FIRST VERSION OF THE HUNGARIAN AGRICULTURAL MODEL

.

(HAM-1)

C. Csaki

August 1978

Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute.

۰

.

PREFACE

Because the food production is one of the most decentralized activities of mankind, the focal point in the Food and Agriculture research at IIASA is the modelling of various national food and agricultural systems. The international and East-West characteristics of IIASA offer a good opportunity for the appropriate modelling of market oriented as well as centrally planned agricultural systems.

As a first step in the realization of IIASA's objectives in the modelling of centrally planned agricultural systems, we have begun to work on the Hungarian Agricultural Model (HAM) as a pilot model for the modelling of CMEA countries. First, the general structure of the model and its detailed mathematical description were completed*. As a second stage of the HAM project the first, relatively aggregated, version of the model (HAM-1) based on real data has been elaborated and implemented in both IIASA and Hungarian computers. The experiences gained by this model version serve first of all towards making the final refinements of the model and also led us to some useful conclusions concerning the operation and development of the Hungarian food and agriculture system.

^{*} C. Csaki, A. Jonas, S. Meszaros - Modelling of Centrally Planned Food and Agricultural Systems: A Framework for a National Policy Model for the Hungarian Food and Agriculture Sector. RM-78-11, March 1978

SUMMARY

In this paper, the results of experiments with the first version of the Hungarian Agricultural Model (HAM-1) are summarized. The description of our objectives and the model are followed by a discussion of the actual results and finally our conclusions are presented.

HAM is going to be the first systems simulation model to describe the Hungarian food and agriculture sector. The main objective of HAM-1 is to gain methodological experiences to the further refinement of our model structure and to demonstrate that our approach is suitable for investigations connected with the development of Hungarian food and agriculture.

HAM-1 describes the Hungarian food and agricultural sector in a rather aggregated way (the food and agriculture is represented by nine commodities and the tenth commodity is related to the rest of the economy), but it has all of the basic features of the HAM model structure, namely it is dynamic and has a descriptive character, both the production of agricultural raw materials and food processing are modelled, the governmental economic management and policy-making activities are partly endogenized, the food consumption sphere is incorporated, financial equilibrium is maintained.

Numerous runs of HAM-1 have been executed representing three types of investigations, namely testing the operation of the whole system, studying the impacts of changes in external conditions and how the system reacts on modifications within the model. Some of the results of these runs and the conclusions are discussed at the end of the paper.

CONTENTS

,

PREFACE	iii
SUMMARY	v
INTRODUCTION	1
1. OBJECTIVES IN DEVELOPING HAM-1	2
2. DESCRIPTION OF HAM-1	3
2.1 Commodity Coverage and Data Sources	3
2.2 Structure of HAM-1	5
2.2.1 Government Economic Planning Submodel	5
2.2.2 Production Block	5
2.2.3 Consumption and Trade Block	12
2.2.3.1 Modelling of Consumer's Demands	13
2.2.3.2 Exchange Module	15
2.2.4 Economic Analysis of Government	21
2.2.5 Updating Parameters	21
3. COMPUTATION OF HAM-1	29
4. EXPERIMENTS WITH HAM-1	32
5. CONCLUSIONS	43
APPENDIX	45

.

INTRODUCTION

As a first step in the realization of IIASA's objectives in the modelling of centrally planned agricultural systems we have begun to work on the Hungarian Agricultural Model (HAM) as a pilot model for the modelling of CMEA countries. The development of HAM is a joint undertaking of FAP at IIASA and three institutes in Hungary (Research Institute for National Planning at the Hungarian National Planning Bureau - OT TGI, Hungarian Ministry of Food and Agriculture - MEM STAGEK, Department of Agriculture Economics at K. Marx University of Economic Sciences - MKKE). Contributors to HAM-1:

- C. Csaki (IIASA): overall model structure and linkages, policy revising and consumption-trade block, coordination of the whole project.
- G. Fisher (IIASA): computer program and computation.
- C. Forgacs (MKKE): data collection.
- A. Jonas (OT TGI): government planning and economic analysis submodel, analysis of results.
- K. Kelemen (OT TGI): mathematical structure of the whole model.
- L. Kleininger (MEM STAGEK): data collection for production block.
- S. Meszaros (MEM STAGEK): production block, savings function, output tables.
- Gy. Modos (MKKE): collection of data on consumption.
- A. Por (IIASA): estimation of demand system parameters.
- M. Sebestyen (MKKE): data base of the whole model, economic analysis and consumption trade block, parameter updating.
- J. Strehn (MEM STAGEK): production model's parameter updating.
- K. Varga (IIASA): computer programming.
- L. Zeöld (OT TGI): development of the basic computer program and computation.

The elaboration of a detailed national agricultural policy model requires intensive economic analysis as well as complex and relatively large scale data collection, modelling and computer programming work. Therefore this kind of venture is generally realized in several stages. In developing HAM, it took several months to complete the general structure of the model and finalize its detailed mathematical outline*. Now, after more than one year of work the first version of HAM (HAM-1) based on real data is operational on both IIASA and Hungarian computers. The development of HAM-1 is a very important step in the HAM project. The experiences gained by this more aggregated model version serves first of all towards making the final refinements of the model and also led us to some useful conclusions concerning the operation and development of the Hungarian food and agriculture system.

In this paper, the results of our experiments with HAM-1 are summarized. The description of our objectives and the model are followed by discussion of the actual results and finally our conclusions are presented.

The working group of HAM is grateful to Professor Ferenc Rabar and Michiel Keyzer for their continuous support and comments on the whole work. In the elaboration of the model we would also like to express our appreciation to the Bulgarian and Czechoslovakian scientists for valuable discussions on the whole modelling framework.

^{*} C. Csaki, A. Jonas, S. Meszaros: Modelling of Centrally Planned Food and Agricultural Systems: A Framework for a National Policy Model for the Hungarian Food and Agriculture Sector. IIASA, RM-78-11, March 1978.

1. OBJECTIVES IN DEVELOPING HAM-1

HAM is going to be the first system simulation model to describe the Hungarian food and agriculture sector. The former modelling works offered many useful experiences but in several cases HAM applies entirely new approaches and the development of HAM requires the analysis of several possible alternative methodological solutions. Therefore to avoid the difficulties of immediately working with a large scale system we have decided to develop first a more aggregated, relatively simplified model version (HAM-1).

The main objective of HAM-1 is to gain methodological experiences to the further refinement of our model structure and to the construction of the final model version through:

- testing the operation of the whole model system, investigating alternative methodological solutions for some of the model modules (e.g. instead of linear programming, using nonlinear optimization),
- performing the sensitivity analysis of the crucial model parameters,
- studying the reaction of the system to changing external conditions (e.g. changing the world market prices),
- calculating the impacts of changes within the system (e.g. modification of pricing mechanism or decision making rules) on the performance of the whole system.

HAM-1 is also very important from the point of view of computation of the final model version. Through the implementation of HAM-1 in IIASA and the computer of the Hungarian National Planning Bureau we intended to develop and test a computer program which can serve as a solid basis for the computation of the final model.

Our further objective with HAM-1 was to demonstrate that our model structure is suitable for investigations connected with the development of Hungarian food and agriculture in the follow-ing way:

- Based on the model, the realization of major policy goals and plan targets and their main alternatives can be investigated. For example, the key factors and bottlenecks of realization, the considerations for a faster growth, the expected labor outflow from agriculture, and the feasibility of the goals may be analyzed.
- HAM is suitable for studying the adjustments and reactions of the Hungarian food and agriculture system to a changing international market. For example, export and import structure, the desired level of specialization or self-sufficiency, and the reaction of the domestic to the world market may be investigated.
- Finally, HAM is designed to be useful for the further development of the Hungarian economic management system, since the model can analyze the efficiency of policy instruments, the impact of the new instruments, and areas of additional control requirements.

Finally the investigations of data availability and the development of data collecting system for the further work can also be mentioned as an important objective of HAM-1 experiment.

2. DESCRIPTION OF HAM-1

HAM-1 describes the Hungarian food and agricultural sector in a rather aggregated way but it has all of the basic features of the HAM model structure described in RM-78-11 namely:

- the model is dynamic and has a descriptive character,
- the food consumption sphere is incorporated,
- the nonfood production sectors of the economy are represented by assuming that they produce only one aggregated commodity,
- the economic, technical and biological aspects of food production are covered,
- both the production of agricultural raw materials and food processing are modelled,
- the whole agricultural production and food processing is represented and,
- financial equilibrium is maintained.

Compared to our objectives as stated in the general description of HAM structure (see RM-78-11) the aggregated and simplified features of HAM-1 mean the following:

- HAM-1 has a rather aggregated commodity coverage (see Point 2.1),
- different sectors of agricultural production (state farms, cooperative farms, household plots) are not considered, only the so-called socialist agricultural production (state and cooperative farms together) is modelled,
- weather random effects on agricultural production are not directly included,
- in some cases (e.g. savings function) less sophisticated mathematical formulation is applied,
- the description of the government's policy instrument revising activities (e.g. pricing) can be considered as the first preliminary approach,
- no separate CMEA market is considered.

2.1 Commodity Coverage and Data Sources

The Hungarian food and agriculture is described in HAM-1 on a relatively high level of aggregation. The Hungarian food and COMMODITY COVERAGE OF THE FIRST VERSION OF HAM

NUMBER	PRODUCT'S NAME	PRODUCT'S CONTENT
~	SUGAR BEET	SUGAR BEET AND OTHER CROP PRODUCTS TO BE PROCESSED
2	CORN	COARSE GRAINS AND OTHER FEED PRODUCTS
e	WHEAT	FOOD GRAINS AND OTHER DIRECTLY CONSUMED CROP
4	SWINE	SWINE (PIGS)
ß	CATTLE	CATTLE AND OTHER LIVESTOCK PRODUCTS
9	SUGAR	SUGAR AND OTHER PROCESSED CROP PRODUCTS
7	PORK	PORK MEAT
8	PROCESSED MEAT	PROCESSED MEATS
6	BEEF	BEEF AND OTHER MEATS
10	N-TH PRODUCT	PRODUCT OF THE REST OF THE ECONOMY

TABLE 1

I

agriculture is represented by 5 agricultural and 4 processed food commodities, the 10th commodity is related to the rest of the economy.

As it is shown on Table 1, practically all of the model commodities represent a relatively wide range of products. On the whole, approximately the whole Hungarian food and agriculture and the national economy as well are covered. Therefore the computed results of HAM-1 can be compared with the actual indicators of Hungarian food and agriculture and the national economy. Out of the ten commodities, six - wheat, pork, beef, sugar, processed meat and the n-th commodity - are consumed by the population.

HAM-1 is based on official Hungarian statistics. The methodological character of HAM-1 experiment allowed us to be less exacting and sophisticated in data preparation. Most of the model parameters have been calculated using the data of the Hungarian National Statistical Bureau and the Ministry of Food and Agriculture. The consumers' demand system has been estimated at IIASA based on time series (see Appendix 1).

2.2 Structure of HAM-1

HAM-1 is actually a system of models structured as it was planned in the general HAM outline. Figure 1 shows the structure of HAM-1. On Figure 2, 3 and 4, some of the most important linkages and the operation of the model are shown. Figure 2 shows how the overall government objectives on growth of the economy are realized. The government production control mechanism is outlined on Figure 3 and the government influence on consumption on Figure 4.*

2.2.1 Government Economic Planning Submodel

The GM-P Submodel incorporates three modules. The calculation of major economic goals (GM-P-1) and government targets on consumption (GM-P-2) are executed as stated in general model outline. A linear programming model is applied to fix government targets on food and agriculture (GM-P-3).

GM-P-3 module contains 34 variables and 45 rows, including the objective function describing the maximization of balance of payment of food and agriculture. The whole GM-P-3 model for the first year can be seen in Appendix 2. The model coefficients are updated in each simulated year based on P-3 and P-5 modules as described later on.

2.2.2 Production Block

The Production Block of HAM-1 consists of three major elements. The rest of the economy is modelled (Module P-1) by a Cobb-Douglas type production function as follows:

 $P_n^{(t)} = 290.3 (LAN^{(t)})^{0.3} \cdot (RVN^{(t)})^{0.75}$

4 UPDATING BLOCK GM-P PARAMETERS UPDATING BLOCK P PARAMETERS UPDATING AVAILABLE RESOURCES **UPDATING PARAMETERS** UD-3 UD-2 | UD-1 : ON 4 $\overline{\Delta}$ Δ REVISE POLICY VARIABLES INFLU-ENCING WHOLE SYSTEM CONSUMPTION & TRADE ECONOMIC ANALYSIS OF GOVERNMENT REVISION OF PRICES **CONSUMER DEMAND EXCHANGE MODULE** FINANCIAL RESULT ACCOUNTING Schematic Diagram of the HAM-1 GM-A-2 GM-A-1 GM-A: GT: CT-2 CT-3 CT-1 4 4 4 Δ Government plan on food production and investments GOVERNMENT ECONOMIC PLANNING **REST OF ECONOMY** FOOD PROCESSING Colculation of major economic goals Fixing consumption targets SOCIALIST AGRICULTURE PRODUCTION Ð P-2 P-3 P-1 ä. GM-P-2 GM-P-3 GM-P-1 GM-P: $\overline{\Delta}$ 4 4 UPDATING BLOCK GM-P PARAM-ETERS UPDATING AVAILABLE RESOURCES UPDATING PARAMETERS PREVIOUS PERIOD UD-3 UD-2 UD-1 ö 4 4

