling (b) gastropod species, and also 

for G. fasciatus (c). Sand dwelling B. carinata and B. carinatocostata show rather 

stable population sizes as does the rock-dwelling B. turriformis. Maackia herderiana 

shows a dramatic population expansion and G. fasciatus shows signs of population 

growth. Results of Bayesian Skyline Plots (BSPs) were not influenced by the change 

of the substitution model for G. fasciatus (see Additional file 3). Figure 3 (d) shows 

the relative duration of the recovered demographic histories. The most recent common 

ancestors of the populations of M. herderiana and G. fasciatus are relatively recent 

when compared to B. carinata, B. carinatocostata and B. turriformis. Figure 4 shows 

the calibrated demographic histories of G. fasciatus and M. herderiana, and the 

known lake-level fluctuations and diatom abundance through time inferred from 

sedimentary cores. Start of the population expansions in both species occurred during 

a period of relatively high water level, and coincided with a period of high diatom 

abundance c. 25-50 Kyr BP (thousand years before the present).  

Discussion  
In this study we compared phylogeographic patterns and demographic histories of 

species with similar feeding preferences inhabiting the same geographical area of 

Lake Baikal. Overall, we found three different phylogeographic patterns in the five 

species investigated. Both M. herderiana and G. fasciatus exhibit haplotype networks 
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in which a central haplotype is very abundant and widespread, and to which several 

less common haplotypes are closely related. Baicalia carinatocostata and B. 

turriformis display very different pattern, with the same haplotype never found in 

more than one locality and lacking a central and most abundant haplotype. Baicalia 

carinata shows an intermediate picture, with some relatively abundant haplotypes 

being found in different localities and rare haplotypes restricted to single sampling 

localities. 

While phylogeographic patterns often reflect habitat availability and 

connectivity [8, 48] our results suggest that intrinsic biological factors might play an 

important role in shaping the genetic structure of the species analyzed. The 

southwestern shore of Lake Baikal, which was sampled for this study, has relatively 

few sandy areas, with a mostly steep, rocky shoreline (Additional file 4). One would 

thus expect that species inhabiting mostly sandy bottoms would show high geographic 

substructuring, while species that prefer rocky habitats would exhibit a pattern 

indicative of relatively uninterrupted gene flow. Our results, however, are only 

partially supportive of this hypothesis. Concerning M. herderiana, it should be noted 

that although inhabiting mostly rocky areas, this species has been found in both sandy 

and silted areas [39]. In this regard, M. herderiana resembles the generalist amphipod 

G. fasciatus, which lives in both sandy and rocky substrates [49, 50] and is further 

known to easily invade new habitats and occupy places in ecosystems [42, 43, 51]. 

These two species show remarkably similar phylogeographic patterns, with our data 

suggesting high degree of gene flow throughout the studied geographic range. The 

inferred patterns for the remaining three species analysed, however, highlight the 

importance of specific biological characteristics other than preferred habitat type. In 

fact, B. carinata and B. carinatocostata both live in sandy bottoms, but show rather 
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different phylogeographic patterns. It was reported that B. carinata increases its 

dispersal by laying eggs on the shells of its conspecifics [40, 41], and this could 

explain the difference between phylogeographic structures. Similarly, the rock-

dweller B. turriformis displays high degree of geographical substructuring, even 

though significant geographical barriers between rocky habitats in the sampled shore 

seem absent. This more sedentary species mostly inhabits the surface of steep rocks 

and cliffs with individuals hanging on each other [41, 44] and is known as a strict 

specialist in regard to its feeding behaviour and overhanging slopes [44]. This high 

degree of specialization might reduce the dispersal ability of B. turriformis due to the 

lack of suitable habitats available.  

