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Abstract

Coevolution between two antagonistic species follow the so-called ‘Red Queen dynamics’ when recipro-

cal selection results in an endless series of adaptation by one species and counter-adaptation by the other.

Red Queen dynamics are ‘genetically-driven’ when selective sweeps involving new beneficial mutations

result in perpetual oscillations of the coevolving traits on the slow evolutionary timescale. Mathematical

models have shown that a prey and a predator can coevolve along a genetically-driven Red Queen cycle.

We found that embedding the prey-predator interaction intoa three-species food chain that includes a co-

evolving superpredator often turns the genetically-driven Red Queen cycle into chaos. A key condition is

that the prey evolves fast enough. Red Queen chaos implies that the direction and strength of selection

are intrinsically unpredictable beyond a short evolutionary time, with greatest evolutionary unpredictability

in the superpredator. We hypothesize that genetically-driven Red Queen chaos could explain why many

natural populations are poised at the edge of ecological chaos. Over space, genetically-driven chaos is ex-

pected to cause the evolutionary divergence of local populations, even under homogenizing environmental

fluctuations, and thus to promote genetic diversity among ecological communities over long evolutionary

time.
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Introduction

Antagonistic coevolution describes the reciprocal evolutionary interactions between populations belonging

to an ‘exploiter’ such as a predator or a parasite, and a ‘victim’ such as a prey or a host. It is a change in the

genetic make-up of a population in response to a genetic change in the antagonistic population (Thompson,

1994). Antagonistic interactions have the potential to drive coevolutionary dynamics of adaptive traits: an

evolutionary advantage gained by one antagonist is often associated with a disadvantage for the other antag-

onist, and may therefore prompt a counter adaptation. This may drive stabilizing selection and evolutionary

specialization with extreme refinement of the coevolving traits (convergence to an evolutionary equilib-

rium); or runaway selection and evolutionary escalation with the exaggeration of traits (with the possible

extinction of some or all coevolving populations, Matsuda &Abrams, 1994, Ferrière, 2000); or fluctuat-

ing selection and the so-called ‘Red Queen dynamics’ of perpetual reciprocal changes in the coevolving

traits (convergence to a nonequilibrium evolutionary attractor, Van Valen, 1973, Stenseth & Maynard Smith,

1984, Vermeij, 1994). It has been suggested that Red Queen dynamics underlie a large number of important

biological processes, some of which are still poorly understood, such as genetic recombination and sexual

reproduction (Hamilton, 1980; Bell, 1982; Hamiltonet al., 1990), the extraordinary diversity of genes re-

lated to immune function, resistance and virulence (Salathe et al., 2008), and the spatial diversity and local

adaptation of exploiter-victim systems (Gandon, 2002).

An important dichotomy exists between two main types of Red Queen dynamics (Khibnik & Kon-

drashov, 1997; Ebert, 2008; Gaba & Ebert, 2009): ecologically-driven by negative frequency-dependent

selection, and genetically-driven by beneficial mutations. This distinction is significant because the two

types strongly differ in their mechanism, their underlyinggenetic architecture, their ecological and evolu-

tionary consequences and the timescales on which they develop (Ebert, 2008). With ecologically-driven Red

Queen dynamics, extant variants of the exploiter genotype that benefit the most from the numerically domi-

nant victim genotypes are favored, and, similarly, victim genotypes that best resist the numerically dominant

exploiter genotypes are favored. This pattern results in selection against common exploiter and victim geno-

types in a time lagged negative frequency-dependent fashion (ecological instability). A consequence of this

form of fluctuating selection on extant genetic variation isthat genetic polymorphism is maintained in the

population for long periods (balanced selection) and that allele frequencies can oscillate considerably over

time periods of a few generations.
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In contrast, genetically-driven Red Queen dynamics involve the repeated incidence, spread, and fixa-

tion of new beneficial mutants in populations that stabilizeat ecological equilibria. Mutants are driven to

fixation by directional selection (selective sweeps). Thus, genetic polymorphism is transient only, and the

evolutionary dynamics are slow—for two reasons. First, newmutations causing variation in the adaptive

traits involved are rare events. Second, a new mutant startswith a very low frequency (1/N , whereN is the

number of wild-type alleles in the population); thus empirically it can take hundreds of generations until the

mutant becomes recognizable (e.g., 1%) at the population level (Elenaet al., 1996). Therefore, genetically-

driven Red Queen dynamics develop on an evolutionary timescale that is several orders of magnitude slower

than the timescale of ecological processes.

The slow timescale involved hampers the empirical investigation of genetically-driven Red Queen dy-

namics, and mathematical models have been useful to seek conditions that could favor the Red Queen over

specialization or escalation. So far the majority of these models focussed on the two coevolving species

and ignored the community context in which coevolution takes place. In this setting, genetically-driven Red

Queen dynamics develop as regular, predictable cycles in the adaptive trait space. However, pairs of coe-

volving species are inevitably embedded in community-level interactions of varying degrees of complexity.