FIGURE 1

-6-

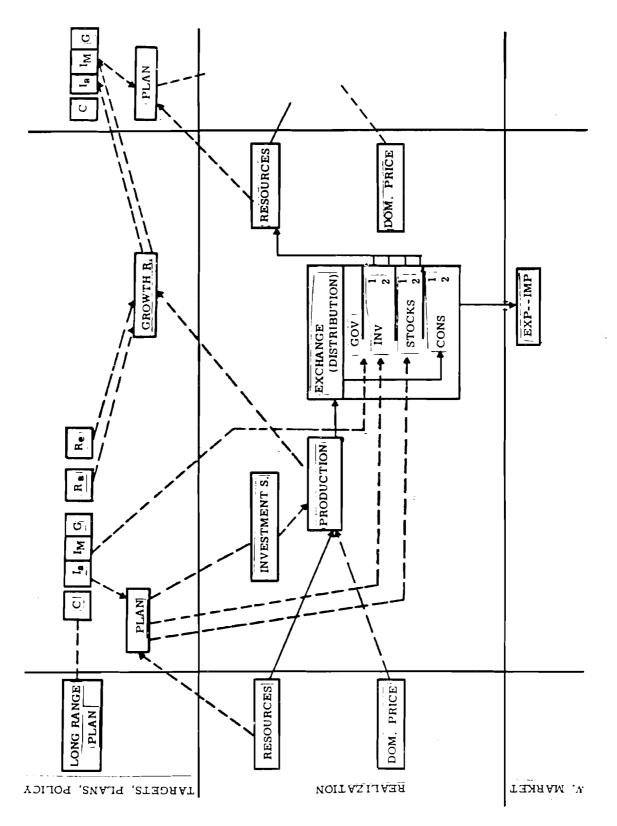
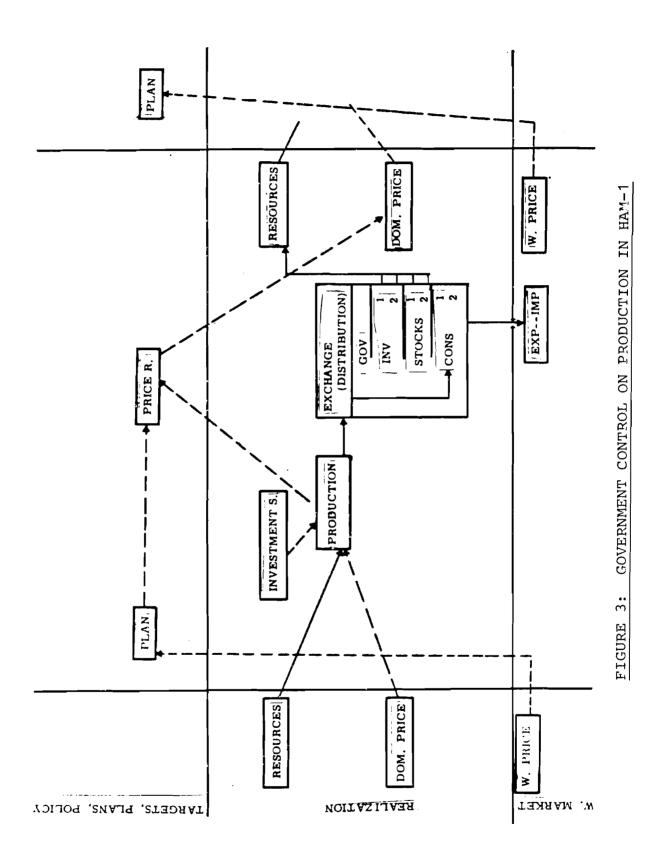
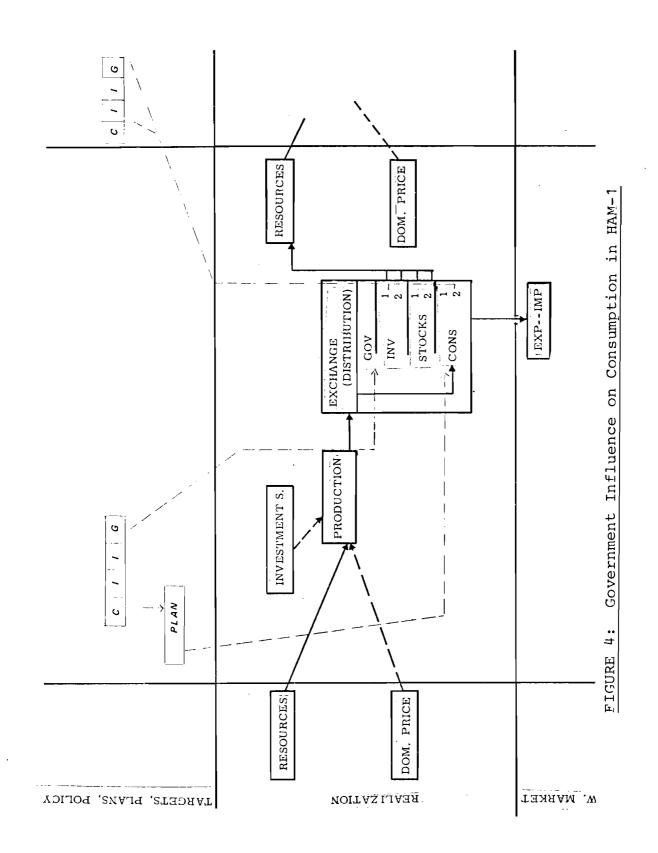
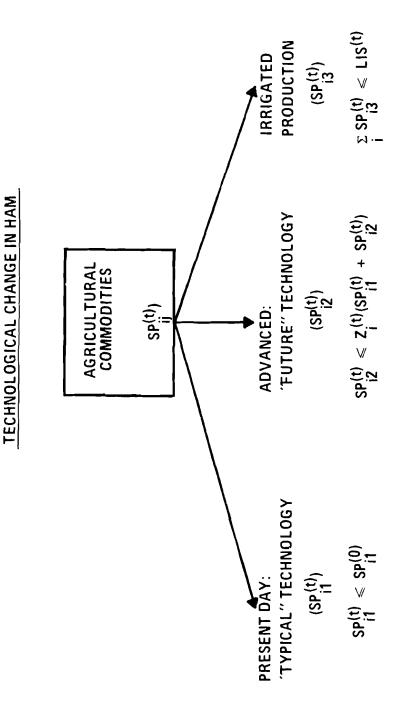





FIGURE 2: Control of the Growth of the Economy in HAM-1

- 7 -

ł

FOOD PROCESSING	PROCESSING FACILITIES	MATERIALS - AGRICULTURAL RAW	– INDUSTRIAL MATERIALS AND SERVICES			
ANIMAL HUSBANDRY	BUILDINGS	 STABLES OTHER BUILDINGS AND EQUIPMENT 	LABOR MATERIALS	- FEEDS - OTHER AGRICULTURAL	- INDUSTRIAL MATERIALS AND SERVICES	
CROP PRODUCTION	LAND	- PLOWLAND - PASTURES AND MEADOWS - IRRIGATED LAND	MACHINERY	 TRACTORS OTHER EQUIPMENT 	BUILDINGS LABOR MATERIALS AND SERVICES	 FERTILIZER PESTICIDES OTHER INDUSTRIAL MATERIALS AND NON-AGRICULTURAL SERVICES MATERIALS OF AGRICULTURAL ORIGIN

PRODUCTION RESOURCES AND INPUTS IN HAM

- 11 -

TABLE 2

where:

P _n (t)	is the production of the rest of the economy in period (t);
LAN ^(t)	is the labor force of the rest of the economy in period (t);
RVN ^(t)	is the available assets of the rest of the economy in period (t).

Agricultural production and food processing are modelled by two separate linear programming models (module P-3 and P-5) determining first the agricultural production. As it was mentioned weather random effects are not considered.

In P-3 module the production of the five agricultural commodities are represented by two or three production technologies (see Figure 3) and a relatively wide range of input factors are considered as is shown in Table 2. The module P-3 contains 22 columns and 31 rows including the objective function (in Appendix 3 the whole model is presented). Obviously the P-3 model parameters are subject to annual updating according to the trends of biological and technical development as well as domestic price changes.

Model P-5 is used to describe the production decision of the food processing industry. The relatively small case linear programming model has 15 columns and 19 rows as can be seen in Appendix 4 and the results are, to a large extent, determined by available raw materials and processing capacities.

As can be seen from the description of P-3 and P-5 modules the investment decisions are included in production decision models in both cases and most of the investments have no time lag.

2.2.3 Consumption and Trade Block

The Consumption and Trade Block of HAM-1 plays a very important role in the operation of the whole system. Some reformation of the original structure of this model block was required during the work on it, but the basic content of this block has not been changed compared to the general model outline. In HAM-1 the private and government consumption and the country's reaction to world market changes are modelled by three modules.

First in module CT-1 those equations are handled which can be solved based on former model elements. Practically simple calculation takes place to determine:

- the income and income utilization of producing enterprises socialist agriculture, food processing, rest of the economy) including the total demands of producing sectors;
- the earnings and committed expenditures, including savings, of the population (private consumers);
- the government income from population and production sector and the committed expenditures of the government.

The savings of the population is calculated based on a savings function determined empirically by S. Meszaros as follows:

$$SAP^{(t)} = (0.0175 + 0.005t) INCPO^{(t)} + 0.007 SAT^{(t-1)}$$

where:

SAP^(t) are the new savings of population in period (t); SAT^(t-1) are the total income of population in period (t); INCOP^(t) are the total savings at the end of period (t-1).

2.2.3.1 Modelling of Consumer's Demands

Module CT-2 is an important part of this model block and the whole model as well, describing the private consumption. The role of Module CT-2 is to determine the per capita consumer demands assuming that the endowment of consumers after deduction of savings is spent for buying various commodities.

The consumer demands toward a specific commodity are influenced by the prices and the level of endowment. In HAM-1 the demand for commodity i is described as follows:

$$CP_{i}^{(t)} = \frac{p_{i}^{(t)} CPE^{(t)}}{p_{i}^{c(t)}}$$

$$\rho_{i}^{(t)} > 0 \text{ and } \sum_{i} \rho_{i}^{(t)} = 1$$

where:

 $CP_{i}^{(t)} = per capita demand for commodity i in period (t);$

CPE^(t) = per capita endowment of consumers in period (t);

 $p_i^{c(t)}$ = consumer price of commodity i in period (t).

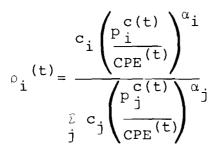
The $\rho_i^{(t)}$ parameters are determined in the model for each simulated year by using C.E.V. Leser's nonlinear demand model.

^{*} C.E.V. Leser: "A method for estimating price and income elasticities from the series and its application to consumers' expenditures in the Netherlands 1949-1959." Statischtischen Studien vom 13 October 1962, des Statischtisches Centralbüros Den Haag.

$$CP_{i}^{(t)} p_{i}^{c(t)} = \frac{c_{i} \left(\frac{p_{i}^{c(t)}}{CPE^{(t)}}\right)^{\alpha_{i}} CPE^{(t)}}{\sum_{j}^{\Sigma} c_{k} \left(\frac{p_{j}^{c(t)}}{CPE^{(t)}}\right)^{\alpha_{j}}}$$

where:

 $\mathbf{c}_{\mathbf{i}},~\boldsymbol{\alpha}_{\mathbf{i}}$ are parameters related to commodity \mathbf{i} and therefore


$$CP_{i}^{(t)} = \frac{c_{i}p_{i}^{c(t)}(\alpha_{i}^{(a_{i}^{(t)}-1)} CPE^{(t)}(1-\alpha_{i}^{(t)})}{\sum_{j} c_{j}p_{j}^{c(t)}(\alpha_{j}^{(t)}CPE^{(t)}-\alpha_{j}^{(t)})}$$

Based on time series of $CP_i^{(t)}$, $p_i^{c(t)}$ and $CPE^{(t)}$ (Appendix 1) the α_i and c_i parameters have been estimated using the least square method on the data showed in Appendix 1. The $\rho_i^{(t)}$ coefficients are calculated in HAM-1 as follows:

Table	No	3
-------	----	---

Parameters	of	demand	system	used	in	HAM-1

Commodity		odity c _i		
1.	Wheat	465,570	0,47800	
2.	Sugar	2,929	0,00535	
3.	Pork	240,550	0,57560	
4.	Processed meat	191,000	0,62140	
5.	Beef	19,463	0,13200	
6.	Nth Product	6,138	-0,24500	

anđ

 $\rho_i^{(t)}$ is expressing the share of commodity i in total consumer expenditures in period (t).

Table No. 3 shows the estimated values of c_i and α_i .

2.2.3.2 Exchange Module

Module CT-3 is a crucial part of the whole model, where the final level of private and government consumption as well as stocks satisfying balance of trade equilibrium conditions are determined. It is very important to underline that the reaction mechanism of domestic demands to new world market conditions (prices) is described here.

After some unsuccessful attempts with linear programming, based on Michiel Keyzer's suggestion, a relatively simple method has been developed to solve module CT-3.

In this module the so-called non-committed demands are determined which can be the subjects of further adjustment. The non-committed demand for a specific commodity consists of various elements; therefore let q_{ih} express the h-th type of demand for commodity i. To reach a solution first we define a target level of the h-th demand of commodity i $(q_{ih}^{(t)})$ and introduce a vector λ which indicates the extent to which the target $(q_{ih}^{(t)})$ is realized. Obviously the realization levels are constrained between two bounds:

 $\lambda * < \lambda < \lambda * *$

Let us assume, that

 p_{i}^{W} = world market price of commodity i;

k = preliminary fixed balance of foreign trade.

The solution of module CT-3 is equal to the determination of such values of vector λ which satisfy:

 $p^{W} Q \lambda = p^{W} y + k$

and

 $\lambda * \leq \lambda \leq \lambda * *$

and

Q is a matrix of non-committed demands.

During the solution procedure a strict preference ordering of various types of demands is followed. In case of changes in the world market prices a new λ vector has to be calculated. If no solution can be obtained the λ^* and λ^{**} vectors have to be adjusted so that a solution can be reached. The calculation of vector λ is easily programmed. It is worthwhile to consider 1 as initial value of λ_i . It is obvious that in case the target is realised, $\lambda_i \equiv 1$ and always $\lambda_i^* < 1$, $\lambda_i^{**} > 1$.

The module CT-3 of HAM-1 is based on this method, but of course the vector λ is related to a relatively large system of equations and constraints and the whole matter is more complicated.

The supply after the deduction of demands related to committed expenditures which cannot be subjects of any further adjustment is given by former model modules. Using the symbols of the general model outline, the y vector related to HAM-1 can be formulated as follows:

> y^(t) = supply after deduction of demand related to committed expenditures.

$$y_{i}^{(t)} = S_{i}^{(t-1)} + SPA_{i}^{(t)} - \sum_{f} \alpha_{fi}^{p(t)} PF_{fi}^{(t)}$$

$$y_{f}^{(t)} = S_{f}^{(t-1)} + PFP_{f}^{(t)}$$

$$y_{n}^{(t)} = S_{n}^{(t-1)} + P_{n}^{(t)} - \alpha_{nn}^{n} {}^{(t)} P_{n}^{(t)} - \Pi(MESI^{(t)} + MEPI^{(t)} + TINS^{(t)} + TINP^{(t)} + TINN^{(t)})$$

where:

$_{i}^{(t)}$	is the output of socialist agriculture from commodity i in period (t);
PF ^(t) fi	is the production of processed food commodity f from commodity i in period (t);
PFPf	is the output of food processing from commodity f in period (t);
P _n (t)	is the production of the rest of the economy in period (t);
α ^{p(t)} fi	is a coefficient expressing the use of the i-th commodity in food processing;
an(t) nn	is a coefficient expressing the use of the products of the rest of the economy within the rest of the economy;
MESI ^(t) , ME	PI ^(t) are the total use of the nth commodity in agriculture and food processing in period (t);
TINS ^(t) , TI	NP ^(t) , TINN ^(t) are the amounts of investments assuming that only the n-th commodity is used in the major producing areas in period (t).

and:

$$\Pi = \frac{1}{\frac{pr(t)}{p_n}}$$

As we mentioned, the endowments of population is calculated in module CT-1. The demands related to non-committed expenditures (q_{ih}) are formulated in matrix <u>Q</u> as follows:

<u>Q</u> =	non-committed	demand
------------	---------------	--------

i (agricultural commodities)	0	s(t) i	0	0	0	0	TC _i (t)
f (processed food commodities)	0	$s_{f}^{(t)}$	0	0	Ο	Ο	TC _f (t)
n (rest of the economy)	s _n (t)	0	NGPE ^(t)	NDGINA ^(t)	∏GINN	TC _n (t)	0

s ^(t) , ,	are stocks in period (t);
$TC_{i}^{(t)}$, $TC_{f}^{(t)}$, $TC_n^{(t)}$ = total consumption of population from the various commodities;
GPE ^(t)	are government public expenditures in period (t);
DGINA ^(t)	are direct government investments in food and agriculture in period (t);
GINN ^(t)	are government investments in the rest of the economy;
p _n pr(t)	is the producer price of the nth commodity in period (t).

The structure of matrix Q expresses the preference ordering of adjustment as it is stated in the model outline, namely:

- adjustment of stocks of nth commodity;
- stock adjustment of agricultural and processed food commodities;
- modification of government public expenditures;
- adjustment of direct government investments in food and agriculture;
- modification of government investments in the rest of the economy;
- adjustment of private consumption of nth product;
- modification of private consumption of food and agricultural commodities

are the order of demand adjustments.

The target values of \underline{Q} matrix elements are as follows:

- in case of stocks the government plan targets calculated in GM-P-3 Module are used as targets in Module CT-3

 $S_{n}^{(t)}'(target) = PS^{(t)}$ $S_{i}^{(t)}'(target) = PS_{i}^{(t)}$ $S_{f}^{(t)}'(target) = PS_{f}^{(t)}$

- the target value of GPE^(t) is calculated in CT-1 Module as:

$$GPE^{(t)'} = ep^{g(t)} GPE^{(t-1)}$$

where:

ep^{g(t)} is the coefficient of the trend of desired increase in public expenditures.

- as the target value of direct government investments in food and agriculture the value of PDGINA^(t) (planned direct government investments in food and agriculture) as determined in Module GM-P-3 is used. The target value of $GINN^{(t)}$ is calculated based on the value of PAFN^(t) (planned capital accumulation of the rest of the economy) determined in Module GM-P-1 and IFEAN^(t) (firm's investment fund in the rest of the economy) in module CT-1 as:

 $GINN^{(t)'} = PAFN^{(t)} - IFEAN^{(t)}$

- as targets on private consumption, the values of $TC_n^{(t)}$, $TC_i^{(t)}$, $TC_f^{(t)}$ related to consumer prices fixed for the given period are used.

