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1. Introduction

Since the appearance of a paper by H. Tui [14], maximization of

convex function over a polytope has attracted much attention. In his

paper, two algorithms were proposed: one cutting plane and the other

enumerative. However, the numerical experiments reported in [16] on

the naive cutting plane approach were discouraging enough to shift the

researchers more to the direction of enumerative approaches ([7] ,[8] ,[17]).

In this paper, we will develop a cutting plane algorithm for

maximizing a convex quadratic function subject to linear constraints.

The basic idea is much the same as Tui's method. It also parallels some

of the recent results by E. Balas and C-A. Burdet [2]. We will, however,

use standard tools which are easier to understand and will fully exploit

the special structure of the problem. The main purpose of the paper 1S

to demonstrate that the full exploitation of special structure will

enable us to generate a cut which is much deeper than Tui's cut and that

the cutting plane algorithm can be used to solve a rather big problem

efficiently.

We will first prove the equivalence of the original problem and an

associated bilinear program (See [9] for details) and then exploit its

special structure to obtain a 'deep' cut. The algorithm has been tested

on CYBER 74 up to a problem size of 9 x 19 and the numerical results

turned out to be quite encouraging. This work is closely related to [9 J
and its results will be frequently referred to without proof.
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2. E-Locally Maximum Basic Feasible Solution

and Equivalent Bilinear Program

We will consider the following quadratic program:

max f(x)

s.t. Ax

t t
= c x + !x Qx

b, x > 0
(2.1)

h n m mxn nxn. . ..
were c, x E R , b E R , A E Rand Q E R ~s a symmetr~c pos~t~ve

semi-definite matrix. We will assume that the feasible region

x = {x E R
n I Ax = b, x ~ o} (2.2)

~s non-empty and bounded. It is well known that in this case (2.1) has

an optimal solution among basic feasible solutions.

Given a feasible basis B of A, we will partition A as (B, N)

assuming, without loss of generality, that the first m columns of A are

basic. Partition x correspondingly, i.e. x = (xB' ~). Premultiplying

-1
B to the constraint equation BXB + N~ = b and suppressing basic

variables xB' we get the following system which is totally equivalent

to (2.1):

s.t.

max I(~) = cN~ + !~~ + <Po

B-1N~ ~ B-lb, (2.3)

where xo _ (x~, ~) = @-lb, 0) and <Po = f(xo). Introducing the notations:

~ = n - m, d = cN' Y

as:

~, F

max g(y)
t t

= d y + !y Dy + <P
o

Q, we will rewrite (2.3)

s.t. Fy < f, y > 0 (2.4)
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and call this a 'canonical' representation of (2.1) relative to a

feasible basis B. To express the dependence of vectors in (2.4) on B,

we occasionally use the notation deB) etc.

Definition 2.1. Given a basic feasible solution x £ X, let N (x) be
x

the set of adjacent basic feasible solutions which can be reached from

x in one pivot step.

Definition 2.2. A basic feasible solution x* £ X is called an £-loca11y

maximum basic feasible solution of (2.1) if

(i)

(ii)

d .s.. 0,

f(x*) > f(x) - £ \Ix £ N (x*), x

Let us intorduce here a bilinear program associated with (2.1), which

~s essential for the development of cutting planes:

s. t. (2.5)

Theorem 2.1 [9]. If Xis non-empty and bounded, then (2.5) has an

optimal solution (x~, x~) where x~ and x; are basic feasible solutions

of x.

Moreover, two problems (2.1) and (2.5) are equivalent ~n the

following sense:

Theorem 2.2. If x* is an optiam1 solution of (2.1), then (xl' x
2

) =

(x*, x*) is an optimal solution of (2.5). Conversely, if (x~, x~) is

optimal for (2.5), then both x~, x~ are optimal for (2.1).
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Proof. Let x* be optimal for (2.1) and (x~, x;) be optimal for (2.5).