It is because most species interact with suites of other species that vary dynamically across geographical

landscapes, that coevolutionary processes can be important in shaping the structure and maintaining vari-

ability within specific pairwise interactions, such as predator-prey or host-parasite systems (Abrams, 1991,

1996; Strausset al., 2005; Thompson, 2005; Thrallet al., 2007). For example, some trematode parasites

have strong effects on the evolutionary dynamics of their snail hosts, but themselves are dependent upon

waterflow for completion of their life cycle (Lively, 1999).How the community context of coevolution

affects the occurrence and manifestation of genetically-driven Red Queen dynamics remains poorly known.

Seminal steps in the theoretical study of coevolutionary dynamics in the community context have been

taken recently (Caldarelliet al., 1998; Loeuilleet al., 2002; Gandon, 2004; Nuismer & Doebeli, 2004;

Loeuille & Loreau, 2005; Kisdi & Liu, 2006; Bell, 2007; Ferrièreet al., 2007; Shoreshet al., 2008; Jones

et al., 2009; Stegenet al., 2009), but models of genetically-driven coevolutionary dynamics in which more

than two species coevolve in a multidimensional trait spaceare still lacking. Here we extend a simple two-

species predator-prey coevolutionary system (Dieckmannet al., 1995, where genetically-driven Red Queen

cycles were first documented) to model coevolution in a three-dimensional trait space among three species

forming a food chain. The function of each species in the foodchain is determined by a continuous character
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subject to rare and small genetic mutations. One may expect that the addition of a coevolving species to a

coevolving pair could stabilize the evolutionary process at an evolutionary equilibrium, thereby suppressing

the Red Queen dynamics (Vermeij, 1982; Futuyma, 1983); or that the addition could destabilize the periodic

evolutionary oscillation and drive the genetically-driven Red Queen into chaos (Gavrilets, 1997). Here we

show that conditions leading to genetically-driven periodic cycles in the two traits of coevolving predator

and prey, favor chaotic dynamics in the three coevolving traits of the three-species food chain.

Model Construction

We focus on a single adaptive trait per species that characterizes the function of the species in the food

chain. The trait determines competitive ability in the prey, and foraging success in the predator and super-

predator. On the evolutionary timescale,de novo trait variation is caused by rare genetic mutation. The

current phenotypes determine the ecological equilibrium of the food chain, hence the selective pressures

acting on variants of the traits. Under the assumption that mutations have very small effects, the long-term

coevolutionary process can be modeled as a trait substitution sequence in each species (Metzet al., 1992,

1996), the dynamics of which are captured by a set of three deterministic differential equations, one per trait

(Dieckmann & Law, 1996). When reduced to the classical two-trait, predator-prey coevolutionary model,

the system is known to drive trait evolution toward a stable equilibrium or toward a Red Queen cycle (if not

toward extinction) (Dieckmannet al., 1995; Dercoleet al., 2003, 2006).

As in Dieckmannet al. (1995), Lotka-Volterra equations are used to describe the ecological dynamics

of the food chain:

dn1

dt
= n1 (r − cn1 − a2n2) (1a)

dn2

dt
= n2 (e2a2n1 − d2 − a3n3) (1b)

dn3

dt
= n3 (e3a3n2 − d3) (1c)

wheren1, n2, andn3 are prey, predator, and superpredator densities,r andc are prey intrinsic per capita

growth rate and sensitivity to intraspecific competition, and ai, ei, anddi are the attack rate, efficiency, and

intrinsic death rate in the predator (i = 2) and superpredator (i = 3). Each species is characterized by

one genetic traitxi (i = 1–3), the genetic system is one-locus haploid, the genetic traits can influence the
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prey competition functionc and the attack ratesa2 anda3, and trait-dependencies are modeled by using the

following functional forms:

c = c0 + c2(x1 − c1)
2 (2a)

a2 = exp

(

−

(

x1 − a24

a21

)2

+ 2a23

x1 − a24

a21

x2 − a25

a22

−

(

x2 − a25

a22

)2
)

(2b)

a3 = exp

(

−

(

x2 − a34

a31

)2

+ 2a33

x2 − a34

a31

x3 − a35

a32

−

(

x3 − a35

a32

)2
)

(2c)

(with 0 < a23, a33 < 1 and c0, c2, a21, a22, a31, a32 all positive). Prey competition is minimum at

x1 = c1, where prey are best adapted to their environment, while theattack ratesa2 anda3 are bidimensional

Gaussian functions with elliptic contour-lines centered at (a24, a25) (respectively(a34, a35)) and controlled

in amplitude and orientation by parametersa21–a23 (a31–a33). Differences(x1 − a24) and (x2 − a25)

((x2 − a34) and(x3 − a35)) measure the degree to which the predator (superpredator) ‘matches’ the prey

(predator), i.e., the attack rate is maximum whenx1 = a24 andx2 = a25 (x2 = a34, x3 = a35), while

parametersa21–a23 (a31–a33) control the sensitivity of the attack rate to the mismatch.