 λ^* and λ^{**} express the extent of allowed deviation from target levels. For the various elements of Q different λ^* λ^{**} are given, expressing the government objectives and policies in demand adjustment. Table 4 contains λ^* and λ^{**} vectors of HAM-1. Actually three sets of λ^* and λ^{**} are used in HAM-1 when the extent of possible adjustment is increased continuously going from the first set to the third one. Using the algorithm mentioned above, vector λ is determined and we get the final values of variables included in matrix Q as:

<u>Table 4</u>

 λ * and λ ** used in HAM-1

$\lambda *$ and $\lambda * *$	λ*			λ **			
related to	3	2	1	1	2	3	
s _n (t)	0	0.3	0.5	2	5	10	
$s_{i}^{(t)}$, $s_{f}^{(t)}$	0.4	0.5	0.6	2	3	4	
GPE ^(t)	0.6	0.7	0.8	1.2	1.3	1.5	
DGINA ^(t)	0	0.3	0.5	1.2	1.5	2	
GINN ^(t)	0	0.3	0.5	3	4	5	
$TC_{n}^{(t)}$	0.85	0.9	0.95	1.05	1.15	1.25	
TC _i ^(t) , TC _f	0.95	1.0	1.0	1	1.05	1.05	

$$S_{n}^{(t)} = \lambda_{1} PS_{n}^{(t)}$$

$$S_{i}^{(t)} = \lambda_{2} PS_{n}^{(t)}$$

$$S_{f}^{(t)} = \lambda_{2} PS_{f}^{(t)}$$

$$GPE^{(t)} = \lambda_{3} GPE^{(t)'}$$

$$DGINA^{(t)} = \lambda_{4} PDGINA^{(t)}$$

$$GINN^{(t)} = \lambda_{5} GINN^{(t)'}$$

$$TC_{n}^{(t)} = \lambda_{6} TC_{n}^{(t)'}$$

$$TC_{i}^{(t)} = \lambda_{7} TC_{i}^{(t)'}$$

If λ_{c} and $\lambda_{7} \neq 1$ to satisfy our condition that consumption

is equal to the endowments of population, either consumer prices are adjusted or keeping the original prices the excess endowment is considered as forced savings of the population.

2.2.4 Economic Analysis of Government

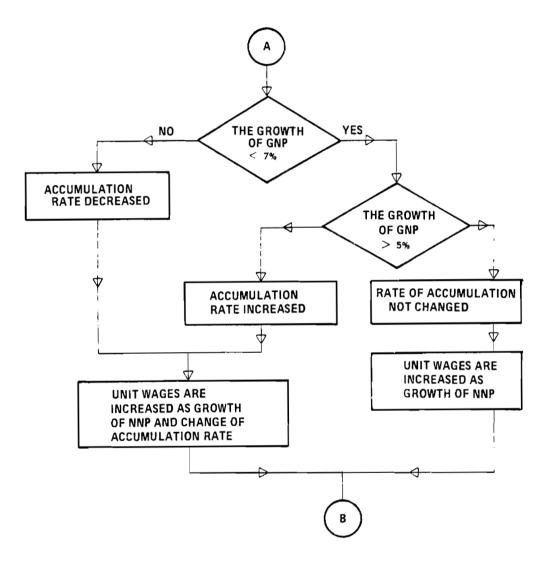
The revision of the government policy instruments in HAM-1 is based fully on procedures outlined in the general model outline. The actual values of government policy instruments are determined in this module. These values have a great impact upon the performance and operation of the whole system.

- First the desired share of investment accumulation in net national product is updated for the next period. The procedure is based on the comparison of the actual growth of gross national product and those exogenous coefficients expressing the bounds of desired growth as it is shown in Figure No. 6.

- The annual increase of unit wages is calculated based on the growth of net national product and the desired share of investment accumulation in net national product as one can see on Figure No. 6.

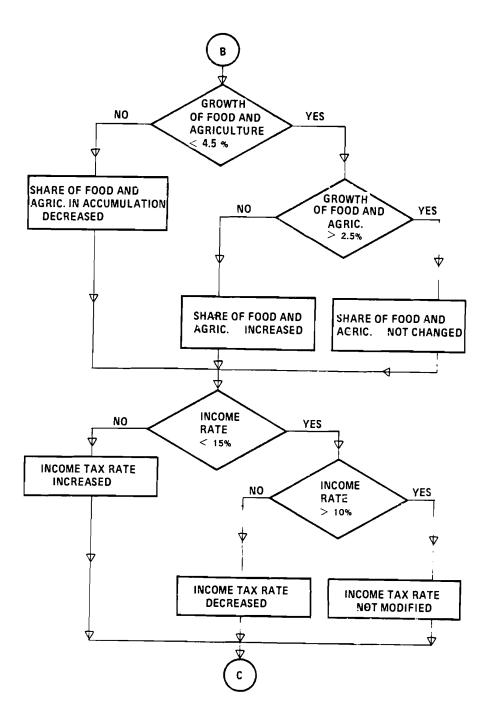
- The desired share of food and agriculture in total investment accumulation is revised based on the actual growth of gross production value of food and agriculture (see Figure No. 7).

- The income tax rates are changed if the actual income rates are above or below certain given bounds as it is shown by Figure No. 7.

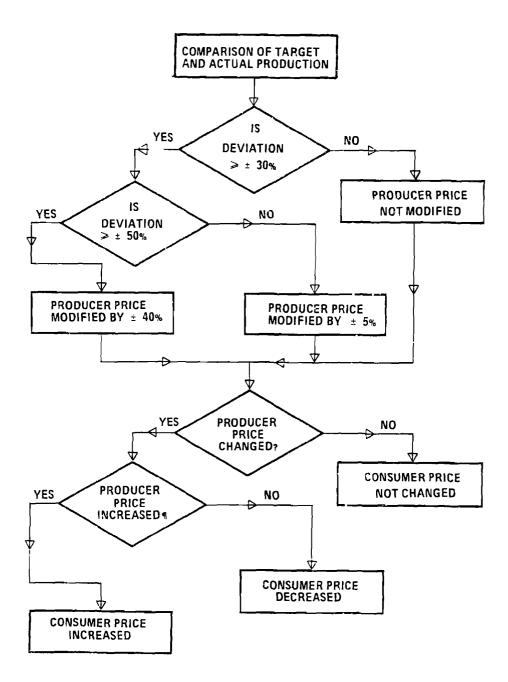

- Finally, the producer and consumer prices are also revised. In HAM-1 this procedure is based on the comparison of target and actual figures of production as Figure No. 8 shows it.

2.2.5 Updating Parameters

The last block of HAM-1 is devoted to the updating of parameters of other model blocks. The demographic changes are given exogenously based on a prognosis elaborated by the Hungarian Central Statistical Bureau. In HAM-1 only plowland is considered and some annual decrease of total land is projected as:


 $LS^{(t)} = 0.9995 \cdot LS^{(t-1)}$

LS^(t) is the total available plowland in period (t).



Revision of the Desired Share of Food and Agriculture in Total Investment and Income Tax Rate

FIGURE 8

Revision of Domestic Prices

T	a	b1	۱e	- 5

Initial Values and Updating of Physical Resources*

	-		
Resource	Unit	Initial (0) value (RS _i RP ⁰) i	Updating
Tractors	1000 head	440	$RS_{1}^{(t)} = 0.86RS_{1}^{(t-1)} + RIS_{1}^{(t-1)}$
Addıtıonal Equipment	1 mill. pieces H.Ft	30000	$RS_2^{(t)} = 0.87RS_2^{(t-1)} + RIS_2^{(t-1)}$
Pig barns	1000 head	9000	$RS_3^{(t)} = 0.95RS_3^{(t-1)} + RIS_3^{(t-1)}$
Cattle barns	1000 head	3000	$RS_{4}^{(t)} = 0.97RS_{4}^{(t-1)} + RIS_{4}^{(t-1)}$
Other fixed as s ets	1 mill. pieces H.Ft	50000	$RS_5^{(t)} = 0.95RS_5^{(t-1)} + RIS_5^{(t-1)}$
Sugar pro- cessing plants	1000 m.t.	3600	$RP_1^{(t)} = 0.95RP_1^{(t-1)} + RIP^{(t-1)}$
Slaughter- ing capa- city	1000 m.t.	2000	$RP_2^{(t)} = 0.95 RP_2^{(t-1)} + RIP_2^{(t-1)}$
Meat pro- cessing plants	1000 m.t.	300	$RP_3^{(t)} = 0.95RP_3^{(t-1)} + RIP_3^{(t-1)}$

In agricultural production the fixed assets are represented by five types. In food processing three basic production resources are considered. Table 5 shows the method of updating and the initial stocks of these resources.

The coefficients of Module GM-P-3 are calculcated based on P-3 and P-5 modules. If only one production technology is considered in food processing, simply the parameters of P-5 are used in GM-P-3 module. In case of agricultural production the GP-P-3 linear programming model parameters are determined based on the previous year P-3 module. Table 6 contains a section

^{*} RIS^(t), RIP^(t) are increase of physical resources by new investmentsⁱ in period (t).

of GM-P-3 model and in Table 7, the related part of the previous year's P-3 module is shown. The GM-P-3 module's parameters are calculated as:

$$e_{42} = \frac{\alpha_{20.2} \operatorname{SP}_{11}^{(t-1)} + \alpha_{20.3} \operatorname{SP}_{12}^{(t-1)} + \alpha_{20.4} \operatorname{SP}_{13}^{(t-1)}}{\gamma_{11} \operatorname{SP}_{11}^{(t-1)} + \gamma_{12} \operatorname{SP}_{12}^{(t-1)} + \gamma_{13} \operatorname{SP}_{13}^{(t-1)}}$$

$$e_{43} = \frac{\alpha_{20.5} \text{ sp}_{21}^{(t-1)} + \alpha_{20.6} \text{ sp}_{22}^{(t-1)}}{\gamma_{21} \text{ sp}_{21}^{(t-1)} + \gamma_{22} \text{ sp}_{22}^{(t-1)}}$$

$$e_{44} = \frac{\alpha_{20.7} \operatorname{SP}_{31}^{(t-1)} + \alpha_{20.8} \operatorname{SP}_{32}^{(t-1)}}{\gamma_{31} \operatorname{SP}_{31}^{(t-1)} + \gamma_{32} \operatorname{SP}_{32}^{(t-1)}}$$

$$e_{52}, e_{53}, e_{54}, e_{65}, e_{76}$$

 e_{82}, e_{83}, e_{84}
 $e_{12.2}, e_{12,3}, e_{12.4}, e_{12.5}, e_{12.6}$
 $e_{14.2}, e_{14.3}, e_{14.4}$
 E_4, E_5
are similarly calculated

1

<u>Table 6</u>

<u>GM-P-3 Module Coefficients Determined Based on P-3</u> <u>Module</u>

Columns	Sugar- beet prod.	Corn Production	Wheat Production	Pig Product.	Cattle Production
	^{PP} 1	PP2	PP3	PP_4	PP ₅
Rows	2	3	4	5	6
4 Tractor	e ₄₂	e ₄₃	e ₄₄	_	
5 Other Equipment	e ₅₂	e ₅₃	e ₅₄		
6 Pig barns				e ₆₅	
7 Cattle barns					e ₇₆
8 Other fixed assets	e ₈₂	e ₈₃	e ₈₄		
12 Labour	e _{12.2}	^e 12.3	e _{12.4}	e _{12.5}	^e 12.6
14 Land	^e 14.2	^e 14.3	e _{14.4}		
30 Corn		1		-E ₄	-E ₅

I							ſ				
	١S	Sugarbeet		ö	Corn	Μh	Wheat	Ρc	Pork	Cattle	le
Columns	$^{\mathrm{SP}}_{11}$	sP ₁₂	sP ₁₃	sP ₂₁	$^{\mathrm{SP}}_{\mathrm{22}}$	$^{\mathrm{SP}_{31}}$	SP ₃₂	^{SP} 41	$^{\mathrm{SP}}_{\mathrm{42}}$	sp ₅₁	SP ₅₂
Rows	2	ε	4	5	ى	7	ω	6	10	11	12
20 Tractors	^α 20.2	^α 20.3	$\alpha_{20.4}$	α _{20,5}	^α 20.6	^α 20.7	^α 20.8	ſ			
21 Other Equipment	$\alpha_{21.2}$	^α 21.3	α _{21.4}	^α 21.5	^α 21.6	α21.7	^α 21.8				
22 Pig barns								0.7	0.55		
23 Cattle barns											1
24 Other fixed assets	α _{24.2}	α24.3	α24.4	^α 24.5	^α 24.6	α _{24.7}	α _{24.8}				
25 Labour	α 25.2	α 25.3	α 25.4	α 25 . 5	α 25.6	α 25.7	α 25.8	a 25,9	α 25.10	α 25.11	α 25.12
28 Corn utilization balance				≺ 21	Υ 22	-		-E(t) -E41	-E ^(t)	- ^E 51	-E52
Yields	γ_{11}	γ ₁₂	γ ₁₃	Υ ₂₁	Y22	γ ₃₁	Υ ₃₂	Ƴ41	Υ ₄₂	Υ ₅₁	Υ ₅₂

P-3 Module's Coefficients Used To calculate Module GM-P-3 Coefficients

Table 7

- 28 -

In the objective function of GM-P-3 module, the balance of payment of food and agriculture is maximized using the previous year's world market prices.

In modelling of agricultural producer's decisions of HAM-1 the following coefficients are updated during the simulated time horizons:

- yields, expressing the trends of biological development;
- fertilizer usage, related to yields;
- feed input coefficients in pork production;
- upper limits of future technologies in production of agricultural commodities;
- prices and unit wages.

Functions used to update yields and fertilizer inputs are shown in Table 8. The unit pork feed input coefficients are calculated as:

- present technology:

$$E_{41}^{(t)} = E_{41}^{(t-1)} - 0.00333 (E_{41}^{(0)} = 0.32)$$

- future technology:

 $E_{42}^{(t)} = E_{42}^{(t-1)} - 0.003 (E_{42}^{(0)} = 0.30)$

The upper limit of future technology $(z_i^{(t)})$ is updated as follows:

z(t) 1	(sugarbeet)	=	$Z_1^{(t-1)} + 0,0375$	$(Z_{1}^{(0)} = 0, 25)$
z <mark>(t)</mark> 2	(corn)	=	$z_2^{(t-1)} + 0,01875$	$(Z_2^{(0)} = 0, 4)$
z(t) 3	(wheat)	=	$z_3^{(t-1)} + 0,01875$	$(Z_3^{(0)} = 0,3)$
z ₄ (t)	(pork)	=	$z_4^{(t-1)} + 0,035$	$(Z_{4}^{(0)} = 0, 3)$
z ₅ (t)	(cattle)	=	$z_5^{(t-1)} + 0,040$	$(Z_5^{(0)} = 0, 2)$

In Module P-5 of HAM-1 from model coefficients (food processing) only prices and the wage rate are updated.

3. COMPUTATION OF HAM-1

The computer program of HAM-1 has been developed in Hungary by the Computer Center of the Hungarian National Planning Bureau under the leadership of Laszlo Zeöld. At present two program versions exist allowing us to execute runs both on IIASA's PDP 11/45 and the Hungarian Planning Bureau's ICL -System 4/70 computers.