By definition.f(x*) ~ f(x),\(x E X. In particular,

* * * *f(x) > f(x.) = ¢(x., x.), i = 1, 2- ~ ~ ~

also

¢(x~, x~)

~ max{¢(x, x) I x £ X} = f(x*)

To establish the theorem, it suffices therefore to prove that

because we then have f(x~) > f(x*), i = 1, 2 and ¢(x*, x*) = f(x*)
~ -

(2.6)

Let us now prove (2.6). Since (x~, x;) is optimal for

(2.5), we have

Adding these two inequalities, we obtain

Since Q is positive semi-definite, this implies Q(x~ - X;) = o. Putting

this into the inequality above, we get c t (x1 - x~) = O. Hence

* * * * * *. II¢(x1' x2) = ¢(x1' x2) = ¢(x2' x2) as was requ~red.

As before, we will define a canonical representation of (2.5)

relative to a feasible basis B:
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max 1J;(Y1' Y2)
t t t

+ 4>d zl + d z2 + zlDZ 2 0

s.t. FZ 1 .::. f, zl ~ 0 (2.7)

FZ 2 .::. f, z2 ~ 0

which 1S equivalent to (2.4) • Also let

R.
y ~ o}y {y £ R Fy .::. f, (2.8)

3. Cutting Plane at an £-Loca11y Maximum Basic Feasible Solution

We will assume in this section that an £-10ca11y maximum basic

feasible solution X
O and corresponding basis B have been obtained.

o

Also, let ~ be the best feasible solution obtained so far by one't'max

method or another.

Given a canonical representations (2.4) relative to B ,
o

we will proceed to introduce a 'valid' cutting plane in the sense that

it

(i) does eliminate current £-10ca11y max1mum basic feasible

solution, i.e., the point y = 0,

(ii) does not eliminate any point y in Y for which g(y) > 4>max + E.

Theorem 3.1 [14J. Let e. be the larger root of the equation:'
1

d.>" + 12d •• >..2 = ~ _ ~ + £
1 11 't'max 't'o

Then the cut

(3.1)

H(e):

is a valid cut.

R.
E

i=l
y./e. > 1

1 1
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This theorem is based upon the convexity of g(y) and the simple

geometric observation illustrated below for two dimensional case.

o
x

Yl axis Y2 axis

Figure 3.1

Though this cut is very easy to generate and attractive from

geometric point of view, it tends to become shallower as the dimension

1ncreases and the results of numerical experiments reported in [16J

were quite disappointing. In this ~ection,we will demonstrate that if

we fully exploit the structure, then we can generate a cut which is

generally much deeper than Tui's cut.

Let us start by stating the results proved in [9J, taking into

account the symmetric property of the bilinear programming problem (2.7)

associated with (2.4).
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Theorem 3.2. Let 8. be the supremum of A for which
~

0, J ~ , z2 E Y}

< ep + E
- max

Then the cut

H(8) :
i
L: y./8. > 1

j=l J J

is a valid cut (relative to (2.4)).

Theorem 3.3. 8. of Theorem 3.2 ~s given by solving a linear program:
~

8. min[-dtz + (ep - ep + E)Z ]
~ max 0 0

s.t. Fz - fz < 0
o

t
d. z + d.z = 1
~. ~ 0

z > 0, z > 0
o

where d. is the ith column vector of D.
~.

For the proofs of these theorems, readers are referred to [9]. Also

Theorem 3.3 is proved in [2] using the theory of outer po1ars. We will

next proceed to the method to improve a given valid cut.

For a given positive vector S = (81' 8 ) > 0 let... , i '

t.(S) i
{y E R I

i
L:

j=l
y./S. < 1, y. ~ 0, j

J J J
1, ... , i} (3.3)
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Theorem 3.4. Let T > 8> o. If

and if

then

(3.4)

(3.5)

H(T) :
9-
L: y.h. > 1

j=l J J

is a valid cut (relative to (2.4)).

Proof. Let Yl = ~(8) ny, Y2 = (~(T)"~(8)) n Y, Y3 = Y"~(T).