When a mutation occurs in traitx1 and generates a new valuex′

1
, the ecological system becomes

dn1

dt
= n1

(

r − c(x1)n1 − c(x1)n
′

1 − a2(x1, x2)n2

)

(3a)

dn′

1

dt
= n′

1

(

r − c(x′

1)n1 − c(x′

1)n
′

1 − a2(x
′

1, x2)n2

)

(3b)

dn2

dt
= n2

(

e2a2(x1, x2)n1 + e2a2(x
′

1, x2)n
′

1 − d2 − a3(x2, x3)n3

)

(3c)

dn3

dt
= n3 (e3a3(x2, x3)n2 − d3) , (3d)

so that the fitness function of mutantx′

1
is given by

f1(x1, x2, x3, x
′

1) =
1

n′

1

dn′

1

dt

∣

∣

∣

∣
n=n̄
n′

1
=0

= r − c(x′

1)n̄1(x1, x2, x3) − a2(x
′

1, x2)n̄2(x1, x2, x3), (4)

wheren = (n1, n2, n3) and n̄ denotes the ecological equilibrium of model (1) at which thefood chain

stabilizes in the absence of mutants (see Model Analysis andResults).

Similar equations can be written when a mutation arises in the predator (traitx2) or superpredator (trait
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x3) (see Appendix S1 in Supplementary Material) and yield the fitness functions of mutantsx′

2
andx′

3
:

f2(x1, x2, x3, x
′

2) =
1

n′

2

dn′

2

dt

∣

∣

∣

∣
n=n̄
n′

2
=0

= e2a2(x1, x
′

2)n̄1(x1, x2, x3) − d2 − a3(x
′

2, x3)n̄3(x1, x2, x3) (5)

f3(x1, x2, x3, x
′

3) =
1

n′

3

dn′

3

dt

∣

∣

∣

∣
n=n̄
n′

3
=0

= e3a3(x2, x
′

3)n̄2(x1, x2, x3) − d3. (6)

The long-term coevolution of traitsx1, x2, andx3 on the evolutionary timescale obey the so-called

canonical equation of adaptive dynamics (Dieckmann & Law, 1996), i.e., the three-dimensional system of

ODEs,

dx1

dt
=

1

2
µ1σ

2

1 n̄1

∂f1

∂x′

1

∣

∣

∣

∣

x′

1
=x1

(7a)

dx2

dt
=

1

2
µ2σ

2

2 n̄2

∂f2

∂x′

2

∣

∣

∣

∣

x′

2
=x2

(7b)

dx3

dt
=

1

2
µ3σ

2

3 n̄3

∂f3

∂x′

3

∣

∣

∣

∣

x′

3
=x3

. (7c)

The right-hand sides are the product of mutation rates (µi, i = 1–3), mutational steps variances (σ2

i ),

equilibrium densities (̄ni), and selection gradients (fitness derivatives). The latter explicit expressions are

cumbersome and were always generated and handled by means ofsymbolic computation.

Model Analysis and Results

The ecological model (1) has a unique non-trivial equilibrium

n̄1 =
r

c
−

a2d3

ce3a3

(8a)

n̄2 =
d3

e3a3

(8b)

n̄3 =
e2a2

a3

(

r

c
−

a2d3

ce3a3

)

−
d2

a3

, (8c)
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which is positive if and only if̄n3 > 0. When positive, the equilibrium̄n is globally stable (in the positive

orthant). Thus, the ecological model (1) is only viable within the region of the trait space defined by the

conditionn̄3 > 0.

If the superpredator and the predator are able to simultaneously match the predator and the prey, respec-

tively (i.e., a25 = a34) and if, at the same time, the prey is able to minimize its sensitivity to intraspecific

competition (i.e.,c1 = a24), thenx̄1 = c1, x̄2 = a25, x̄3 = a35 is an equilibrium of the evolutionary model

(7). Starting from these conditions, and fixing parameters at values corresponding to evolutionary cycles in

the ditrophic model (Dieckmannet al., 1995), we performed the numerical continuation of the equilibrium

x̄ with respect to several parameters.

As expected, evolutionary stability was sensitive to the mutation rateµ1 of the prey. Asµ1 increases,

the evolutionary equilibrium loses stability through a supercritical Hopf bifurcation which yields a small-

amplitude stable evolutionary cycle (see Appendix S3 in Supplementary Material). Starting from the Hopf

bifurcation, we numerically continued the cycle, while monitoring its stability through the computation of

the associated Floquet multipliers (i.e., the three eigenvalues of the linearized Poincaré map associated with

the cycle; one of them is structurally equal to1, and therefore its estimated value is a measure of computation

accuracy; the other two determine the stability of the cycle). Again by increasingµ1, evolutionary stabil-

ity was easily lost through a series of period-doubling bifurcations (a negative Floquet multiplier passing

through−1, see Appendix S3 in Supplementary Material). At each period-doubling bifurcation the cycle

becomes unstable, and a new stable cycle (which traces twicethe bifurcating cycle) appears. Switching to

the continuation of the new stable cycle allowed us to find thenext period-doubling bifurcation. Because

the sequence of bifurcation parameter valuesµi
1
, i = 1, 2, . . ., accumulates geometrically at the frontierµ∞

1

of the chaotic region of the Feigenbaum period-doubling cascade, only a limited number of bifurcations in

the sequence could be detected (µi
1
, i = 1, 2, 3, are reported in Fig. 1). The robustness of the cascade has

been checked through the continuation of the period-doubling bifurcations with respect to various pairs of

parameters (details will be published elsewhere).

In order to estimateµ∞

1
, we computed the full spectrum of the attractor’s Lyapunov exponentsL1 ≥

L2 ≥ L3 for finely incremented values ofµ1 (step10−5) (see Appendix S2 in Supplementary Material).