For the reconstruction of the demographic history of populations it is important 

to identify if a sampling set represents a single population. For M. herderiana we 

sampled most of the range of the shore where this species occurs [52] and found very 

little genetic differentiation. Likewise, for this species most FST values between 

localities were non-significant. Baicalia carinata and G. fasciatus occur along whole 

shoreline of the lake and previous studies [53, 54] involving samples from outside the 

area of the current study showed that individuals of each of the species form single 

populations along the southwestern shore. In our analysis, not a single pairwise 

comparison between localities where G. fasciatus was found exhibited significant FST 

values. For B. carinata, significant FST values were found between some localities 

(notably, between comparison involving localities 11 and 12). Similarly, FST values 

estimated between localities of B. carinatocostata exhibited only few significant 

results. Conversely, genetic differentiation was higher in B. turriformis, despite the 

smaller sample sizes used in this study, and FST analysis revealed significant genetic 

differentiation between most localities. These results confirm that samples of M. 
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herderiana, B. carinata, B. carinatocostata and G. fasciatus represent populations 

without strong geographical substructuring, and thus are appropriate for 

reconstruction of demographic histories. Given the higher genetic differentiation in B. 

turriformis, the reconstruction of demographic histories for this species should be 

interpreted with caution. Recent results (Peretolchina et al. in preparation) suggest 

that the co-occurring populations of B. carinata, B. turriformis and B. carinatocostata 

were not influenced by interspecific geneflow during the time period covered by the 

current study. 

Classic neutrality tests did not detect significant departures from neutrality for 

any of the datasets. However, the most powerful Ramos-Onsins R2 test [55] detected 

population growth of M. herderiana. For G. fasciatus, results of neutrality tests were 

not significant, but had small p-values (p=0.08 for R2 and p=0.09 for Tajima’s D 

test). The structure of the haplotype networks of M. herderiana and G. fasciatus, with 

a central abundant haplotype and a number of singleton haplotypes, also suggests 

population growth for these species. 

Our demographic reconstructions suggest that population sizes in B. turriformis, 

B. carinata and B. carinatocostata were rather stable during their evolutionary 

histories. There are slight trends towards a decline for B. turriformis and B. 

carinatocostata as well as slight trend towards population growth for B. carinata. 

However, these slight trends cannot not be taken as evidence for changes in 

population size because as they appear, the posterior distributions widen. Conversely, 

BSPs suggest moderate growth for G. fasciatus, and dramatic expansion for M. 

herderiana. Figure 3 (d) allows to compare the duration of demographic histories for 

all species, and one could see that demographic histories of M. herderiana and G. 

fasciatus are short, contrary to demographic histories of B. turriformis, B. carinata 
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and B. carinatocostata. Long demographic histories of B. carinata, B. turriformis and 

B. carinatocostata do not show response to the climatic fluctuations that are known 

from the paleo-record of the lake, while shorter demographic histories of M. 

herderiana and G. fasciatus exhibit strong to moderate growth. It is thus plausible that 

M. herderiana and G. fasciatus are relatively recent colonizers of the southwestern 

shore of Lake Baikal, while the remaining species analysed represent more ancient 

inhabitants of this area. Alternatively, G. fasciatus and M. herderiana populations 

may have recently undergone strong bottlenecks, with the growth detected reflecting 

the recent recovery from such bottlenecks, while the remaining species could have 

maintained relatively constant population sizes throughout their histories. To elucidate 

this, future work could focus on the analysis of nuclear gene diversity, as autosomal 

and mitochondrial DNA diversity are expected to show different rates of recovery 

from bottlenecks [56]. 

Calibration of demographic histories based on molecular sequences is 

notoriously difficult, particularly when specific rates of molecular evolution are 

unavailable [57, 58]. Nevertheless, such dating can often provide rough time estimates 

for important events of a species’ evolutionary history. After we calibrated 

demographic histories for populations of M. herderiana and G. fasciatus by applying 

available rates of molecular evolution, we found that the start of expansion of 

populations of these species coincide, and could be estimated to 25-50 Kyr BP (Figure 