Obviously Y = Y
l

U Y2 U Y3 . By (3.3) and (3.4), we have that:

By symmetry of function ~, we have that

max{~(zl' z2) I zl £ Y2' z2 £ Yl } = max{~(zl' ~2) I zl £Yl ,

z2 £ Y2}

and hence

Referring to Theorem 2.2, this implies that

max{g(y) I y£Yl UY2} < <P + £- max

This, in turn, implies that H(T) is a valid cut. II
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This theorem gives us a technique to improve a g1ven valid cut

(e.g. Tui's cut or the cut defined in Theorem 3.2). Given a cut R(B),

let T. be
1

Figure 3.2

the maximum of A for which

then R(T) is also a valid cut as is illustrated in Figure 3.2.

It is easy to prove (See [9],Theorems 3.2 and 3.3) that L. defined above
_1

is equal to the optimal objective value of the following 'linear program:

L' = min [-dt z + (<p - <p + EJ z ]1 max 0 0

s. t. Fz - fz < 0
0-

~

E d .. z. + d.z = 1 (3.6)
j=l 1J J 1 0

~

E z./e. - z > 0
j=l J J 0-

Note that since d < 0 and <p - <p + £ > 0, (z, Z ) = (0, 0) is a
max 0 0

dual feasible solution with only one constraint violated and it usually
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takes only several pivots to solve this linear program starting from

this dual feasible solution. Also it should be noted that the objective

value is monotonically increasing during the dual simplex procedure and

hence we can stop pivoting whenever the objective functional value

exceeds some specified level.

Lemma 3.5.

(ii) If Q is positive definite and xl f x2 ' then

Proof.

(i) Assume not. Then

Adding these two inequalities, we obtain

which is a contradiction since Q is positive semi-definite.

(ii) Assume not. As 1n (i) above, we get

which is a contradiction to the assumption that xl - x2 f 0

and that Q is positive definite.
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Theorem 3.6. If Q is positive definite, then the iterative improvement

procedure either generates a point y £ Y for which g(y) ~ ~max + £

or else generatesa cut which is strictly deeper than corresponding Tui's

cut.

Proof. Let H(e) be Tui's cut and let H(T) be the cut resulting from

iterative improvement starting from a valid cut H(w) where w > O. Let

By definition:

(0, ... ,0, T., 0, ... ,0),
1

1 1, ... , t

ep + E
max (3.7)

Case 1.

that

It follows from Lemma 3.5 and (3.7)

ep + E
max

1
Note that Zz £ Y.

Case Z. 1 1 1 1
~(Zl' Zl) > ~(zZ' zZ)· Again by Lemma 3.5 and (3.7), we have

We will prove that this inequality is indeed a strong one. Suppose that

1 i i 1
~(Zl' Zl) = ~(Zl' zZ), then

t i 1 t i 1
c (zl - Z ) + Z1D(zl - z ) = 0

2 Z

1 1 1 1
we obtainFrom ~(zl' zZ) > ~(zZ' zZ)

t i 1 t i i > 0c (Zz - z ) + zZD(zZ - zl)1
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~

Adding these two, we have that (zl
i

z2) < 0, which is a

contradiction. Thus we have established

which, in turn, implies that T. > e. since e. is defined (See (3.1))
~ ~ ~

as a point at which g(e) attains the value ~max + E.

It turned out that this iterative improvement procedure quite

often leads to a substantially deep cut. Figure 3.3 shows a typical

example.

II

The deeper the cut H(e) gets, the better ~s the chance that some of

the non-negativity constraints y. > 0, ~ = 1, ... , t becomes redundant
~ -

for specifying the reduced feasible region Y'~(T). Such redundant

constraints can be identified by solving the following linear program:

min{y. I Fy < f, Y ~ 0, ~y./T. > l}
~ J J

If the minimal value of y. is positive, then the constraint y. > °
~ ~ -

is redundant and we can reduce the size of the problem. This procedure

~s certainly costly and its use is recommended only when there is a very

good chance of success, i.e., when T is sufficiently large.

4. Cutting Plane Algorithm and the Results of Experiments

We will describe below one version of cutting plane algorithm which

has been coded in FORTRAN IV for CYBER 74.
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5

1
5.84 Zz =1

1
+ 6.13 z2= 1'\. "'. ,.'.:

3
, ,,

2 ,
'\.