L1 > 0 implies thatµ1 is in the chaotic region, whereasL1 = 0 in periodic windows (see Fig. 1); in

the chaotic regionL2 is structurally equal to0 (its estimated value measures computation accuracy), while

L3 is negative. The attractor’s fractal dimension then follows from Kaplan-Yorke formula (see Fig. 2).

8



In this example the dominant Lyapunov exponent equals+0.0081321 and the fractal dimension of the

attractor is2.0176 (the attractor lies roughly on a two-dimensional Möbius strip). Typically, the prey and

predator characters oscillate with small irregular fluctuations in amplitude and frequency, while variation in

the amplitude of the oscillations in the superpredator trait is more pronounced.

Our analysis shows that the genetically-driven Red Queen turns chaotic under conditions similar to those

leading to genetically-driven Red Queen cycles, provided that the mutation timescale of the prey is short

enough compared with the mutation timescales of predator and superpredator. That is (Dieckmannet al.,

1995; Dercoleet al., 2003), the predator effciency should be great enough to drive the prey away from its

genetic optimum; and there should be sufficient need for the predator to track the prey’s character change.

As the prey departs from its optimum, its population densitydrops, which causes a reversal of selection

on the predator’s trait, followed by a reversal of selectionon the prey’s character. If the prey evolves fast

enough it will not be ‘caught up’ by the predator and permanent trait oscillations will evolve; the system

ends up in chaos because the predator is also engaged in a coevolutionary chase with the superpredator.

Broad comparative analyses (e.g., Martin & Palumbi, 1993) have established a strong relationship between

nucleotide substitution rate and body size. For instance, rates of nuclear and mtDNA evolution are slow

in whales, intermediate in primates, and fast in rodents, and a similar effect of body size also exists in

poikilothermic vertebrates. Thus, trophic chains with smaller prey, hence faster mutagenesis, may be more

prone to coevolutionary chaos.

Discussion

Even though quantitative data on long-term predator-prey coevolutionary dynamics remain elusive (Barnosky,

2001), the fossil record supports the view that predation isan important driver of evolutionary change (Kel-

ley et al., 2003). Moreover, paleontological and phylogenetic analyses gather increasing evidence for the

role of three-level chain interactions in coevolution (Currie et al., 2003; Kelleyet al., 2003). These empirical

findings have been paralleled by extensions of coevolutionary theory beyond pairwise interactions (Abrams,

1996; Caldarelliet al., 1998; Loeuilleet al., 2002; Gandon, 2004; Nuismer & Doebeli, 2004; Loeuille &

Loreau, 2005; Kisdi & Liu, 2006; Bell, 2007; Ferrièreet al., 2007; Shoreshet al., 2008; Joneset al., 2009;

Stegenet al., 2009), but so far the complexity of evolutionary dynamics among more than two species co-

evolving in a multidimensional trait space has been little explored. As a step forward in that direction, we
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added a superpredator as a third, coevolving species, to coevolution between a prey and a predator.

Prey-predator-superpredator trophic chains have long attracted the attention of ecologists as they occur

by diverse mechanisms, can cross ecosystem boundaries, andhave practical importance, for example in

management of fisheries or biological control of corp pests (Cohenet al., 2009). Our model descends from

the lineage of two-species models that addressed genetically-driven predator-prey coevolution (Stenseth &

Maynard Smith, 1984; Rosenzweiget al., 1987; Rand & Wilson, 1991; Marrowet al., 1992; Dieckmann

et al., 1995; Doebeli, 1997; Gavrilets, 1997; Khibnik & Kondrashov, 1997; Dercoleet al., 2003, 2006) and

specifically extends the analysis of Dieckmannet al. (1995), where stable cycles in adaptive dynamics were

first documented.

We searched for strange attractors in the three-trait, three-species coevolutionary model by weaving

intuition and theory. Theory was telling us that in third-order dynamical systems the most common route

to chaos is the Feigenbaum period-doubling cascade (see Appendix S3 in Supplementary Material), and

we knew that evolutionary stability in predator-prey models was especially sensitive to the mutation rate of

the prey (Dieckmannet al., 1995; Dercoleet al., 2003). Thus, our analysis of the tritrophic evolutionary

dynamics was organized by looking for parameters that caused evolutionary cycles in the lower ditrophic

model, and such that increasing the prey mutation rate couldtrigger doubling of the cycle period; and

then, tracking the period-doubling cascade. The strategy was successful at detecting transitions toward

evolutionary chaos in the three-species system.

Our analysis of three-species coevolution was intended as an extension of Dieckmannet al.’s (1995) two-

species model. This is the technical motivation for our choice of the type I functional response to describe

trophic interactions, hence the Lotka-Volterra structureof the ecological model. This has the important

consequence of ensuring that the food chain always stabilizes at an equilibrium on the ecological timescale.