4). Urabe et al. [32] inferred lake-level variations from seismic surveying and core 

sampling of the floor of the lake, which appeared to be correlated to changes of the 

global climate represented by MIS. However, there is no evidence that the drop of the 

water level due to climate cooling could separate basins of the lake or result in any 

kind of geographical separation of the fauna inhabiting the southwestern shore. 
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Diatom abundance, that could directly indicate amount of food items available for 

both species, is shown in Figure 4 (c). The sedimentary core BDP-93-2 from 

Buguldeika Saddle [21, 23] in concordance with cores st2 and st2-PC-2001 from 

Akademichesky Ridge [59] demonstrate a strongly pronounced interstadial peak at the 

time c. 25-60 Kyr BP. This suggests that populations of M. herderiana and G. 

fasciatus in the southwestern shore of Lake Baikal started expanding during a warm 

period of relatively high water level, and when the amount of food available was also 

rather high. While this would indicate that food availability played an important role 

in the population growth of these species, it should be mentioned that from c. 24 to c. 

14 Kyr BP the amount of diatoms in the lake was very much reduced, however the 

populations of M. herderiana and G. fasciatus do not appear to have stopped 

expanding. Data on sedimentary photosynthetic pigments suggests that, despite the 

reduced bioproductivity of the lake, green algae, diatoms and dinoflagellates were still 

present in the lake between 16 and 27 Kyr BP [25]. Therefore, it is possible that 

during this period the abovementioned species relied on other food items. At any rate, 

the simultaneous growth detected in M. herderiana and G. fasciatus suggest that 

environmental factors promoted the population growth of these species in the 

southwestern shore of Lake Baikal. High resemblance of demographic histories of M. 

herderiana and G. fasciatus, a species known to be of high invasive capability, 

highlights the strong dispersal potential of M. herderiana and its ability to expand its 

population size when environmental conditions are favorable. 

Conclusions  
Demographic histories of populations reflect complex interplay between past 

environmental changes and ecological properties of species. We investigated how five 

invertebrate species from the same geographical area and with similar food 
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preferences reacted to the environmental changes known to have happened in the 

lake. We show that intrinsic ecological specialization plays an important role in the 

demographic response of the species. In particular, high dispersal abilities and lack of 

strong habitat preference allowed species to find appropriate habitats and expand their 

populations in response to favourable environmental conditions.  

Methods 

Sampling, DNA extraction, amplification and sequencing 

Gastropods were collected by dredge or dives along southwestern littoral of the lake 

at depths of 5 to 40 meters. After preliminary sorting of benthic samples, gastropods 

were fixed in 80% ethanol for 24 hours with subsequent ethanol change to 70% 

solution and kept until DNA extraction. G. fasciatus specimens were collected from 

the shore, using handle-nets, from the depth of 0 to 1.0 m. Specimens were fixed in 

96% ethanol. After incubation at 4ºC for two to three days, 96% ethanol was 

discharged, and the samples were kept at 4ºC in 70% ethanol. The list of sampling 

localities is shown in Table 1 (for details see Additional file 1). Relatively few 

individuals of B. turriformis and B. carinatocosta are used in this study due to a 

scarce number of samples collected, which is reflective of the rarity of these species 

[60]. 

DNA extraction and PCR amplification were performed according to protocols 

described in Peretolchina et al. [54] for the gastropods and in Gomanenko et al. [53] 

for G. fasciatus. The CO1 fragment of mitochondrial DNA was amplified using the 

universal DNA primers of Folmer et al. [61]. Sequencing reactions were performed in 

the forward direction using the Quick Start Kit (Beckman Coulter Inc.). Sequencing 

was then carried on in either a 373A DNA Sequencer (Applied Biosystems) or a CEQ 

8800 DNA sequencer (Beckman Coulter Inc). 
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Phylogeography and reconstruction of demographic histories 

The DNA sequences were aligned using ClustalW v. 1.4 [62], and resulting 

alignment was translated to check for the presence of stop codons.  

Haplotype networks were constructed using the program TCS v. 1.2.1 [63]. The 

threshold value of the statistical parsimony algorithm, defining the maximal number 

of mutational connections between pairs of haplotypes within the same network, was 

set to 0.95 [64].  