	HAM-1*
	i'n
	Functions
Table 8	Response
	Fertilizer
	and
	Yield

Crop	Sym- bol	Yield Function	Initl. Yiełd Mt/ha	Fertilizer Response Function
Sugarbeet - present technol. - future technol. - irrigated prod.	γ11 γ12 γ(t) γ	$\gamma_{11}^{(t)} = \gamma_{11}^{(t-1)} + 0.547$ $\gamma_{12}^{(t)} = \gamma_{12}^{(t-1)} + 0.533$ $\gamma_{12}^{(t)} = \gamma_{12}^{(t-1)} + 0.60$ $\gamma_{13}^{(t)} = \gamma_{13}^{(t-1)} + 0.60$	31.8 42.0 44.0	$\alpha_{41.11}^{(t)} = 0.01365 \frac{(t)}{\gamma_{11}} - 0.01607$ $\alpha_{41.12}^{(t)} = 0.01587 \frac{(t)}{\gamma_{12}} - 0.0635$ $\alpha_{41.13}^{(t)} = 0.01875 \gamma_{13}^{(t)} - 0.205$
orn present technol. future technol.	γ21 γ22	$= \gamma_{21}^{(t-1)} + 0.132$ $= \gamma_{21}^{(t-1)} + 0.152$		$1 = 0.0625^{(t)}_{\gamma_{21}} - 0.08375$ $2 = 0.05782^{(t)}_{\gamma_{22}} - 0.149$
at resent technol uture technol.	31	$= \gamma_{31}^{(t-1)} + 0.0$ $\gamma_{32}^{(t-1)} + 0.0$. 2	

* $\alpha(t) = unit fertilizer input coefficient in period (t), <math>\alpha_{41}$, ij = unit fertilizer input coefficient in period (t),

- 30 -

The computer program of HAM-1 consists of four subprograms:

- LOAD: is used to change model parameters, to determine the length of runs and to start with the program.
- MAIN: executes the solution of GM-P, GM-A, P, and UD Blocks of model.
- <u>CONSUM</u>: is devoted to the solution of Consumption and Trade Block.
- <u>TAB</u>: role is to store selected variables after each simulated year and to prepare the outputs including time series for the whole simulated period.

At the end of computation different types of output can be printed out. The output system of HAM-1 consists of three major elements:

1. Annual Results which serve the analysis of time periods containing very detailed results on each simulated year and on each module of the model including the updated model coefficients.

2. Summary of Results covers time series of the most important indicators making the global analysis of the various runs possible.

3. Plotter Output can be prepared on the most important time series visualizing trends, tendencies projected by HAM-1, and helping in the comparison of various runs.

The Summary of Results is the most useful type of output, and in most cases the information needs on the individual runs can be satisfied based on it. Of course the more detailed analysis or debugging can not be done without the Annual Results. The Summary of Results is structured according to 8 tables, namely:

1. Commodity Coverage: list of commodities

2. General Indicators: general indicators of production, foreign trade, investment, income development on current and fixed prices for the whole simulated period and indexes of the development.

3. Dynamics of Production and Trade: planned and actual production, export or import of individual commodities in physical units.

4. Dynamics of per Capita Consumption: private consumption by commodities in value.

5. Dynamics of Investments: investments in physical units by types of investments and share of the rest of the economy in total investment fund for each year. 6. Dynamics of Prices: producer consumer and world market prices of commodities, producer and consumer price indexes.

7. Resources and Production Structure: main physical resources, production structure in physical units and structure of the gross production value of food and agriculture for each or for the desired - e.g. first and last - simulated years.

One complete set of Summary of Results tables can be seen in Appendix 5. Figure 9 shows the structure of HAM-1's output system.

4. EXPERIMENTS WITH HAM-1

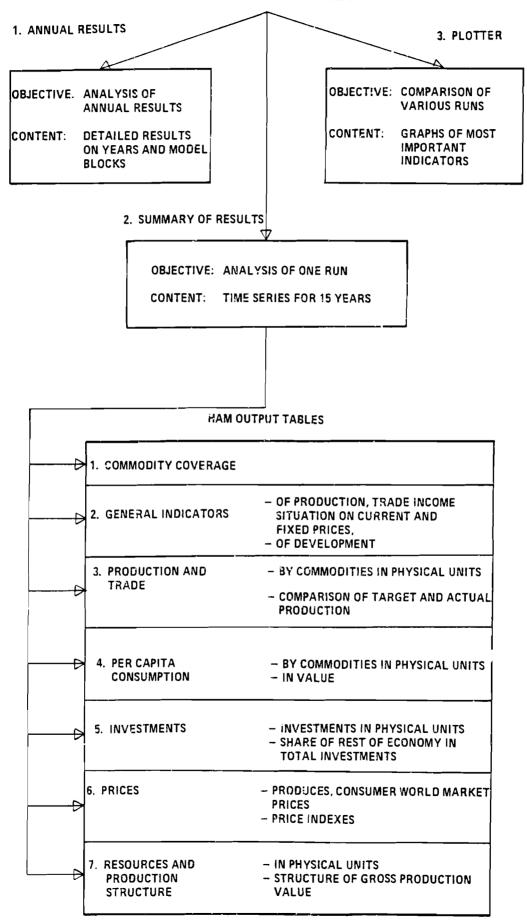
To realize our objectives with HAM-1 as they are stated under point 1, numerous runs of HAM-1 have been executed. These runs represent three types of investigations, namely:

- testing the operation of the whole system, investigation of the model's relation to reality;
- studying the impacts of changes in external conditions;
- investigating how the system reacts on modifications within the model.

The larger number of runs belong to the first type of the above mentioned three points. Some of them served simply debugging purposes. In other cases the sensitivity of the crucial parameters have been investigated. Finally several runs have been required to test our assumptions on various decision making procedures. These runs led us to the so-called basic variant of HAM-1, which can be considered as the most appropriate description of the present Hungarian food and agricultural system obviously on the aggregation level and accepting the methodological framework of HAM-1. The Summary of Results of the basic variant is shown in Appendix 5.

Now we present some of the results of the computation, first of all to realize our third objectives - to prove that the HAM model structure is suitable for providing useful information for decision making and policy analysis. In our analysis the results of twelve independent runs are used and compared. These model variants are as follows:

Basic model variant, as explained above.


1. Variant: we assume a three year price cycle of corn on the world market.

2. Variant: we assume a two year price cycle of corn on the world market.

3. Variant: the world market prices of all food and agricultural commodities of HAM-1 are changing year by year. - 33 -

3

OUTPUT SYSTEM OF HAM-1

4. Variant: changing world market prices of Variant 3 are used also as domestic producer prices using 1 US\$ = 30 H. Ft. exchange rate.

5. Variant: as Variant 4 using 1 US\$ = 60 H. Ft. exchange rate.

9. Variant: 40% of amortization funds of enterprises in food and agriculture and 50% of the same funds from the rest of the economy are centralized by the government.

10. Variant: the initial value of z_i (upper limit of the application of the advanced technology) is increased.

11. Variant: as Variant 10 allowing also a faster full substitution of traditional technologies.

12. Variant: as Basic Variant assuming that domestic prices remain unchanged for the whole covered time horizon.

13. Variant: as Variant 3 assuming that domestic prices remain unchanged for the whole covered time horizon.

14. Variant: instead of 100% only 70% is the required level of self-sufficiency from food and agricultural commodities.

15. Variant: instead of 100% there is no required level of self-sufficiency from food and agricultural commodities.

As one can notice in the case of Variants 1,2,3, the external conditions are modified, on the other hand in Variants 4-15, our assumptions on the system are changed (model structure is modified).

4.1

In Figures 10,11 and 12, the <u>impacts of various government</u> <u>policies and external conditions on the development of the</u> <u>whole Hungarian food and agricultural production are shown as</u> computed by HAM-1. As we can see in Figure 10 where the results of the Basic Variant are compared with the results of Variant 2, the cyclical change of corn world market prices does not influence significantly the basic trend of production growth. However the changes in basic government policies -- modification of producer price system, the desired level of self-sufficiency -have a significant impact on projected production growth. In Figure 11, the Basic Variant is compared with Variants 4 and 14. The decrease of the desired level of self-sufficiency (Variant 14) makes a faster production growth possible allowing a higher level of specialization to the direction of commodities with most favorable production indicators. The use of world market prices as producer prices (Variant 4) slows down the production development, but it will be shown later on this policy is the most efficient from the point of view of the balance of payments.

4.2

The impacts of various government policies on the projected positive balance of payment of food and agriculture and other general performance indicators of the system may also be analysed. Figure 13 shows the balance of payment situation at three model variants - Basic Variant, Variants 4 and 14. It is obvious that Variant 4 is the first from this point of view. But the results also indicates that a basic modification of producer price system -- shift to world market prices -- may cause serious difficulties within the system during the first few years. The same fact is proved by Variant 5, when we were not able to get a feasible solution indicating that a drastic producer price change requires the modifications of other system's elements too. Of course all other performance indicators of the system can be analyzed in a similar way.

4.3

Figure 14 presents the structure of food and agricultural production at the end of modelled planning horizon as computed by various model variants in a comparison with present structure. Obviously the application of different government policies leads us to different production structures and the structure is also influenced by changing external conditions especially by the world market prices. The main conclusion of Figure 14 is that a more specialized structure of food and agriculture is desirable from an economic point of view. With various assumptions a large number of possible structural development can be computed and by using this information there is no doubt that a model like HAM-1 can be a very useful tool in structural decision making.

4.4

The descriptive character of HAM's structure enables the <u>investigation of the efficiency of the whole economic management</u> <u>system as well as the individual instruments</u>. In Figure 15 the example of corn shows how the actual production is related to government plan targets. Figure 16 illustrates very clearly how the world market prices influence the production in the modelled system. There is a two year lag between world market prices and producer's reactions.

4.5

Based on HAM the efficiency of the individual policy instruments of the government may also be analyzed. Variant 4,5 and 12,13 represent such situations where the domestic pricing mechanism is modified. On Figure 11,12 and 13 the impacts of these changes on the overall growth and balance of payment situations are clearly visible.

4.6

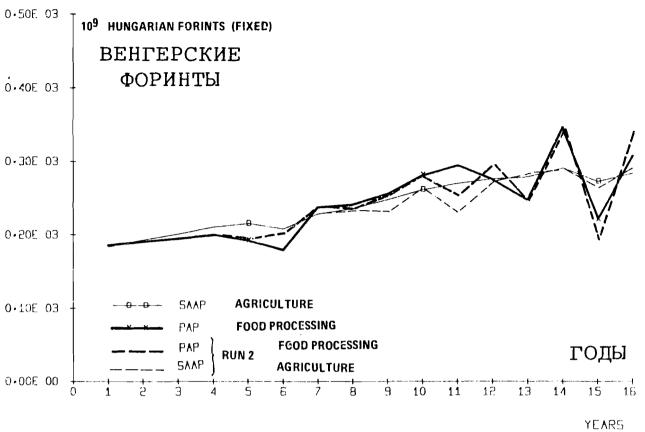
Based on the HAM model structure, a wide range of investigations can be done in connection with the individual commodities. Figure 16 shows the corn production in relation to world market and producer prices computed by Variant 2. We can notice that the adjustment mechanism built into HAM-1 is efficient in the case of two-year price cycles (Variant 2). The domestic production goes up when the international market conditions are the most favorable, and down parallel with world market prices. It is also possible to quantify the extent of price reaction of the individual commodities.

4.7

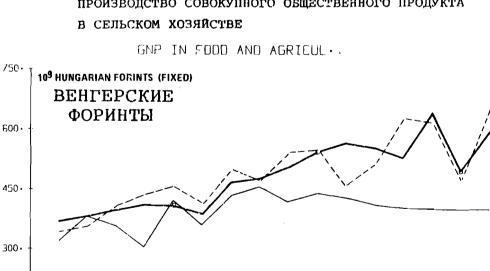
The production module of HAM allows us to carry on various investigations in relation to the technological development of food and agriculture. Variant 12 and 13 represent some examples of these kind of investigations. In Figure 17, the share of advanced technology in total production is shown in the case of sugar beet and corn at the Basic Variant. The investment programs associated with various government policies obviously can also be analyzed.

4.8.

HAM model structure is <u>suitable for various investigations</u> on consumption of population. The aggregated commodity coverage of HAM-1 does not allow us to go into detail in relation to the structure of consumption. However, as Figure 18 shows, the impacts of various government policies on consumption can be analyzed.


4.9.

The interrelation between indirect and drain effects within the system can also be studied. For example in Figures 19 and 20 the wheat and sugarbeet production are shown at basic variant. The sudden increase in year 6 of the wheat production seems to be unexpected, especially because the producer price remained unchanged from year 5 to 6.


- 37 -

РАЗВИТИЕ ПРОИЗВОДСТВА

PRODUCTION DEVELOPEMENT

FIGURE 10

производство совокупного общественного продукта

BASE

VO41

V14

à

Ś

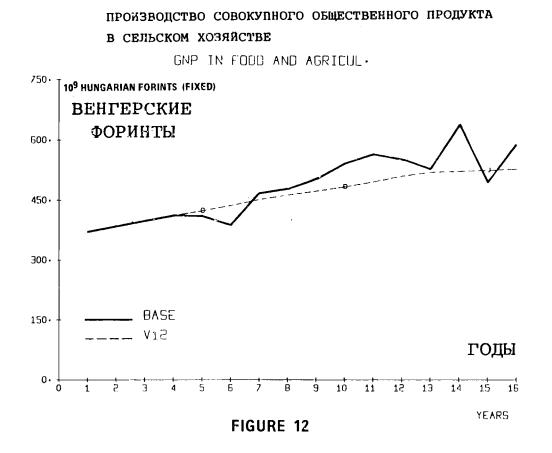
Ġ

ż

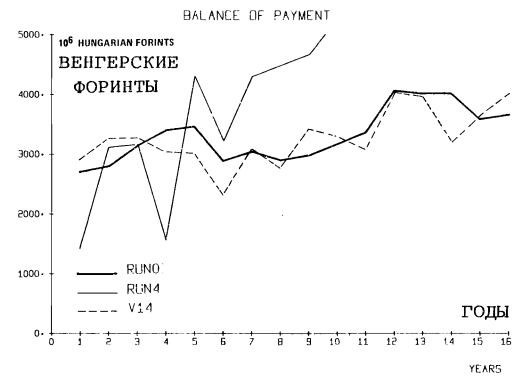
FIGURE 11

ė

ġ 10


3

Ż


150.

0۰ ò

11 12 годы

ПЛАТЕЖНЫЙ БАЛАНС

FIGURE 13

ł

1 = SUGAR BEET 8 = PROC. MEAT5 = CATTLE 3 = WHEAT6 = SUGAR2 = CORN7 ≜ PORK 9 = BEEF4 = PIGSVARIANT 14 2 8 **5** 4 ~ m ഗവ VARIANT 12 ى 2 ഗ 6 4 ~ ω ო VARIANT 6 ഗ 2 4 2 6 œ ى ĉ VARIANT 4 2 m 4 ω 6 ഹ ~ 9 BASIC VARIANT 6 2 ഗ œ 4 2 e ø INITIAL STRUCTURE 2 m ហ œ 4 g 6 ~

STRUCTURE OF FOOD AND AGRICULTURAL PRODUCTION.