Therefore, oscillations predicted by the evolutionary model could only be due to nonlinear interactions

between selective pressures acting on genetic variation inthe adaptive traits—not to trait variation induced

by instabilities in the ecological dynamics (as in Abrams & Matsuda, 1997b). More realistic food chain

models with, for example, saturating (type II) functional responses or self-limitation at higher trophic levels,

can also stabilize at ecological equilibria, though ecological cycles and ecological chaos are also expected

in viable regions of the trait space. This opens the possibility of Red Queen chaotic dynamics that would be

‘ecogenetically-driven’,sensu Khibnik & Kondrashov (1997) (see Dercoleet al., 2003, and Dercoleet al.,

2006, for the two-species case).
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Another fundamental feature of the model is the definition ofthe adaptive traits. We keep the ‘matching

model’ used in Dieckmannet al. (1995), which has long been popular in the theory of predator-prey co-

evolution (Cohenet al., 1993; Abrams, 2000; Loeuille & Loreau, 2005; Stegenet al., 2009). The matching

model assumes that the traits of a species and its prey jointly determine the attack (and capture) rate of the

latter by the former, and that the attack rate is maximized when the two traits match. Scaled body size is

a commonly used surrogate measure for such traits (Williams& Martinez, 2000). Defining the adaptive

traits according to the matching model is known to promote genetically-driven Red Queen cycles in two-

species predator-prey coevolutionary model (Marrowet al., 1992, 1996; Dieckmannet al., 1995; Abrams &

Matsuda, 1997a; Doebeli, 1997; Gavrilets, 1997), and thus provided us with the appropriate framework to

answer our main question—‘how are two-species Red Queen cycles affected by the coevolution of a third

species?’

Several well-studied antagonistic pairwise interactionsseem to conform to the matching model. This

includes parasitic cuckoo and their hosts, in which the probability that a parasitic egg be rejected depends on

the similarity of host and parasite egg morphologies (Robert & Sorci, 1999); crossbills and lodgepole pines,

for which fitnesses are influenced by matching between bill size and cone structure (Benkman, 1999); feather

lice and dove hosts, in which louse fitness at least is influenced by matching size with host size (and host

size correlates with parasite size across species) (Clayton et al., 2003). Other equally well-studied systems,

however, better fit an alternate model in which the strength of between-species interactions is a monotonic

function of the difference between the predator and prey’s traits. This is the case of parsnip web-worms and

wild parsnips, in which feeding efficiency of defended plants increases with higher production of detoxifying

enzymes (Berenbaum & Zangerl, 1992). Likewise, the rate of successful attack in the Japanese camelia-

camelia-weevil system is a monotonic function of the difference between camelia fruit wall thickness and

weevil mouthpart size (Toju & Sota, 2006, 2009). The ‘difference model’ so defined also fits the trophic

interaction between toxic newts (prey) and potentially toxin-resistant garter snakes (predators) (Brodieet al.,

2002; Hanifinet al., 2008).

Nuismeret al. (2007) theoretical analysis of antagonistic coevolution under the difference model of

attack rate shows that coevolutionary cycles are still possible with this model, provided that selection is

strong enough and stabilizing selection acts on the traits.Thus, genetically-driven coevolutionary cycles

in pairwise antagonistic interactions appear to be at leastpossible under relatively broad conditions when

the attack rate is described by the difference model. The question of whether coevolutionary cycles turn

11



into chaos in the three-species food chain is open to investigation. Future models should also examine the

coevolution of alternate or additional traits besides the attack rate. Dercoleet al. (2003) and Kisdi & Liu

(2006), for example, considered the evolution of handling time, a key factor of the functional response. As an

extension of our model, it would be interesting to account for genetic variation in predator and superpredator

handling times, track the evolution of the functional responses themselves as a by-product, and monitor the

potential bifurcations experienced by the coevolutionarydynamics as a consequence.

The possibility that natural selection acting on extant genetic variation drives community dynamics into

chaos has been known since early analyses of host-pathogen models (May & Anderson, 1983), and is not

unexpected given that competition between multiple species or genotypes can easily destabilize population

dynamics (Hofbauer & Sigmund, 1998; Turchin, 2003). This type of chaotic evolutionary dynamics has

been foundin theoretical studies of genetic polymorphismsunder frequency-dependent selection (e.g., May

& Anderson, 1983; Seger, 1992; Ferrière & Fox, 1995; Solé &Sardanyés, 2007), strategy frequencies in

evolutionary games (Nowak & Sigmund, 2003), and rapid evolution of a continuous trait in interaction with

population dynamics (Abrams & Matsuda, 1997b). All these are instances of evolutionary chaos on the

ecological timescale. The system considered here is different since the timescales of ecology and evolution

are separated: the population dynamics of different alleles stabilize on a monomorphic state over a timescale

which is fast compared to the slow evolutionary timescale over which the dynamics of the adaptive traits

develop. Thus, our analysis uncovers the first example of genetically-driven chaotic Red Queen.