For each species, we estimated FST values between pairs of localities in Arlequin 

v. 3.5 [65]. We estimated FST values using haplotype frequencies, using a distance 

matrix between haplotypes based on the Kimura’s two-parameter model [66] and 

using a distance matrix between haplotypes based on Tamura-Nei distance [67]. 

Significance of FST values was estimated using 10 000 permutations, and resulting p-

values corrected for multiple testing using the False Discovery Rate procedure of 

[68]. 

We used DNA SP v. 5.10.00 [69] to produce mismatch distributions for each 

species as well as to perform the following tests of neutrality: Tajima’s D test [70], 

Fu’s Fs statistics [71] and R2 test [55]. In order to distinguish between population 

growth and selection, we used H statistics [72].  

Bayesian skyline plots were constructed using BEAST v. 1.5.1 [73, 74]. 

Substitution model for each dataset was chosen using jModeltest v. 0.1 [75, 76] based 

on the Akaike information criterion [77]. For B. carinata and B. carinatocostata 

jModeltest selected the Hasegawa-Kishino-Yano (HKY) model [78] with a proportion 

of invariable sites (+I) and a gamma distributed rate heterogeneity among the 

remaining sites (+G). For the remaining three species the best fitting model was HKY. 

For G. fasciatus, we could not obtain values of ESS (Effective Sample Size) 

exceeding the recommended value of 200 using HKY model proposed by jModeltest, 
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so we applied the GTR substitution model [79]. In order to check if this change of 

substitution model for G. fasciatus affects the recovered demographic history we 

compared BSPs for both substitution models. BEAST analysis was performed 

assuming selected substitution models but parameters were estimated from data. We 

ran chains of 150 million steps for M. herderiana, 20 million steps for B. carinata and 

G. fasciatus, and 10 million steps for B. carinatocostata and B. turriformis to obtain 

in each run ESS values > 200. For each species we performed at least 2 individual 

runs and compared the results to check for convergence. Data from two independent 

runs for each species was combined using Log Combiner v1.5.1 [73, 74] in order to 

observe resulting BSPs.  

To convert the time scale of demographic histories from substitutions per site 

into years, we used earlier suggested divergence rate of 1.83%/Myr (million years) for 

gastropods [80]. Since there is no calibration of molecular clock available for 

amphipods, for G. fasciatus we used average from the reported rates (1.3-1.9%/Myr) 

of arthropods [81]. Once absolute time scales were obtained for the species’ 

demographic histories, we matched these histories to paleoclimatic events estimated 

through radiocarbon calibrations of sedimentary cores [21, 32].  
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Figures 

Figure 1  - Sampling localities and haplotype networks of the studied species 

Diameter of circles representing haplotypes in the networks are proportional to the 

number of sequences per haplotype (empty circles below lake scale represent sizes for 

2, 5 and 10 individuals), colours represent locality of origin, empty small circles 

represent missing haplotypes. Throughout shoreline, coloured circles represent 

sampled localities, numbers inside these circles correspond to those in Table 1. 

Figure 2  - Mismatch distributions for the studied species  

Bars represent observed values, lines represent expected values under model of 

sudden population growth (estimated in DNAsp).  

Figure 3  - Inferred demographic histories for sand dwellers B. carinata and B. 
carinatocostata (a), for rock dwellers M. herderiana and B. turriformis (b) and 
for ecologically plastic G. fasciatus (c). 

Thick solid lines are median estimates, and the thick dashed lines are mean estimates. 

Grey shades show 95% highest posterior density limits. Duration of demographic 

histories for the five species is compared in bottom panel (d). 

Figure 4  -  Calibrated demographic histories of G. fasciatus and M. herderiana 
and reconstructed paleoclimatic history 

(a) Inferred lake water level (relative to present) based on seismic survey of the delta 

of the Selenga River. The two lines (NW and SE) represent results obtained using the 

northwestern and southeastern (respectively) blocks of the delta (see reference [32] 

for details); adapted from reference [32], (b) changes in population size in G. 

fasciatus and M. herderiana (mean estimates; obtained in this study) and (c) diatom 

abundance inferred from sedimentary drill core BDP-93-2 (redrawn from [21]). In (c), 

solid triangles are the radiocarbon dates for the core BDP-93-1 [82, 83] and squares 
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are for core BDP-93-2; the arrow indicates the 50.3 Kyr BP correlation tie point for 

BDP-93 record [29]. The shaded areas correspond to Marine Isotope Stage 3. 