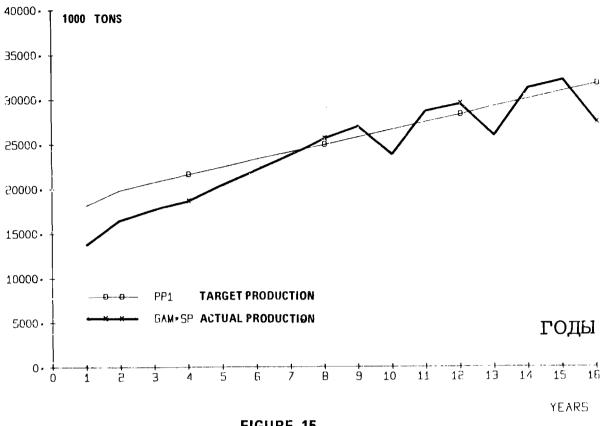
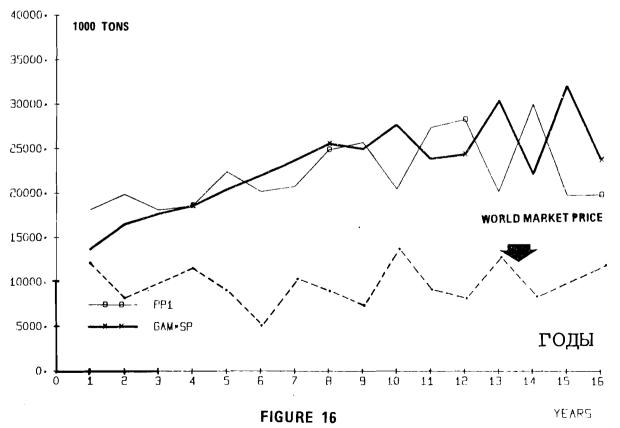
- 39 -

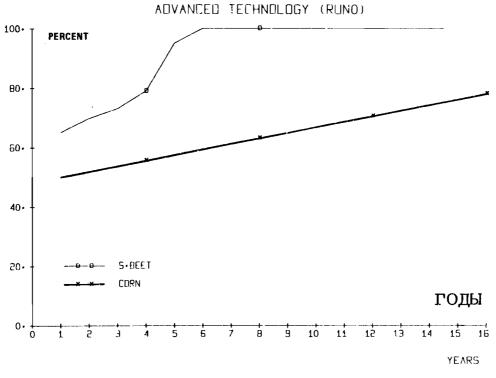
1

FIGURE 14

производство и торговля кукурузой

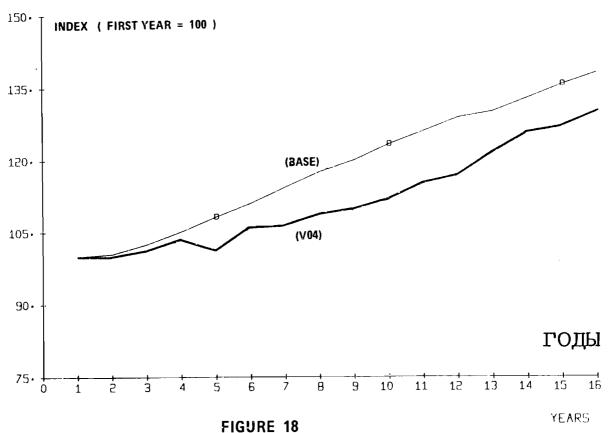
PROD. AND TRADE OF CORN (RUNO)


FIGURE 15

производство и торговля кукурузой

PROD: AND TRADE OF CORN (RUN2)


СОВРЕМЕННАЯ ТЕХНОЛОГИЯ

ДИНАМИКА ПОТРЕБЛЕНИЯ

- 41 -

производство и торговля пшеницей

- 42 -

PROD: AND TRADE OF WHEAT (RUNO)

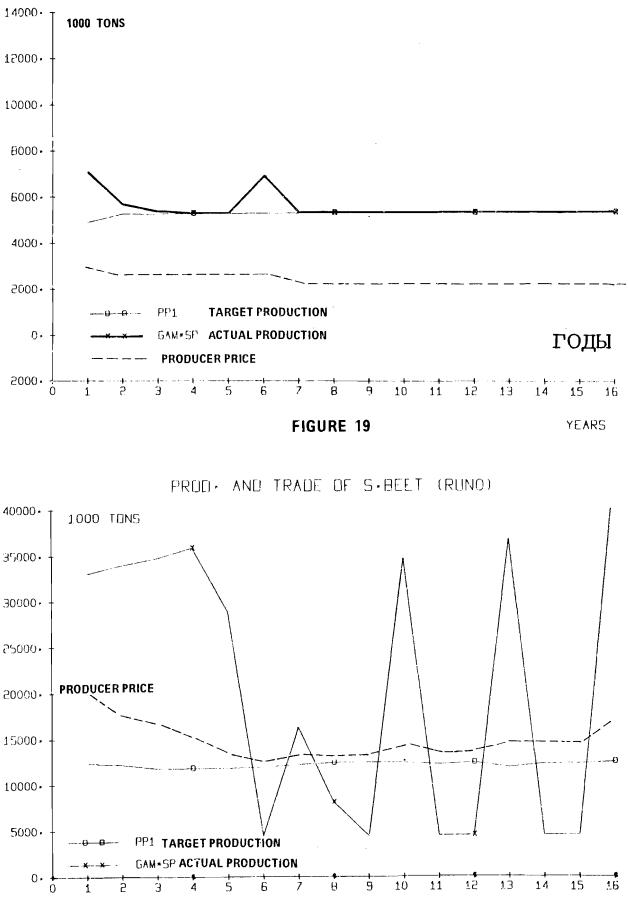


FIGURE 20

YEARS

This event can be explained based on comparisons with the developments in sugarbeet production. The sugarbeet production decreased very sharply from year 5 to 6 and this crop is partly replaced by the more profitable wheat. This increase is not desired by the national plan, therefore producer prices are modified and wheat loses its competitiveness.

5. CONCLUSIONS

On the whole we feel that the development of HAM-1 has been a very useful step in our work towards the final version of HAM. We believe that the results of various runs of HAM-1 are rather promising. They have supported the appropriateness of our approach and prove that the HAM model structure really can contribute to the further development of planning techniques and actual decision making as well. NAM-1 has also led us to several methodological conclusions that are very important for the further refinement of the model. The most important ones are as follow:

- A relatively aggregated commodity coverage as in the case of HAM-1, is also suitable for very valuable investigations, and above a relatively moderate level, the disaggregation does not improve the quantity of information generated by macro-models. Therefore contrary to our original plans, the commodity aggregation of the final version of HAM will follow the commodity list of FAP at IIASA having not more than 10 - 15 additional commodities.

- The GM-A model describing the policy instrument revising activity of the government is the crucial part of the model from the point ov view of further refinement. Further investigations are required to analyse the present practice and especially the pricing mechanism built in the model has to be revised.

- The use of linear programming in three modules has caused less difficulties than we expected. In spite of this fact we will try to substitute the linear programming model of agricultural producer decisions with a more sophisticated nonlinear programming approach. The structure of the remaining L-P's will also be further developed based on the HAM-1.

- More attention has to be given to the dynamic features of agricultural investments. The approach of HAM-1, including these decisions in production models is not fully satisfactory for some of the investments (e.g. development of animal husbandry). The application of a separate multi-stage model for investment decisions seems to be the desired solution.

- The enlargement of the model size requires a well designed data collecting system, but we have to be aware of the fact that because of insufficient information some of the parameters cannot be estimated by statistical methods. In these cases we intend to use the estimations of experts of various Hungarian research institutions.

- The elaboration of further methods of validization for HAM-1 has to be one of our most important tasks in the future.

Based on the above mentioned experiments with HAM-1, a presentation of the results in Hungary in the second half of April, 1978, a model presentation at IIASA and probably also in the Soviet Union, further development of HAM will take place later this year. The final model version (HAM-2) with more disaggregated commodity coverage(about 25 food and agricultural commodities) is expected to be completed by the end of 1978. APPENDIX

Appendix 1

Per Capita Consumption (x_1) and Consumer Prices (p_1^C) of commodities used to estimate the utility function of HAM-1

Year		Wheat			Sugar		l	Beef	
	p ^c , x ₁	×1	P ₁	$\mathbf{p}_{2}^{c}, \mathbf{x}_{2}$	* ₂	P2	p ₃ ^c , x ₃	* 3	P3
1960	1295.46	279.19	4.64	359.94	33.73	10.67	1126.45	42.97	21.61
1961	1341.57	286.66	4,69	384,98	36.05	10.68	1134.68	52.29	21.70
1962	1405.17	299.61	4.69	397.73	37.21	10.69	1126.64	52.60	21.42
19 6 3	1388.56	295.44	4.70	415.11	38.79	10.70	1167.32	54.50	21.42
1964	1399.06	302.17	4.63	427.65	39.93	10.71	1211.65	56.75	21.35
1965	1459.87	307.34	4.75	421.28	39.34	10.71	1193.54	55.92	21.34
1 96 6	1515.45	319.04	4.75	441.77	41.25	10.71	1390.35	47.20	29.45
1967	1540.66	325.03	4.74	466.48	43.56	10.71	1496.59	48.92	30.59
1968	1629.24	342.28	4.76	468.13	47.32	9.79	1512.05	50.31	30.05
1969	1640.38	347.54	4.72	498.98	50.81	9.82	1589.21	53.31	29.81
19 70	1691.92	357.70	4.73	531.68	53.81	9.88	1672.29	56.27	29.72
1971	1786.48	378.49	4.72	566.48	57.22	9.90	1677.63	56.47	29.71
1972	1817.75	384.30	4.73	662.37	60.30	9.99	1683.87	56.45	29.83
1973	1947.03	407.32	4.78	654.96	65.37	10.02	1903.90	62.28	30.57
1974	1967.48	410.65	4.79	681.59	68.09	10.01	1957.73	65.28	29 .99
1975	1976.05	412.54	4.79	743.20	72.37	10.27	2049.93	67.19	30.51

Year		Pork		Pi	rocessed Me	at	Rest	of the econ	omy
	P4, x4	×4	P4	P ₅ ^c , x ₅	×5	рс Р5	^v ^c , x ₆	× ₆	P ₆
1960	885.39	34.07	25.94	£28.32	13.6	46.2	7271.44	7271.44	1000.0
1961	909.32	34.29	26.52	643.90	13.7	47.0	7321.55	7304.75	1002.3
1962	907.22	32.39	28.01	702.26	14.6	48.1	7705.98	7372.07	1004.6
1963	938.29	33.08	28.36	€83.02	14.2	48.1	8140.90	8058.70	1010.2
1964	969.83	34.10	28.44	728.16	14.8	49.2	8733.65	8577.54	1018.2
1 96 5	1012.68	35.40	28.61	775.71	15.3	50.7	8948.92	8729.80	1.025.1
1966	1061.64	29.17	36.40	774.04	14.8	82.3	9668.75	9386.224	1030.1
1967	1096.46	29.28	37.44	824.40	15:2	54.5	10349.41	9975.33	1037.5
1968	1150.72	30.43	37.81	933.90	16.5	56.6	10925. 96	10505.73	1040.0
1 9 69	1177.19	30.94	38.05	941.22	16.2	58.1	11793.02	11244.30	1046.3
1970	1198.48	31.35	38.23	1031.90	17.0	60.7	12994.75	12351,25	1052.1
1971	1241.39	32.52	38,17	1124.01	18.1	62.1	14157.01	12961.9 2	1092.2
1972	1297.66	33.93	38.36	1242.01	20.0	62.1	15176.35	13604.98	1115.5
1973	1320.43	33.83	39.03	1326.64	20.6	64.4	16418.04	13953.80	1176.€
1974	1378.52	35.50	38.83	1449.70	21.8	66.5	17974.95	14834.50	1211.7
1975	1465.39	37.45	39.13	1603.20	24.0	66.8	19558.13	15522.32	1260.0

.

Appendix 2

Linear Programming Model for Fixing Government Targets for Food and Agriculture (GM-P-3) Module.

(A)	List of Columns	Un	it
1.	Right hand side		
2.	Production of sugarbeet	1000	m.t.
3.	Production of corn	1000	m.t.
4.	Production of wheat	1000	m.t.
5.	Pig production	1000	m.t.
6.	Cattle production	1000	m.t.
7.	Sugar production	1000	m.t.
8.	Pork production	1000	m.t.
9.	Processed meat production	1000	m.t.
10.	Beef production	1000	m.t.
11.	Export of corn	1000	m.t.
12.	Export of wheat	1000	m.t.
13.	Export of cattle	1000	m.t.
14.	Export of sugar	1000	m.t.
15.	Export of pork	1000	m.t.
16.	Export of processed meat	1000	m.t.
17.	Export of beef	1000	m.t.
18.	Import of sugar	1000	m.t.
19.	Import of pork	1000	m.t.
20.	Import of beef	1000	m.t.
21.	Closing stock of corn	1000	 m.t.
22.	Closing stock of wheat		m.t.
23.	Closing stock of sugar		m.t.
24.	Closing stock of pork		m.t.
25.	Closing stock of processed meat		m.t.
26.			m.t.
27.	New investment in tractors	1000	pieces
28.	New investment in additional equipment	1000	Hung. Ft.
29.	New investment in pig barns	1000	pieces
30.	New investment in cattle barns	1000	pieces

(Appendix 2 cont.)

31.	New investment in other fixed assets		1000	Hung. Ft.
32.	New investment in sugar plants		1000	Hung. Ft.
33.	New investment in slaughter-houses		1000	Hung. Ft.
34.	New investment in meat processing plants		1000	Hung. Ft.
(B)	List of Rows	Relation	<u>נט ר</u>	nit
1.	Objective function: Max of balance of			
	payment		\$ 10	00
2.	Investment funds of enterprises	<	1000	Hung, Ft.
3.	Total government investment subsidy	<	1000	Hung. Ft.
4.	Available tractors	<	1000	pieces
5.	Available additional agricultural equipment	t <u><</u>	1000	Hung. Ft.
6.	Available pig barns	<	1000	pieces
7.	Available cattle barns	<	1000	pieces
8.	Available other fixed assets	<u><</u>	1000	Hung. Ft.
9.	Available sugar plant capacity	<	1000	m.t.
10.	Available slaughter-house capacity	<	1000	m.t.
11.	Available meat processing plant capacity	<	1000	m.t.
12.	Upper limit of labor use in agriculture	<	1000	heads
13.	Upper limit in labor use of food processing	∃ <u><</u>	1000	heads
14.	Available land	<	1000	hectares
15.	Upper limit of corn export	<u><</u>	1000	m.t.
16.	Upper limit of wheat export	<u><</u>	1000	m.t.
17.	Upper limit of cattle export	<	1000	m.t.
18.	Upper limit of sugar export	<	1000	m.t.
19.	Upper limit of pork export	<	1000	m.t.
20.	Upper limit of processed meat export	< _	1000	m.t.
21.	Upper limit of beef export	<	1000	m.t.
22.	Upper limit of corn stocks	<	1000	m.t.
23.	Upper limit of wheat stocks	<	1000	m.t.
24.	Upper limit of sugar stocks	<	1000	m.t.
25.	Upper limit of pork stocks		1000	m.t.
26.	Upper limit of processed meat stocks	<		m.t.
27.	Upper limit of beef stocks	< _	1000	m.t.
28.	Lower bound of corn stocks	>	1000	m.t
29.	Lower bound of wheat stocks	>	1000	m.t.
30.	Lower bound of sugar stocks	>	1000	m.t.
31.	Lower bound of pork stocks		1000	

(Appendix 2 cont.)

32.	Lower bound of processed meat stocks	<u>></u>	1000 m.t.
33.	Lower bound of beef stocks	<u>></u>	1000 m.t.
34.	Agricultural labor requirements	<u>></u>	1000 head
35.	Labor requirement of food processing	<u>></u>	1000 head
36.	Lower bound of gross national product of		
	food and agriculture	<u>></u>	1000 m.t.
37.	Production utilization balance of sugarbeet	=	1000 m.t.
38.	Production utilization balance of corn	=	1000 m.t.
39.	Production utilization balance of wheat	=	1000 m.t.
40.	Production utilization balance of pig	=	1000 m.t.
41.	Production utilization balance of cattle	=	1000 m.t.
42.	Production utilization balance of sugar	=	1000 m.t.
43.	Production utilization balance of pork	=	1000 m.t.
44.	Production utilization balance of processed	=	1000 m.t.
	meat		
45.	Production utilization balance of beef	=	1000 m.t.