The genetically-driven chaotic Red Queen implies that non-linear interactions of selective pressures can

drive phenotypic changes that are unpredictable over the slow timescale of long-term evolution, even in a

perfectly constant abiotic environment. (Note that with chaos in allele, or strategy, frequencies driven by

negative frequency-dependence there is unpredictabilityin the dynamics of frequencies, but the identity of

alleles, or strategies, never changes.) This has implications for our understanding of the role of ‘chance’ in

evolution (Travisanoet al., 1995; Beatty, 2006). Chance manifests itself when the evolutionary trajectories

of adaptive traits diverge between replicated populationsthat were initiated in similar phenotypic and geno-

typic states. Experimental tests on bacterial systems haveprovided some of the best evaluation of the role

that chance may play in evolution. Although founded by the same clone, and evolving in identical condi-

tions, replicate populations often diverge from one another in their relative growth rate, demographic traits,

morphological features, and performance in other environments (Elena & Lenski, 2003, and references

therein). The conventional explanation for evolutionary divergence ‘by chance’ involves genetic stochastic-
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ity (the randomness of mutation and drift due to demographicstochasticity) and environmental stochasticity

(random changes in environemental conditions) (Lenormandet al., 2008). However, models of adaptive trait

dynamics derived from individual-level ‘first principles’have shown that the effect of genetic stochasticity is

often ‘smoothed out’ in the long term, with traits converging towards the attractor of a deterministic dynami-

cal system, provided that there is some minimal separation between the timescales of mutation and selection

(Champagnatet al., 2006). The present study shows that even if the randomness of genetic stochasticity is

smoothed out, uncertainty can arise from the selection component of the evolutionary process: adaptive trait

trajectories converge towards a deterministic attractor,yet the chaotic nature of the attractor renders the trait

dynamics unpredictable beyond a short evolutionary time horizon. Thus, the nonlinearity of the selection

gradient offers an alternative to genetic or environmentalstochasticity to explain the ‘chance’ component of

evolutionary trajectories in real populations.

Further examples of genetically-driven chaotic Red Queen dynamics are likely to be discovered in

models of long-term evolution in which the adaptive processoperates in a three- (or more) dimensional

trait space—even if all traits, e.g., behavioral or life-history traits, pertain to the same, single species.

Genetically-driven chaos might also arise in two-trait adaptive dynamics models, or even in one-trait sys-

tems showing ecological multistability (Dercoleet al., 2002), that are subject to externally-driven periodic

fluctuations in mutation or selection. Besides its conceptual value, the genetically-driven chaotic Red Queen

suggests three new hypotheses (discussed below) about coevolutionary dynamics. Each hypothesis opens

an avenue for future theoretical work.

The intrinsic unpredictability of coevolutionary dynamic s is widespread

In view of the general theory of dynamical systems, the existence of chaotic evolutionary attractors over

some parameter region can affect the coevolutionary dynamics broadly outside that region. Even when

the coevolutionary attractor of the food chain is an equilibrium or a cycle, the ‘shadow’ of evolutionary

chaos will be seen in the form of long erratic transients (Hastings, 2004). Genetic noise, due, e.g., to

random drift or stochastic gene flow, or stochastic environmental fluctuations on the slow evolutionary

time scale, may actually maintain these transients for arbitrarily long evolutionary times. Such ‘noise-

induced chaos’ illustrates the general fact that small amounts of exogenous noise can have disproportionate

qualitative impacts on the long-term dynamics of a nonlinear system in which chaotic structures exist for

some parameter values (Tel, 1990; Rand & Wilson, 1991; Laiet al., 2003; Ellner & Turchin, 2005).
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Coevolution can drive population dynamics to the edge of chaos

Looking at evolution on a slow timescale in contrast with or even completely separated from the fast

timescale of ecology does not mean that the coevolutionary process has no effect on the ecological state

of the system. In fact, the genetically-driven chaotic Red Queen implies that the population size of each

species also fluctuates chaotically, but these fluctuationsdevelop on the slow, evolutionary timescale, be-

cause at each point in evolutionary time the food chain modelanalyzed here is at ecological equilibrium.

In other food chain models, ecological cycles and chaos occur readily (Hastings & Powell, 1991; Gross

et al., 2005). In the light of this and other studies (Khibnik & Kondrashov, 1997; Dercoleet al., 2006),

the trait domain corresponding to ecological chaos may contain part or all of the coevolutionary attractor

(ecogenetically-driven Red Queen). A sharp change in the selective regime at the boundary between chaotic

and non-chaotic ecological dynamics is expected in general(Ferrière & Gatto, 1995; Dercoleet al., 2006),

and may poise the food chain near that boundary for long evolutionary times, in a process called ‘evolution-

ary sliding’ (Dercoleet al., 2006). This would provide an evolutionary explanation forthe standing puzzle

that the abundance of many natural populations seemingly fluctuates ‘at the edge of chaos’ (Turchin, 2003;

Ellner & Turchin, 1995).

The chaotic Red Queen promotes genetic divergence in metacommunities

There is considerable interest in better understanding howcoevolutionary processes work in geographically

structured habitats (Thompson, 2005). The arising of genetically-driven chaos has direct implications for

the origin and maintenance of genetic diversity in spatially extended communities. Let us consider the

metaphor of a fragmented landscape in which all patches are identical and isolated. Genetically-driven

chaotic Red Queen dynamics imply that each local trophic chain evolves along the same strange attractor,

but small ancestral differences in the genetic make-up of local communities will result in permanent genetic

differences between patches. The magnitude of these differences will vary over time, and be sometimes

as large as the coevolutionary attractor. In contrast, small ancestral differences remain small in the case

of periodic Red Queen dynamics (and the same would be true if the Red Queen were ecologically driven).