ILLUSTRATIVE EXAMPLE OF ITERATIVE IMPROVEMENT

max -2z,- 3z2+ 2z~ - 2z,z2 + 2zi
s. t. - Z1 + z2 < 1

z, - z2 < 1
-z, +2z2 < 3
2z, - z2 < 3

£, > a ,z2 > a
_ .. _ .. - RITTER'S CUT

--. -_.- TU 1'5 CUT

_._. - B L P CUT

........... 1st ITERATION

---- -- 2nd ITE RATION

3rd ITERATION

Figure 3.3
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Cutting Plane Algorithm

Step 1.

Step 2.

Step 3.

Let i = 0 and X = X.
o

If i > i then stop. Otherwise go to Step 3.
max

oLet k = 0 and let x £ Xi be a basic feasible solution and

Step 4. Solve a subproblem:
k k+1

max{~(z, x) I z £ Xi} and let x and

k+1. . b' 'b .B be ~ts opt~ma1 as~c feas~ 1e solut~on and corresponding basis.

Step 5. Compute d(Bk+1), the coefficients of linear term of (2.7)

relative to Bk+1 . If d(Bk+1) {O, then add 1 to k and go to Step 4.

* k+1Otherwise let B = B x* = x and go to Step 6.k+1'

Step 6. Compute matrix D in (2.7) relative to B*. If x* is an

£-loca11y maximum basic feasible solution (relative to X ), then let

~ . = max{~ ,f(x*)}, ~ = f(x*) and go to Step 7.
~max' ~max ~o

to a new basic feasible solution i where f(x) = max{f(x)

oLet k = 0, x = x and go to Step 4.

Otherwise move

Step 7.

Step 8.

o
Let j = 0 and let Y

i
+1 = Y

i
'

. '+1
Compute S(Yi+1) and let Yi+1

. .
Yi+l"- Il(S (Yi+1»' If

y j +1 - ~ then stop.i+1 - ~ Otherwise go to Step 9.

If a > a
o

then add 1 to j and

go to Step 8. Otherwise let X
i

+1 be the feasible region in X corresponding

to yi:i. Add 1 to i and go to Step 2.

Wh h · 1 . h 's 8' h j+1 b' hen t ~s a gor~t m stops ~n tep w~t Y
i

+
1

ecom~ng empty, t en

xmax £ X corresponding to ¢ is actually an £-optima1 solution of (2.1).max
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Though this algorithm may stop in Step 2 rather than in Step 8 and thus

may fail to identify an E-optimal solution, the numerical experiments

conducted on CYBER 74 are quite encourag1ng. Table 4.1 summarizes

some of the results for smaller problems.

Table 4.1

Size of the Problem No. of Approximate

E/CP
Local Maxima CPU time

Problem No. m n max Identified (sec)

1 3 6 0.0 1 0.2

2 5 8 0.0 2 0.6

3 6 11 0.0 1 0.3

4 7 11 0.0 1 0.5

5 9 19 0.0 2 3.0

6-1 6 12 0.05 5 2.5

6-2 6 12 0.01 6 3.0

6-3 6 12 0.0 6 3.0

7 11 22 0.1 8 28.0

Problems 1 ~ 5 have no particular structure, while problems 6-1, 6-2,

6-3 and 7 have the following data structure:

ttlmax{cmx + !x 0 x A x < b , x > a}
111. m - m
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where

1 2 • m-l m 2 -1

2 3 m 1 -1 2 0
A = Q

mm

0 -1

m 1 . . . . m-2 m-l -1 2

c
m

t
(0, ..• , 0) , b

m
t

= (m(m+l)/2, ... , m(m+l)/2)

They have m local maxima with same objective functional values. All of

them are, in fact, global maxima.

The experiments for larger problems are now under way using a more

sophisticated version of primal simplex (to be used in Step 4) and dual

simplex algorithm (to be used in Step 8). These results will be reported

subsequently.
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