 

Tables 

Table 1  - Sampling localities and number of samples of each species used in 
this study 

Locality Locality No. B. carinata B. carinatocostata B. turriformis G. fasciatus M. herderiana 

Angara River 1 - - - 7 - 

Murinskaya Banka 2 14 2 - - 5 

Utulik 3 3 - - - - 

Kultuk 4 5 6 3 - 4 

Polovinnaya Bay 5 - 4 5 17 16 

Listvyanka 6 - - 10 7 19 

Bolshie Koty 7 2 - 3 - 9 

Varnachka 8 - - 4 - - 

Peschanaya Bay 9 3 5 - 4 - 

Bugul’deika 10 2 - - 3 25 

Tutaiskaya Bay 11 7 - - - - 

Olkhon Gates  12 21 2 - 2 - 

Zunduk Cape 13 - - - 3 - 

Total No.  57 19 25 43 78 

 

Table 2  - Summary statistics of genetic variation for each species.  

Species 
N S h Pi Hd k 

B. carinata 57 29 21 0.0136 0.932 8.014
B. carinatocostata 19 24 10 0.0091 0.912 5.368

B. turriformis 25 12 6 0.0054 0.807 3.200
G. fasciatus 43 14 10 0.0033 0.693 1.834

M. herderiana 78 13 12 0.0019 0.501 1.123
N - number of sequences; S - number of segregating sites; h - number of haplotypes; 

Pi - nucleotide diversity; Hd – haplotype diversity; k – average number of nucleotide 

differences. 
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Table 3  - Statistical tests of neutrality calculated for each species  
 

Species Fs R2 D H 
B. carinata -1.76(0.28) 0.137(0.86) 0.89(0.84) 0.79(0.91) 

B. carinatocostata -0.027(0.51) 0.122(0.41) -0.85(0.23) 0.827(0.89) 
B. turriformis 0.05 (0.52) 0.127(0.62) -0.07 (0.55) 0.116 (0.31) 
G. fasciatus -2.64(0.164) 0.067(0.08) -1.35(0.09) 0.684(0.81) 

M. herderiana -0.19 (0.56) 0.099 (0.043) -0.05 (0.55) 0.05 (0.27) 
Fs - Fu's Fs index; R2 - Ramos-Onsins R2 test; D - Tajima's D; H – Fay and Wu’s H 

statistics. In parenthesis, p-values are given for each statistics. Results of significant 

tests (p<0.05) are shown in bold. 

Additional files 

Additional file 1 – Detailed description of each individual used in the study. 

Description includes isolate identification, taxonomic status, locality and year of 
capture, collectors and accession numbers. 

Additional file 2 – Tables of pairwise FST values between localities for each 
studied species, with the p-values given in parenthesis.  

Significant values before correction for multiple testing are marked with asterisk. 
Significant values after correction for multiple testing are shown in bold. Loc is 
locality number (see Figure 1), N is number of samples.  

Additional file 3 – BSP reconstructions for G. fasciatus using different 
substitution models.  

Comparison of demographic reconstructions using GTR and HKY substitution 
models. Thick solid lines are median estimates, and thick dashed lines are mean 
estimates, shades show 95% highest posterior density limits. 

Additional file 4 – Maps of underwater landscapes of the study area. 

Types of bottom substrates at different depths of the lake. The maps were redrawn 
from Karabanov EB, Sideleva VG, Izhboldina LA, Mel’nik NG, Zubin AA, Zubina 
LV, Smirnov NV, Parfenova VV, Fedorova LA, Gorbunova LA, Kulishenko YuL. 
(1990) Underwater Landscapes of Baikal. Novosibirsk: Nauka Publ.,184 pp. (In 
Russian). 
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