(C) GM-P-3 Model Tables

		u M) a	n	Ð	•	•0	с ,	8	(2	- 1 -	4		16	11	80 ÷	o∽ : ⊶• :	20	5	25	5U -	24	10 10	56	21	6 0 i (2)	6 I N I	6 F F	.	1 L I 1 C	5 1	3 M	19. M	0) 7	- c n P	5	5	6	4 1	4	17 I	4	5	9 7		
11	0,125	56		0	00.	90.	00	0	89	8	000	99	.00	36	00	00	.00	99	90.	00.	80	00	00	00.	.00	.00	. 00	99.	6	8	- 90	88	. 00	00	89	9	999	60.	.00	90	0	8	88	6.0	8	11)
10	0,000	9 6 9 6	20	66	00	.00	90	90	00	89		1 1 1	ର ତ	20	5	.00	000	00	, J0	99	.00	.00	. 90	.00	00	.00	60	90		, 00 1	69	90	99.	0.04	88	• 2 •	8	96	60	96	000	90	0	00	90	10	
6	8,888 8,888	9.0		00	90	00	90	60.	0	30°	8 8 1	• •	20°	8	90	.00	.00	00	60	99	00	.00	90.	90	90	99	600	30	. 00	99.	90	. 90	00.	0,05	88	9 0 9	66	90.	8	.00	0.00	. 78	00.	00	00	6	
£	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90	20	0	90	00.	. 09	99	50	66	8 8 9 8	30.0	90	. 00	99	00	. 90	00	99	00°	90.	60.	90.	00	00.	90.	99	90	000	99	8	00	20	9 9 4	90	8 9 9 9	99.	0	5) 6	90.	90.	.08	00	90.	. 90	Ø	I
•	0000	99	55	02	00	.00	60	66	, 9 G	00	90	2 C -	.00	60	90	00	89	• 8 0	00.	69	90	.00	.00	90	.00	80.	20.	88	30	• 2 2 2	8	90	00	0.03	8.0	0 0 0 0 0 0 0	8	00	90	96	96	69.9	60	.00	80	7	•
٩	N, 029	а. Ч	2 5 5 5	8	00	.θ7	, 00	90	90	99	- 10	8	°0,0	99	° 00	00	80	90	693	99	.00	.00	00	60.	00	.09	98	.00	.00	8	80	69	.16	0000	• 1 8	0 0 0 0	- 8 -	, ИО	00	90	.00	90	90	96.	. 00	ور	,
ۍ.	0 000 0 000	5	• 5 5 5 5 5	00	.89	96	. 00	.09	98	00	90 90	50	10	88.	89	69.	. 00	88	69,0	00.	.00	88.	.00	ч и.	. 80	90	99.	90	600	98	20	00	, 08	0,90	- - -	9 9 9 9 9 9	5 : 7	99	• 00	80.	.00	98	.00	.00	99	ŝ	I
7	0.090	60.	5	6	60.	.00	.17	00.	<u>.</u>	60	6.9	99	۰ 6	96	.00	. 29	.00	.00	.00	.00	.00	9.19	90	.00	°00°	99.	.00	90.	99	99	90	.00	.01	99	6. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	80.	99.	<u>ہ</u>	99	99.	90.	2	. 86	.00	60	4	ı
£		5	9 5 5	• 8 • 6	96	96.	. 16	96	.00	96	2	8	•20	96.	99.	96	90	99	• A 2	90.	96.	96	.04	00.	, A Û	96.	.00	90	• a la	96	• 0 0	90.	Р	96	9.0	: ع	90	96	90.	90.	96.	90	96	30.	00	וא	I
∩	<u>د</u>	20	505		5	20	- 0 -	66	60.	66	9	56.	۶ñ,	۰ در ۱	00	90.	00	9 8	s s	.00	99	90	90.	6.0	96	. 93	90	90	96.	, 9Ч	00	99	, 6 и	96	90	96.	с С	99.	90	690	96.	90	.00	.00	66	<u>م</u>	ŀ
-	0.00	88 88 88 88 88 88 88 88 88 88 88 88 88	2444	000 000	9040 000	3000,00	000.000	600.00	99.946	00.00	87.00	250,00	297,25	00.000	9000.60	100,001	00.00	80,64	00.00	00.00	00°00	0.00	00.00	0.00	0,00	0,00	0.00	0,00	0 . PD	0000	<i>в</i> и.	6,90	.09	00.0	۰ ۶	6 6 6	-10.04	92,00	60	00.0	°2°	03.19	62.19	36,68	00.0		
	- (nu s	n e	r in	÷	*	8	6	19	11	12																							ŝ													

ł

(GMP 3L P)

	•	n a	ŝ		- •	• 0•																27																			
22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	. 60	80	88	00	00	.00	80	9 0 9 0	90	00	.00	90	60	00,	00	90	9 R 9 2	• • •		9	99.	.00	.00	99.	80	00	8	9 9 9	9 6 9 6		96	0.00	60.	.00	.00	.00	99.	60	2
21	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		.00	8	• • •	00	80	00.	000	999		90	.00	.00	.00	60	80,0	90	90	9 6 9 6		50	. 80	690	.90	. 00	00	80	8	88	• • •	90	0.00	.00	.00	.00	00	90	90.	• P 0	2
50	•1.500 0.000	80	00	80	89	00	00	98.	89.	8 9 9		00	.00	.00	00.	.00	.00	99	20	5 6 9 6	5	0	00	00	00	90	00	8	9 9 9	20	9 5 9 5		0	.00	.00	.00	.00	00.	.00	00.	20
19			00	.00		00	88	00	80	50	96	00	80.	.00	. 00	.00	8	• 9 6	9 8 9 8	9 5) 2 2	200	. 98	90	96	60.	90	6 6 7 7 7	20	20	90		00	66	.00	00	• 00	.00	.00	.00	19
18	- 8 - 3 8 8 8 - 8 8 8 8 - 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00	88	69	200	96	00	.00	89	50		00	.00	.00	98	00	50	5	8 8 9 8	9 0 9 0 •		6	99	. 8.6	.00	.00	.00	00	80	s e s e	9 0	80	00	.00	00	.00	.00	. 09	.00	90	18
17	500	200	99	80	99	00	6	. 90	000	20	9 G 9 G	96	. 90	. 68	.00	.00	6	99	9 6 9 7	9 0 9 0 9 0		5	.00	.00	.00	99.	90	00	20	9 9 9	- 9 9 9		00	99	.00	90.	.00	.00	90	. 00	17
16	2.180 9.888 888	20	.00	88	4 0 0	90	00	90.	80,00	56	20	.00	. 00	.00	99	00.	90	99	8 8 8 8 8	96	• 5 5 5		00	90.	00	96.	GD	8	9 5 6	22	202		96	90.	96	.80	.00	8	.00	60	16
15	1,200 0,000 0,000	20 20 20	.08	• •	9 9 9 9 9		50	69.	.00	• 8 6	• •	9	96	.00	90.	• 00		500	9 Q 9 Q	8 8 8	9 8 9 8 •	66	9	00	.90	64.	.00	66	80	• 5 5	8 5 6 •		00	00	99	00.	66.	.00	.00	00	15
14	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22	. 90		5 2	90	96	99.	9 9	8 8 8	5 5 5 5	00	60	90	.00	9 6 9		9 5 15 1		9 0 9 0	•	2 2	90	96	9.9	• G D	90.	8	9 6 9	5 5 6	20		00	96	.00	. 96	96.	.00	.00	• 90	14
13	363	20	90	5.0	5 5 5 5		6.0	.00	.96	. 90	20		00	99	99.	. 99	. 90	8.0	5 2	20		90	00	. 90	9.0	.00	.00	50	S (s e	9 8 9 8	2	30	38	99	.00	.00	90	• РИ	• ан	13
12	0 130 0 700	2 2	99	5			5	. 99	.00	20	56		00	99	.00	90.	. 00	.00	5 0 9 0	5.0	20	5.0	6	00	99.	.99	99	6		88	5 0 9 0	90	90	90	90	66	90.	90.	60	.00	12
	~ ~ P	1 4	ŝ	۹ <u>م</u>	~ @	ō	10	11	2 :	1	t u	9	17	18	19	59	21	22		1 U 0	, 4 1	27	28	29	30	31	25	••••••••••••••••••••••••••••••••••••••	5 T	55 25	6 C C C C C C C C C C C C C C C C C C C	38	39	40	4 1	42	43	44	45	46	

しょうしょうい

	- 1		4	ŝ	¢	~ '	00				V M																																				
34	696	60.00	00.0	96	.00	00.	• 8 9	90	ם פ פ פ	9 1 9 1	96	8	8		8	8	9	90	60	.00	66	00	00.	00.	60'	00	90	50°	6	00 00	2) 5	್	୍ଷ୍ମ	0° 69	305	.00	600	99,	.00	99	.00	80.	.00	00	00		4
33	800 800 800		00	.00	.00	00	90	00.0	50	פי פי	9.0	• •	5	6 6	8	96	99	8	60.	00	.00	60	66	90.	90	90.	00°	00°	00	°,	° 9	° 00	64 63	90	60°	99	00	.00	. 99	69	00.	00	99	00	00		
32	0,000	- 6	00	.00	.00	666	00°0	9 0 9 0	200	9 8 5 8	200	9 9 9	200	8 9 9	200	96	9 9 9	0	000	00	.00	60	90	00.	99,	. 00	_و 90	. 60	с, С,	ຍ. ອີ	985	ප. ි ;	్రా సి	070	0 6 8	9 9 9	. 00	.00	90.	00	60	.00	98	66	00	c 1	36
31	0,000	10	00	.00	.00	0,00	90°	00.	5,0	50	20	9 9 9	9 9 9	3	90,	8	50	90	90%	, 00	80	.00	,00	. 9.9	00.	90	÷ 00	5	, 0 N	0 0 2	90 2 °	9 9 9 9	9 G *	6) 6) 7	000	90°*	000	00°	°.30	. 00	°00°	66	.00	.00	90	12	10
30	O a	90	90.00	.00	.00	00	, 00 0	00	9 9 9	, 2 9 9	ຶ່	50	9 . 9 .	8	9	50	600	8	.00	00	.00	00	. 81	.00	ធុខ	503	ຕ ເອ	°0°*	965	00	90 90	80 20 20 20 20 20 20 20 20 20 20 20 20 20	583	0	600	e G	63	50	96°	66.	80°	00	99.	00	.00	02	90
53	56	+ 40 - 40 - 40	90	.00	.00	88.	. 00	99	90,	22	ຸ ອີເ	20	• • •	• • •	9 9 9	99.	8	60.	. 00	. 00	.00	.00	383	96.	69.	58.	63	300	, ec	300	89°	ଞ୍ଚ	33°	្លួន	98,	00.	68,	53.	69.9	00.	.90	99	.00	. 88	• 00		r V
5 S	000000	9.6	00	.00	.04	90	89	.00	• 8 9	200	5 0 5 0	5	8 8 8	30	• 0 0	.00	. 00	9 Q	8	50	. 80	° 0 0	.00	60	88.	98°	66	50.0	50	5 G	993	603	50	83°	° 6.0	. ପ୍ର	ะ ตม	99,	63,	00°	. 80	90.	. 00	99	99	ac	U V
27	€.•	- 6 9	99	0.00	.00	99. 99.	8	90	90°	9 0 9 0		9 0 9 0	2	9 9 9	8.0	90	9 : 9 :	9 0 9 0	00	90.	98.	96	99	90.	. 00	699.	99.	98*	99.	ຍ: ເລື	ිසී	80°*	80.	0 9 9	38°	ය හ	. 69	. ମନ	99	00.	.00	00	99.	.00	.00.		51
2 t	56	5 5	00	90	90	.00	88.	90	89	9 8 9	8 9 8	9 0 9 0	8	99.		8	96	90	.00	.00	. 90	.00	.00	.00	60	.00	663	6.0	30	ି ହେ ତ	03°	69.4	90.	69.	30.0	62.	GØ	. 62	.00	. 99	69.	69.	. 80	60.	99		0 V
55	5	• • •		96	99	S.	• • •	. a 2	90°	, 201	5.0		6	2	2	9	• 5 6	• 0 0	90.	.96	96.	96.	98.	99.	.00	96.	, <u>п</u>	6.0	36.	66	្លួម្ន	ូម	98.	<u>в</u> В	050°	. 0.0	99,0	36.	00.	90.	.08	26.	9 Ю.	90.	96	30	2
5	50	5.6	20	.99	. 90	.00	• 90	99.	69	96	٠	5	• 8	80	• 90 90	90.	9	90	. 90	. 90	۶.	00	90	99	99.	99	66	ູ ຕ ຍ ເ	ς Ένθ	5 660 0	88.	96	, 0.G	ନ ତ ନ	0U°	, 00	, 9 Ю		90	.09	90	90	•	.00	90		t t
23	50	•	5 G 5 S	00	0.0	99.	96.	90.	99	99.	е. С	s	5	90,	.09	69	60.	90.	69.	ы .	90.	90.	66.	.00	99.	69.	99	66	ູ ເອີ	9.9	5	60	ູ ເຊິ	ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ()	. 00	90	699	.00	00.	.00	.00	60	۵,	90.	00	1 0	S
		N 4) - 3	ŝ	¢	~ `	ac) i	7	5			•	4	ግ - -	• I	- 1	8	1 9	5.0	21	22	23	24	25	56	27	2 B	2 9	S M	21	201	33	34	35	36	37	5.8	39	5	41	42	4 3	44	45	46		

37-IK SNR JOABULDALA NEGATIV -10,00000 EGYENLOSEG TIPUSU SOR, →1.0 -VEL VEGIGSZOROZVA

.

-52-

Appendix 3

Linear Programming Model for Determining Agricultural Production (P-3) Module.

(A) List of Columns

Units

1.	Right hand side		
2.	Sugarbeet production, traditional technology	1000	hectares
3.	Sugarbeet production, advanced technology	1000	hectares
4.	Sugarbeet production, irrigated technology	1000	hectares
5.	Corn production, traditional technology	1000	hectares
6.	Corn production, advanced technology	1000	hectares
7.	Wheat production, traditional technology	1000	hectares
8.	Wheat production, advanced technology	1000	hectares
9.	Pig production, traditional technology	1000	heads
10.	Pig production, advanced technology	1000	heads
11.	Cattle production, traditional technology	1000	heads
12.	Cattle production, advanced technology	1000	heads
13.	New investment in tractors using government subsidies	1000	pieces
14.	New investment in other equipment using govern- ment subsidies	1000	Hung. Ft.
15.	New investment in pig barns using government subsidies	1000	heads
16.	New investment in cattle barns using govern- ment subsidies	1000	heads
17.	New investment in other fixed assets using government subsidies	1000	Hung. Ft.
18.	New investment in tractors only by enterprise's own resources	1000	pieces
19.	New investment in other equipment by enter- prise's own resources	1000	Hung. Ft.
20.	New investment in pig barns by enterprise's Own resources	1000	head
21.	New investment in cattle barns by enterprise's own resources	1000	head
22.	New investment in other fixed assets by enterprise's own resources	1000	Hung. Ft.

-

(Appendix 3 cont.)

<u>(B)</u>	List of Rows R	elation	Unit
1.	Objective function: enterprise's net income	max	1000 Hung. Ft.
2.	Irrigated land	<	1000 hectares
3.	Plowland	<	1000 hectares
4.	Upper limit of sugarbeet production	<	1000 hectares
5.	Upper limit of corn production	<u><</u>	1000 hectares
6.	Upper limit of wheat production	<	1000 hectares
7.	Upper limit for sugarbeet, traditiona technology	.1 <u><</u>	1000 hectares
8.	Upper limit for corn, traditional technology	<	1000 hectares
9.	Upper limit for wheat, traditional technology	<	1000 hectares
10.	Upper limit for pigs, traditional technology	<	1000 heads
11.	Upper limit for cattle, traditional technology	<	1000 heads
12.	Upper limit for sugarbeet, advanced technology	<	1000 hectares
13.	Upper limit for corn,advanced technol	.ogy <u><</u>	1000 hectares
14.	Upper limit for wheat, advanced tech-		1000 hectares
15.	nology	< <u>-</u> .0gv <	1000 heads
16.	Upper limit for pigs, advanced technol Upper limit for cattle, advanced	.ogy <u><</u>	Tooo neads
10.	Upper limit for cattle, advanced technology	<	1000 heads
17.	Use of enterprise's investment funds	<	1000 Hung. Ft.
18.	Use of government subsidies for invest in farm machinery	ment <	1000 Hung. Ft.
19.	Use of government subsidies for invest in animal husbandry		1000 Hung. Ft.
20.	Tractor utilization	<u> </u>	1000 pieces
21.	Other equipment utilization	<	1000 pieces
22.	Pig barn utilization	<u><</u>	1000 head
23.	Cattle barn utilization	<u><</u>	1000 head
24.	Other fixed asset utilization	<u><</u>	1000 Hung. Ft.
25.	Upper limit of labor use	<u><</u>	1000 heads
26.	Total labor requirements	=======================================	1000 heads
27.	Sugarbeet utilization balance	=	1000 m.t.

ł

(Appendix 3 cont.)

28.	Corn utilization balance	=	1000 m.t.
29.	Wheat utilization balance	=	1000 m.t.
30.	Pig utilization balance	=	1000 m.t.
31.	Cattle utilization balance	=	1000 m.t.