In other words, local genetically-driven coevolutionary chaos promotes spatial genetic divergence, even in

the absence of environmental differences between patches.Red Queen dynamics in general can explain

phenotypic mismatches between coevolving species even in the absence of spatial structure, gene flow or
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genetic drift (Berenbaumet al., 1986; Hanifinet al., 2008); the chaotic Red Queen, in particular, predicts the

persistence of different degrees of mismatches between local communities, even if environmental conditions

are spatially uniform.

Furthermore, general results on the synchronization of dynamical systems subject to common fluctuat-

ing exogenous forces warn that the genetic divergence between local populations can be lost in the presence

of long-term environmental fluctuations (this is known in ecology as Moran effect; see Royama, 1992, for

a review). However, recent results (Colomboet al., 2008) show in great generality that this is possible

only if environmental fluctuations are large and tuned specifically to the endogenous dynamics of the sys-

tem. Genetically-driven coevolutionary chaos could therefore play an important role in promoting genetic

diversity in ecological communities threatened by environmental homogenization (Oldenet al., 2004). We

conclude that genetically-driven Red Queen chaos might explain genetic differentiation of local commu-

nities without invoking local adaptation to different habitat conditions or to multiple steady states of local

populations in the metacommunity. This points to the possibility that, in sexual species, the genetic diver-

gence of local populations induced by complex adaptive dynamics might favor the evolution of reproductive

isolation and hence parapatric speciation—even across relatively uniform habitats, as in marine species

(Palumbi, 1994; Kirkpatrick & Ravigne, 2002). Extension ofspeciation models along ecological gradients

(Doebeli & Dieckmann, 2003) will help examine this hypothesis further.

Concluding Remarks

Here we have extended Dieckmannet al.’s (1995) model of predator-prey genetically-driven coevolution

by adding a coevolving superpredator to the system. When RedQueen periodic cycles develop in the two-

species model, the adaptive dynamics of the three coevolving species are often chaotic. A general condition

for this to happen is that the evolutionary rate of the prey belarge enough. The greatest irregularity is

then predicted in the dynamics of the superpredator trait. Because the ecological model of the food chain

is always at equilibrium throughout the trait space, instability in the ecological dynamics plays no role

in generating this chaotic Red Queen, which is thus entirelydriven by nonlinear interactions between the

selective pressures acting on rare genetic variation of thetraits.

The specificities of the model and the new hypotheses arisingfrom the results call for continued the-

oretical investigation of chaotic dynamics in genetically-driven coevolutionary processes. This theoretical
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endeavor should be paralleled by an empirical effort focusing on the patterns of temporal unpredictabil-

ity and spatial heterogeneity of antagonistic coevolution; and the consequences for population dynamics,

genetic differentiation in metacommunities, and macroevolutionary processes including speciation.

A key difference between coevolutionary cycles and coevolutionary chaos lies in the expectation that

geographically distinct communities subject to homogenizing factors of their environment (e.g., large scale

climatic fluctuations) should exhibit similar degrees of phenotype mismatching when coevolving cyclically,

and persistently dissimilar degrees of mismatching when coevolving chaotically. Spatially heterogeneous

mismatches have been documented recently in the camelia-weevil (Toju, 2009) and newt-gartner snake

(Hanifin et al., 2008) systems. In the light of our results, the fine-scale divergence of coevolution in the for-

mer may not require geographic variation of environmental factors (Toju, 2009). Molecular data supporting

the role of beneficial mutations, rather than standing genetic variation, as fueling coevolution between newts

and their snake predators (Feldmanet al., 2009) offers promising evidence for the relevance of genetically-

driven Red Queen models to deepen our understanding of geographic patterns of coevolution in nature.

Besides trophic interactions, the Red Queen is expected to reign in many exploiter-victim systems (Lyth-

goe & Read, 1998). Biomedical science has already revealed the potential ubiquity of the Red Queen in

parasitic and pathogenic interactions (Moyaet al., 2004). Experimental coevolution in host-pathogen sys-

tems is being used successfully to evidence the patterns anddissect the processes of ecologically-driven Red

Queen dynamics in laboratory systems (e.g., Koskella & Lively, 2007, 2009) and in nature (Decaestecker

et al., 2007). On the evolutionary timescale, antagonistic coevolutionary dynamics fueled byde novo ge-

netic variation have been studied experimentally using bacterial systems (Lenski & Levin, 1985; Bohannan

& Lenski, 2000; Buckling & Rainey, 2002; Mizoguchiet al., 2003; Fordeet al., 2004; Lopez-Pascua &

Buckling, 2008; Galletet al., 2009). The time-shift experimental design (Gaba & Ebert, 2009) implemented

to study ecologically-driven Red Queen dynamics could be applied to measure how predictable genetically-

driven coevolutionary trajectories are under different experimental treatments, and thus to search for the

essential property of chaotic dynamics—exponentially declining predictability of trajectories. Combining

experiments with sufficiently detailed mathematical models of the study systems will be instrumental to

identify relevant experimental treatments, to design datacollection and analysis, and to interpret the results

(Decaesteckeret al., 2007). If it were supported by such experiments on microbial systems, the genetically-

driven chaotic Red Queen might contribute to our understanding of the rapid and indeterminate evolution

of viral pathogens (Kirkwood & Bangham, 1994; Moyaet al., 2004), and perhaps influence the study and
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control of emergent pathogens on large temporal and spatialscales.