(C) P-3 Model Tables

	N	m	4	ŝ	¢	-	ø	σ	0	11	2	51	t 4	5	91	17	18	6	20	21	22	5	54	22 22	26	27	28	29	30	31	25	
10	1,0652 0.0000	000	000	.000	000	000	.000	000	000	.000	000.	000	.000	.700	.000	000.	000.	.000	000.	000.	.550	020	8 92	.008	.008	.000	.447	.080	,155	.009	.000	10
œ	0,6863 0,0000	000	.000	.000	.000	.000	000	000.	600.	.000	. 900	.000	.000	.300	000.	.000	999.	.000	.009	.000	.700	.000	.806	• 0 i 2	.012	000	496	.000	.140	000	.000	6
đ	1,8554 0,0300	000	.000	000	000.	.000	000	000.	000.	600°	.009	.000	.500	.000	.000	.000	.000	.000	.068	.665	.000	.000	.889	.048	.048	.000	000	.037	000.	000	000	Ð
4	0,9470 0,0300	000	. 000	000	.000	000	.000	000.	000.	.000	000.	.000	.500	999.	.000	000	900.	.000	p 34	.112	.000	.000	.393	.060	.060	.000	.000	.123	.000	.000	.000	1
Ð	1,7575 0,0000	000	.000	000	000.	000	000	000	.000	000	000	.500	.000	.000	,000	000	940.	.000	996.	.096	.000	999.	.086	.040	.040	.000	.652	.000	.000	.000	.000	÷
'n	8,6627 8,9999	000	000	040	000	.000	.000	. 600	.000	. 900	900.	.500	.000	,000	000.	.000	.000	900.	.043	.725	.000	.000	.272	.056	• 856	.000	.632	.000	.022	. 900	.000	ŝ
4	6 2 0 0	000	000	000	000	000	000	000	000	000	.000	.000	. 000	.000	.000	.000	.000	000.	.135	.107	.000	000.	419	.200	200	.690	.000	. 060	. 000	.000	.000	Ŧ
~	13,9625 . adag	000	0.00	000	000				6		750	.0	•	.000	.000	00.	•	.00	-	.64	96	.000		-	.180	533	96		0.0000	.00	.000	~
Q	10,4695 0,0000		000	0.010	•				•	•	.250	. 400	•	000	.0			60.	9	870	•	0.0000	۲.	ñ	220	1	5	•		000	00	2
1	8 8 8 8 8 8 8	5 0	824.587	497.2	3.212	625.000	500.000	0.000	700.000	400 000	0 0 0 0	6	.00	000	000	000	000	90	000	000	9	3000,0000	0.00	87.0		680	0.000	2.00	603 560	69.676	0.00	
	1	u 🛩		ا ت ا	4	•	8	0	19	11	21	13	14	5	16	17	18			-	22		7									

-56-

にってい

	-	N	F7	đ	ŝ	•	1	Ð	o	10	11	12	13	5 1	5	16	17	18		20			5	5 7	5	2 9	27	2 8 2	5	30	Ĩ	32	
17	-		0,0000	.000.	000	.000	0,0000	.000		0,0000	0,0000	00000	0,00,00	00000	00000 0	.000	900.	.100	000	00000	.000	000	000	-1.0000	000.	.000	000	00000	000	000	0000	00000	17
16	-9,8001	0,0000	0,66666	0,0000	0.0000	0,0000	0.0000	0,0000					0,0000	0,0000	0.0044	0.0490	18,0000	0,0000	12,0000	0,0000	0,0000	0.0000	-1.9000	0.0000	0°0000	99999,9	0,0000	99999.9	0,0000	0.0006	₩0,2970	0,0000	16
15	-0,0001	0,0000	0,4900	00000		0,00,00	0000		00000			0,0000	0,0000	0,0000	0.0000	•	-	•		_	0.000	-1.0009	•	0,0000	•	0,0000	6,00,0	0.2000	0,0000	-8.930	000.		15
14	-0,0001	00000	0,000	0,0000		น ๓๓๓๗	в , реор	n_0000		0.0000	0,0000	0,0000		0,0000	0°000	0.0440	·~•	•	0 ,0000		-1,9000	0,0040	0,000	0,0000	0,0000	0,0000	6 ,0000	0,00,00	0,0000	9,000,0	0,0000		1 4
13	.0,0401	6000	0,0000	0,0000		6 0000	60000	0,0400	0.0000	0,0000	0 0000		0,0000	0000 A		0,0000					0,0000	0,0000		0,0000	0,000	0,0000	•	0,0000		00000	0,0000		51
12	1,0161	0,0000	0.0000	0 0000			ค ิดผูลด	ดืดอดด	<u>в</u> яави	ดุ้ลหตุด	ด้ผุดเม				ต ตหคห	ดิลตตด	0 0000		в , воин	0.0000				3,7212	0.0480	0480	0.0400	-2.6000	0.0000	0,0000	0.5480	ଜେଉନ	12
11	•	0.0000	0.4490	0,000	ด้ตดดด		0.0000	0.6909	0.0000	0,000	•	L, B	0,0000	. •	0.000	-0.2000	ด้อดคล	0.000	0.0000	ต ัดคผด	0.0000				0,0960	0,0960	L, B	-2.6000	0,0000	0.0000	0.5310	S	11
	-4	ð	•••	4	ۍ ۲	و	*	40	•	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	

	35		5					52											10	13	21	11	19	•	30	-4	æ	ال	4		N	-
•	5 9	99	99	90	99	90	96	_	90	90	99	90	90	20	90		2	5	0,0000	20	2	2	20	20	90	999	999	000	5	909	999	000
	5		•	U000 0	•	•	•		0	0000		•		0	5		5	5	0000 N		5	•	•	5	5	2	•	2	•		2	-0.0001
		. 909	200	99	000	090	.000	999	.000	.000	.040	.000	.000	000	909	420	909	000		. 909	000	999	. 909	. 909	000	.000	000	000		999	999	S
	000	162	000	.000	000	000	980	0000	909	.000	.000	.000	999	0.00	000	000	000		5	909.	900	000	000	000	000	000	00	99	5	90	. 499	
•	000	900	.008	.000	.000	.000	000	000	000	.000	.040	.000	000	000	000	.000	000	.000	0,0000	.000	000	000	000	.000	000	000	000	.000	00000	080	.000	-9.0491

L

.

Appendix 4

Linear Programming Model for Determining Food Processing (P-5) Module.

(A) List of Columns

1.	Right hand side	
2.	Sugar production	1000 m.t.
3.	Processed meat production	1000 m.t.
4.	Beef production	1000 m.t.
5.	New investment in sugar plant using govern- ment subsidies	1000 m.t.
6.	New investment in slaughter-houses using government subsidies	1000 m.t.
7.	Pork production	1000 m.t.
8.	New investment in meat processing plants using government subsidies	1000 m.t.
9.	Pork output	1000 m.t.
10.	Production value of food processing	1000 Hung. Ft.
11.	General production expenses of food processing	1000 Hung. Ft.
12.	Labor use in food processing	1000 heads
13.	New investment in sugar plant by enterprise's own resources	1000 m.t.
14.	New investment in slaughter-houses by enterprise's own resources	1000 m.t.
15.	New investment in meat processing plants by enterprise's own resources	1000 m.t.
<u>(B)</u>	List of Rows Relation	Unit
1.	Objective function: maximum of net income of enterprises	1000 Hung. Ft.
2.	Sugarbeet utilization <	1000 m.t.
3.	Cattle utilization <	1000 m.t.
4.	Labor utilization <	1000 head
5.	Sugar plant capacity <	1000 m.t.
6.	Slaughter-house capacity <	1000 m.t.
7.	Enterprise's investment funds utilization <u><</u>	1000 m.t.
_		

8. Available government subsidy for investment in sugar plants (Appendix 4 cont.)

9. 10.	Available government subsidy for investment in meat industry Meat processing capacity	<u><</u> <	1000 Hung. Ft. 1000 m.t.
11. 12. 13. 14.	Lower bound of sugar production Lower bound of pork production Lower bound of processed meat production Lower bound of beef production	<u>> > > > > </u>	1000 m.t. 1000 m.t. 1000 m.t. 1000 m.t.
 15.	Pig utilization balance	=======================================	1000 m.t.
 15. 16.	Pig utilization balance Pork utilization balance	 =	1000 m.t. 1000 m.t.
16.	Pork utilization balance	=	1000 m.t.
16. 17.	Pork utilization balance Determination of gross production Determination of general management and	=	1000 m.t. 1000 m.t.

-

4

	-	N	m	đ	٩U	4	1	60	σ	10	11	12	13	14	15	16	17	18	19	
12	46	-		-	_	-	-	-	-	-	-			00000	-	000 0	99	000	.00	12
11	•	•	•	•	-	•	•	-	•	•	-	-	•	•	•	0000	-		•	11
10	-	-	-		•		-	-	•	•	•		•			0,000	•	-	•	10
6	0,940	0,900	000.0	0.000	0,000	0,000	0,000	0.000	0,000	0,000	0,000	1,000	0,040	0.600	0,000	-1.000	0,000	0.000	0000	¢
æ	-0.000	000 0	0000	0.000	000.4	0.000	100.000	0000	60.000	-1,000	00000	0.000	0,000	0.000	0.000	0,000	0,000	•	66	60
۲	7.600	-	999.9	-	•	-	-	•	-	-	-	•	•	0,000		1,000	-	.00	•	~
Ð	-0.000	0,000	0000	0,000	0,000	-1.000	0.820	0,000	1.640	000	0,000	000	0, 1:08	0,000	0.000	0,000	-		•	Q
υ	600.0-	0,000	0,000	8 000	-1,000	0.000	0.700	1,050	0,040	999.6	0,040	0,000	0,000	•	-	0.368	•	•	•	ŝ
ব	1.318	0.000	•	0,000	•	1.000		•	0.000				000° 1	1,000	0.000	0,000	60.000	900.6	0,045	4
£	2.200	0000	0.00	0,000	0.000	9.900	0.940	9.909	0.940	1.000	0.900	0.000	1.000	0.000	0.000		142.000	6	0,052	m
N	5.770		0.000				0.000	0.000	0,000	• •	• •		0,000	0 000	0.000		14.000	0,009	0.034	N
-	0,000	33046.141	1603.200	250.000	3600.000	2940.000	5000.000	0 000	0.000	309.000	526.200	305,196	305.196	736.680	1795.929	0.000	6.600	000	0.000	-

1

000	0,0000	.000	.000	.000	000	000	000.	000	.000	000°	000	000	.000	. 000	.000	.000	900	UND.
6	.000	000	000	000	000	469	0.000 B	600	.000	000.	.000	.000	.000	000	600.	000	000.	000.
ŝ	0.00	999	000	699	000	.750	8	9999	000	000	000	.000	. 000	000	000	.000	000	. 990

-61-

Appendix 5

HUNGARIAN AGRICULTURAL MODEL

SUMMARY OF RESULTS

HAM	**
0	İ
VERSION	
FIRST	
THE	
1 0	1
COVERAGE	
COMMONITY	

CONTENT
PRODUCT*S
NAME
PRODUCT'S
NUMBER

-	SUGAR REET	SUGAR BEET AND OTHER CROP PRODUCTS TO BE PROCESSED
2	CORN	COARSE GRAINS AND OTHER FEED PRODUCTS
m	NHE AT	FOOD GRAINS AND DTHER DIRECTLY CONSUMED CROP PRODUCTS
4	PIG	P16
ŝ	CATTLE	CATTLE AND OTHER LIVESTOCK PRODUCTS
9	SUGAR	SUGAR AND OTHER PROCEBSED CROP PRODUCTS
~	PORK	PORK MEAT
æ	PROCESSED MEAT	PROCESSED MEATS
6	BEEF	BEEF AND OTHER MEATS

PRODUCT OF THE REST OF THE ECONOMY

N-TH PRODUCT

	9				GENERAL INDICATORS	DICATORS	* *					
	GROSS	NATIONA	GROSS NATIONAL PRODUCT		GROSS PRODI	PRODUCTION VALUE	0F	AGRICULTURE	GROSS PROD	DUCTION VI	PRODUCTION VALUE OF FOOD	O PROC.
	CURRENT PRICE.	RICES	FIXED PRICES	RICES	CURRENT P	PRICES	FIXED P	PRICES	CURRENT PR	PRICES	FIXED PI	PRICES
YEAR	MILL.FT.	ж	MILL.FT.	34	MILL.FT.	×	HILL FT.	ж •	MILL.FT.	¥	MILL.FT.	×
-	1233251 3	100.0	1233251.3	100.0	183874 8	100.0	183874.9	160.0	186328.2	100.0	186328,2	100.0
2	1262539 6	102.4	1273537.8	103.3	187998,5	192.2	193052,0	105.0	184984 .2	59,2	192848.8	102.4
n	1308110.6	106.1	1322916.3	107.3	196134 8	106.7	201601.9	109.6	186894 2	6 °66	195432.3	104.9
4	1355492.4	109.9	1374719.5	111.5	202490.0	110.1	210875.7	114.7	189923 . 6	101.9	200765.2	107.7
ا م	1491227.1	113.6	1415216.5	114.8	207495.9	112.8	215937.9	117.4	187287.3	100.5	192834.6	103,5
Ð	1467566。0	119.0	1446530.4	117.3	207620.8	112.9	208202.5	113,2	201056.6	107.9	179439,3	96.3
1	1566374.1	127.0	154404A.4	125.2	224488.4	122.1	228944.5	124.5	265603.1	142,5	2,158825,2	128,2
÷	1621720.9	131.5	1588769.5	128.8	234638.8	127.6	236229,0	128.5	276690.4	148.5	242148,8	130,0
0	1691681.0	137.2	1650436.1	133.8	248519.0	135.2	248248 .8	135.0	297289 . 9	159.6	256306,3	137.6
10	1746543.0	141.6	1723158.9	139.7	252601.9	137.4	261492.7	142,2	313666.8	168.3	201392.0	151.0
11	1835939.8	145.9	1789029.4	145.1	270444.1	147.1	270107.3	146.9	341454.5	183.3	294888,9	158.3
12	1849374.4	150.0	1820929.6	147.6	276853.6	150,6	276526,6	\$50.4	305258,3	163.8	276231.7	148.3
13	1839551 3	149.2	1853681.5	150.3	264953.9	144.1	278747.6	151.6	248061.8	133.1	248398,4	133,3
14	2030445 8	164.7	2026102.6	164 . 3	275316.8	149.7	291270.9	158.4	367494 8	197,2	346796.8	186.1
15	1978821 9	169.5	1946188.5	157.8	272289.3	146.1	272542.9	148.2	254612.8	136.6	221725.7	119.0
16	2098979.3	170.2	2117686.3	171.7	258519.8	140.6	284105,9	134.5	314849.5	169.0	307970.2	165,3

-65-

•
N
*
INDICATORS
GENERAL

RUNI R

	BALANCE OF	ZI	N V E 3 T M E N T 3	σ			
	FOREIGN TRADE In FOOD PROD.	TOTAL	IN FOOU AND Agriculture	SHARE Of Food And Agric.	AGRICULTURAL FIRMS	ULTURAL PROCESSING FIRMS FIRMS	DF THE ECONOMY
YEAR	MILL S	MILL FT.	MILL.FT.	*	MILL.FT.	HILL.FT.	MILL.FT.
1	2710,59	194488,27	10237.89	5 , 2 6	27059,68	0,90	118756,31
~	2803,65	244652,28	31020,84	12 . 68	25429,90	0000	127624.79
•	3142,49	258442,27	33452,98	12,94	27349,04	8.84	136668.66
4	3394.77	279429.03	40879.77	14.63	26834,65	000	143121,38
n	3461.31	293188 <mark>.53</mark>	42298,81	14°43	26484,88	69,69	148241,68
ø	2882,98	261813,19	38291.14	14.63	27429,19	9.90	152968,19
-	3038,29	299288.19	56535,59	18.89	29704,29	3346.22	156461.80
8	2896,65	318889.59	56542.19	17.78	31560,40	2541.72	156120,17
•	2976.59	344675,22	61437.22	17.82	34673,53	2518,56	164951,09
10	3176,66	343554,13	54923,69	15°99	37738,68	3453,56	172098.92
11	3352°,32	359559 , 56	59560,44	16,56	39924 23	2294,50	177075,98
12	4968.35	430913,12	62440 . 13	14.49	43043,27	0,00	182820.17
13	4020,28	437202,78	58578,94	13.40	44685 , 73	9,80	200530,84
14	4020.70	446943,69	67591,97	15.12	38969 , 86	18586,75	213482,27
15	3585,49	5,4837,25	97931,69	17.43	36110.50	3389,52	217784,02
16	3656.45	417466.72	17918.80	4 . 08	39992,72	10183,59	240824,94