Ultimately the important question raised by the genetically-driven chaotic Red Queen is unlikely to be

whether or not long-term evolution in any specific ecological system is chaotic—a question that makes sense

only in the realm of mathematical models. Population ecologists have long gone beyond that question—

chaos versus nonchaos—to draw stunning insights from nonlinear dynamics theory into how environmental

forces and internal dynamics shape species abundance and distribution in nature (Allenet al., 1993; Dixon

et al., 1999; Turchin, 2003; Ellner & Turchin, 1995). The same movecould take place in evolutionary

biology, as genetically-driven Red Queen chaos challengesour ability to measure, compare, and interpret

coevolutionary patterns and processes in the real world.
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Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. 1996 Adaptive

dynamics: A geometrical study of the consequences of nearlyfaithful reproduction. InStochastic and

Spatial Structures of Dynamical Systems, eds. van Strien, S. J. & Verduyn Lunel, S. M., Elsevier Science,

Burlington, MA, pp. 183–231.

Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. 1992 How shouldwe define fitness for general ecological

scenarios?Trends Ecol. Evol. 7, 198–202.

Mizoguchi, K., Morita, M., Fischer, C. R., Yoichi, M., Tanji, Y., & Unno, H. 2003 Coevolution of bacterio-

phage PP01 and Escherichia coli O157: H7 in continuous culture.Appl. Environ. Microbiol. 69, 170–176.

Moya, A., Holmes, E. C., & Gonzalez-Candelas, F. 2004 The population genetics and evolutionary epidemi-

ology of rna viruses.Nat. Rev. Microbiol. 2, 279–288.

23



Nowak, M. A. & Sigmund, K. 2003 Chaos and the evolution of cooperation.Proc. Natl. Acad. Sci. 90,

5091–5094.

Nuismer, S. L. & Doebeli, M. 2004 Genetic correlations and the coevolutionary dynamics of three-species

systems.Evolution 58, 1165–1177.

Nuismer, S. L., Ridenhour, B. J., & Oswald, B. P. 2007 Antagonistic coevolution mediated by phenotypic

differences between quantitative traits.Evolution 61, 1823–1834.

Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E., &Faush, K. D. 2004 Ecological and evolu-

tionary consequences of biotic homogenization.Trends Ecol. Evol. 19, 18–24.

Palumbi, S. R. 1994 Genetic divergence, reproductive isolation, and marine speciation.Annu. Rev. Ecol.

Syst. 25, 547–572.

Rand, D. A. & Wilson, H. B. 1991 Chaotic stochasticity—a ubiquitous source of unpredictability in epi-

demics.Proc. R. Soc. Lond. B 246, 179–184.

Robert, M. & Sorci, G. 1999 Rapid increase of host defence against brood parasites in a recently parasitized

area: the case of village weavers in Hispaniola.Proc. R. Soc. Lond. B 266, 941–946.

Rosenzweig, M. L., Brown, J. S., & Vincent, T. L. 1987 Red Queen and ESS: The coevolution of evolution-

ary rates.Evol. Ecol. 1, 59–94.

Royama, T. 1992Analytical Population Dynamics. Chapman & Hall, London.

Salathe, M., Kouyos, R. D., & Bonhoeffer, S. 2008 The state ofaffairs in the kingdom of the Red Queen.

Trends Ecol. Evol. 23, 439–445.

Seger, J. 1992 Evolution of exploiter-victim relationships. In Natural Enemies: The Population Biology of

Predators, Parasites and Diseases, ed. Crawley, M. J., Blackwell Scientific, Oxford, UK, pp. 3–25.

Shoresh, N., Hegreness, M., & Kishony, R. 2008 Evolution exacerbates the paradox of the plankton.Proc.

Natl. Acad. Sci. 105, 12365–12369.
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Figure 1: Period-doubling route toward genetically-driven Red Queen chaos in a three-species food chain.
Peak values of the superpredator trait,x3 (blue), in the corresponding evolutionary attractor, and the largest
Lyapunov exponent,L1 (red), as functions of the prey mutation rate,µ1. The valueµ∞

1
indicates the lower

limit of the chaotic range. Parameter values:µ2 = 1, µ3 = 1, σ2
1

= 0.3, σ2
2

= 2, σ2
3

= 2, r = 0.5,
d2 = 0.05, d3 = 0.02, e2 = 0.14, e3 = 0.14, a21 = 0.22, a22 = 0.25, a23 = 0.6, a24 = 0, a25 = 0.04,
a31 = 0.22, a32 = 0.25, a33 = 0.6, a34 = 0, a35 = −0.04, c0 = 0.5, c1 = 0, c2 = 3.
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Figure 2: Genetically-driven chaotic Red Queen in a three-species food chain. Left panel: evolutionary
strange attractor. The estimated Lyapunov exponents areL1 = 8.1321 · 10−3, L2 = −2.3923 · 10−6,
L3 = −4.6270 · 10−1, and the fractal dimension is2 − L1/L3 = 2.0176 (Kaplan-Yorke formula). Color
codes the largest local Lyapunov exponent (see Appendix S2 in Supplementary Material). Chaotic time-
series of prey, predator, and superpredator traits are shown on the right. Parameter values as in Fig. 1 and
µ1 = 4.2667.
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