-66-

GENERAL INDICATORS * 3 *

F	SURPLUS Mill.ft,	00°0	8.88	0.90	0.80	00.00	00.00	0.00	60.00	0000	9,00	00.00	0.00	00.0	00 • 0	00.00	88,88
N T 8 U D G E	DEFICIT MILL «FT «	11379,27	12360,63	13492,69	14747,45	16118.86	17589.36	19202,81	20934,25	22756,91	24774.49	26911,23	29216,65	31600,22	34264,85	37130,50	40191.43
0 < F × N × F	EXPENDITURES Mill.ft.	249573,08	266157,69	288327,91	307204,56	317710.09	296121,09	284704,56	281063.59	286805,31	308546,97	307507,53	376490.78	391329,59	368337,06	381893,91	413755,72
6	INCOME Mill.FT.	238193,81	253797,02	274835.22	292457,06	301591,22	278531.75	265501.75	268129.36	264048,41	283772,47	280596,31	347274,12	359729 . 34	334872,94	343963,38	373564,28
Z	PRJCE X	100,000	100.476	102.497	105,188	108.207	111.049	114.387	117.556	119,980	123,308	126.023	128.618	130.075	132,880	135.673	138,127
н	FIXED P Mill.FT.	226008.17	227083,58	231651,23	237734,59	244555,98	250978.80	258523,30	265690,56	271164°97	278686,41	284822,91	291121,09	293979,09	300319.78	306632.41	312178,50
	r PRICE Milleft.	237451.03	239323,39	244484,70	251261.70	258838,05	266012.41	274396,62	282402,50	288628,00	297051.84	384819,97	311179,34	314675,25	321912,78	329139,22	33556 0 ,66
INCONE DE	CURRENT PRICE Millift. Millift.	270902,47	273569,50	280410,09	289140.41	298866,25	308262.69	319129,84	329713,81	338461.84	349811,25	359707,78	369995 62	376386,34	387148.75	398119,13	408426.16
	YEAR	-	~	m	4	ŝ		•	Q	6	10	11	12	13	14	15	16

-67-

DYNAMICS OF PRODUCTION AND TRADE + 1 +

UNITS MEASUREDI 1000 METRIC TONS

2												
			SUGAR BEET	E					CORN			
PR TARGE	100	PRODUCTION Target actual	EXPORT	IMPORT	VIELD	ADVANCED TECHNOLOGY	PROD Target	PRODUCTION Get actual	EXPORT	IMFORT	VIELD	ADVANCED Technology
					VH/IW	×				AHVTM	×	
12377 .6	•	33046.1	6.9	8.8	40.076	65 ° 84	18145.8	13787.7	8.8	0,0	5,142	50.00
12215。6	9 °	33969.0	0°0	6.9	41.216	69 . 74	19837.4	16530,4	2071,9	9 6	5,304	51.87
11821.6	÷.	34750.1	0 0	9.0	42,185	73°06	20733.6	17726.8	2543.7	6.9	5,465	53,75
11827.6	ę.	35830.9	0 ~ ()	0°0	43.518	78°97	21561.8	18583°2	2578.9	8	5,629	55.63
11833.6	•	28923.4	0°0	ମ ୍ଚ ସ	46.294	44 44	22407.9	20444.1	3518,3	63 ° 63	5,793	57.50
11956.0	0	4451.6	0.0	0 ° 0	47 ° 600	\$0° \$0	23286,9	21995,1	4025.5	9 ° 6	5,957	59,38
12245,6	9 *	16284 . 19	0°0	0	48,290	196,66	24092	23699,0	4529.3	8°8	6,122	61,25
12451.6	÷.	8122.9	8°9	0 0	48,800	រូ <i>ព</i> ្ភ。	24892,8	25579 . 3	5021.8	ଅ ଅ	\$ 9 7 9	63,13
12457.6	÷.	4470.5	ତ ° ତ	6	49.498	198,63	25730.4	26904.7	4733.0	0 ° 0	6,455	65,00
12463.6	•	34679.1	0 • 0	0° 6	50.099	160,00	26572.5	23763.8	3308.4	0.0	6,622	66.88
12286.4	• •	4483,1	0 " 0	0°0	58.688	រ ពេខ _{ខេ} ពត	27450 8	28625 ,3	4526,1	0°0	6,791	68°75
12475.6	9.6	4489.4	0.0	0°0	51,200	100,00	28269.9	8°16762	5253,5	8 . 8	6,960	70.63
11881.6	.	36767.1	0.0	0°0	51.800	វ ពុ	29229.7	25920.8	5599,4	9.6	7.129	72.50
12287.6	• •	4502.6	0°0	8	52.400	196.00	30019°6	31237,1	6899,9	0.0	7.300	74.38
12301.8	•	4508.3	0°0	0 • 0	53.000	100.00	30882.1	32115.7	7656.4	0.0	7.471	76,25
12499.6	۰,6	43867.5	0°0	0.0	53.698	100,00	31715.6	27386,6	8162,2	8.9	7,643	78,13

I

RUNI R

RUNI 9

DYNAMICS OF PRODUCTION AND TRADE + 2 +

UNITS HEASURED! 1000 METRIC TONS

	ADVANCED Technology	ж	50,00	51,88	53, 75	55,63	57,50	59,38	61,25	63,13	65,88	66 . 85	68.75	78.63	72.50	74.38	76,25	78,13
	ADVAN	^	5	5		5	ñ	ŝ					19	76	7	1	76	16
	YJELD	MT/HA	3,588	3.677	3,775	3.874	3,973	4,072	4.172	4.273	4.374	4 475	4.578	4 . 6 8 8	4.783	4.887	166 8	5,096
	IMPORT		8 ° 8	0.9	0 0	6 ° 6	0.0	8.9	0.0	0.0	8	0.9	0,0	9 ° 9	0	8.8	16.2	51.2
WHEAT	EXPORT		3437,4	1335.5	956.9	796.3	137.7	2300.4	6 * 6 7 7	367.6	311.6	232,3	172.4	92.4	98°2	38,1	0 • 0	8.8
	PRNDUCTION Get actual		7128.8	5712.6	5378.9	5584,5	5292.0	6913.4	5307.0	5314.5	5322.0	5329.5	5337.0	5344.5	5352.0	5359.5	5367.0	5374.5
	PRODU Target		4902.0	5269.5	5267.0	5274.5	5282,0	5292.4	5307.0	5319.5	5327.0	5334.5	5337.5	5349.5	5342.0	5359.5	5367.2	5379.5
		YE AR	-	∼	m	4	n	¢	~	80	•	10	11	12	13	14	5	16

DYNAMICS OF PRODUCTION AND TRADE + 3 +

>

UNITS MEASURED: 1000 PIECES

RUNI D

			PIG						CATTLE		
	PRODUCTION Target actu	JCTION ACTUAL	EXPORT	IMPORT	UNIT Feed Input	ADVANCED Technology	PRODI TARGET	PRODUCTION Target agtual	EXPORT	IMPORT	ADVANCED Technology
YEAR					H	×					×
-	1892,8	1749.9	0-0	9.0	9.482	30.00	1856.2	1603.2	203,5	8.8	28,88
2	1922,1	1831.6	0.0	6.9	0.477	33,50	2261.7	1689.7	268,0	0.9	24.00
n	2112.3	1933.3	0°0	6°0	0.472	37,00	2225.7	1785.9	382.2	0.0	28.00
8	2316.3	2047.1	0.0	8 8	0.467	40,58	2227.7	1893,3	487,6	0.0	32,06
r	2540.5	8,715	0.0	0.6	0.462	44.08	2229.7	2014.2	686.5	8.8	36.00
æ	2775.4	2320.0	0.0	0.0	0.457	47.50	2242.7	21515	741.5	0.8	40,00
•	2965,9	2485.7	9°6	6.9	8,452	51,00	2271.7	2307,8	0.0	0.0	44.00
æ	9994 N	2676.9	0.0	6.9	8448	54.50	2292.7	2488,4	8	8.8	48,90
Ð	2996,2	2909.0	0°0	0 ° G	0.443	58,89	2294.7	2699,2	0.0	6.9	52,00
10	2998.4	3163.6	0 0	0.8	0.438	61.50	2296.6	8° 44 1 2	6,9	0.0	56.00
11	2977 . A	3488.0	0.0	0.0	0.433	65,08	2281.4	2775.7	0 • 0	8 ° 0	63.64
12	3992.8	3866.7	0°0	0,0	0,429	68,50	2308.6	2582,0	1160.3	0.0	64,00
13	2926,9	4350.0	0°0	0.0	0.424	72.00	2245,6	1494 .8	71.2	0.0	68,00
14	2981.1	4971.4	0°0	Ø • Ø	0.419	75,58	2285,6	1975.4	86.1	0.0	72.00
15	2984,3	1635.6	0°0	0.0	0,414	19.08	2255,4	4105.0	6.8	0.0	76.00
16	3011.5	4117.4	0°0	0°0	914	82,50	2308.6	1501.1	71.5	0 • 0	80,00

5	UNITS MEASUREDI		IRAG METRIC TONS					
		SUGAR				ď	PORK	
Y E AR	PRODUCTION Target ac	TTDN ACTUAL	EXPORT	IMPORT	PRODUCTION Target ac	TION ACTUAL	EXPORT	T MP OR T
-	1547.2	4130.8	3535,2	8.8	1051.6	966.7	37,8	8 8
~	1526.9	4246.1	3617.6	0.0	1067.8	1917.5	83,4	0 ° 0
~	1477.7	4343,8	3759.3	0°0	1173.5	1074.1	155,1	8 8
4	1478.4	4468.8	3841.0	0.0	1286.8	1137,3	212,3	0°0
r	1479.2	36;5,4	2955.8	0°0	1411.4	1208,3	203,3	0 ° 0
÷	1494.5	536,4	0.0	131.1	1951.9	1288,9	0.0	67.6
•	1530.7	2035,5	1364.1	0.0	1647.7	1381,0	0.0	17.8
•0	1556,5	1015.3	308.5	8.8	1663.4	1487,2	0.0	93,5
6	1557,2	558,8	9 8	136.7	1664.6	1611.1	0°0	97.8
10	1557.9	2317.0	1625.5	0°0	1665.8	1757.6	0,0	112.9
11	1536.0	560.4	0°.0	135.4	1653.9	1935,3	8 8	99.4
12	1559,5	561.2	0.0	202,9	1668.2	2148,1	0.0	143,0
13	1485,2	2775,9	2169,6	0°0	1626.1	2416.7	1459.3	8.8
14	1536 0	536,0	ខ ្ លី	165.2	1656.2	2761.9	104 .4	0.0
15	1537.7	563,5	9.6	85,55	1658.0	988,6	0.9	112.9
16	1562.5	1700.0	1033.8	9.0	1673.0	2287,4	8.8	110.7

DYNAMICS OF PRODUCTION AND TRADE + 4 +

RUNI Ø

S		
-		-
	:	

0

DYNAMICS OF PRODUCTION AND TRADE = 5 +

		IMPORT	8.9	0.0	8	0°0	0 0	8	8.8	0.0	0 • 0	0 ° 0	0.0	00	00	8° 8	8.9	8.9
	BEEF	EXPORT	174.2	171.4	203.9	214,5	230.7	250.1	726.1	801.4	904.9	628,3	935.7	175.9	242,8	466.1	1648.1	216.5
		TION ACTUAL	736,7	137.1	738.8	739 . 8	740.9	141.9	1214.6	1309.7	1420.6	1154.7	1460.9	748.2	749.5	994°	2168,5	752.4
		PRODUCTION TARGET ACT	924,3	1137.7	1118.8	1119.8	1120.9	1127.8	1143.0	1154.0	1155.1	1156.1	1148.1	1158.2	1129.5	1150.3	1151.8	1162.4
		IMPORT	0°0	0 ° D	0.0	0°0	6 ° D	0.0	0°0	8.8	0.0	0°0	9°6	0°0	0.0	0.0	8.8	8 ° 8
TRIC TONS	MEAT	EXPURT	156.5	112.8	116.6	119.3	127.6	3,44,6	428.7	483,4	551.1	628.7	7.957	836,6	128.2	1072.1	156,2	933,2
01 1000 HE	PRUCESSED MEAT	rton Actual	305,2	305.6	396.1	306,5	306.9	551,4	602.9	662,3	731.7	813.7	912.2	1932.7	310.4	1252,2	335,6	1110.0
UNITS MEASUREDI 1000 HETRIC TONS		PRODUCTION TARGET AC	364 2	383,3	453.6	517.0	566.8	656 <u>,</u> 6	707.8	710.7	5.117	711.6	109.8	712.5	7.05.4	710.9	711.0	714.2
Ŋ		YEAR	-	2	•	đ	10	Ą	-	Ð	o	10	11	12	13	14	15	16

1

-72-

RUNI	5			DYNAMICS	OF PER CAP	DYNAMICS OF PER CAPITA CONSUMPTION	ION
YEAR	WHEAT FT	SIJGAR FT	PORK PT	PROC.MEAT FT	BEEF Ft	N#TH PROD. F1	SUM (VALUE) FT
	3849 68	545°95	349,27	177.36	515.48	161328.8	226008,2
A.	4143.75	548.99	351.21	178.25	518.69	162738.1	227083.6
ñ	4187.98	553,79	354,52	179.55	596.79	166436.6	21691.2
9	4246.55	10,492	358.91	177.11	497.84	171400.0	237734 6
¥n	4305.77	636,94	363.29	170.79	487.56	176754.2	244556,0
ę	4359.03	682.16	367.20	164.51	477.41	101735.3	250978,8
•	4560.86	656.13	372,68	166.45	469.66	188883.5	258523,3
•0	4654.12	665 . 02	378,41	168,34	478.27	194241.0	265698,6
o	4797.21	653°43	361.84	169,68	484.55	198866.9	271165.0
10	4777.79	627 . 54	3A6,92	171.44	492,95	205177.0	278686.4
, 11	4842.71	673.10	391 65	173.14	509.56	210690.5	284822.9
12	4899.58	644.64	395.72	174.54	507.36	215966.7	291121,1
13	4917.35	613.11	396.92	174.89	491.86	218822.8	293979.1
14	4964.62	655.07	400,21	168.12	480.13	222944 . 8	300319,8
13	5019,58	627.02	484.13	169.40	486.29	228233,6	386632.4
16	5042.98	596.53	383.67	162.14	489.38	231767,6	312178,5

		SUGAR REET		-	CORN			HHEAT	
YEAR	PR00UCER 1000 F1/T	CONSUMER W 1000 FT/T	CONSUMER WORLD MARKET 1000 FT/T 1000 3 /T	PR00UCER 1000 FT/T	CONSUMER WORLD 1000 FT/T 100	JRLD MARKET 1000 s/t	PR00UCER 1000 F1/T	CONSUMER + 1000 FT/T	CONSUMER WORLD MARKET 1000 ft/t 1000 s/t
-	1.00	9.98	8 - 8	2.70	80.68	0.12	2°40	4.60	0,13
~	0.90	6.98	8	2.70	0,69	0.12	2,61	4.32	0.13
м	0.81	0.49	8.80	2.70	000	0,12	2,61	4.52	0,13
4	0.73	0.00	8 .88	2°10	6.00	0,12	2,61	4,32	0,13
٤Û	8 . 66	0.00	0.00	2.70	0.00	0.12	2,61	4,32	0.13
¢	g.59	8.88	0° D	2,78	9.00	0, 1 Z	2,61	4,32	0,13
1	0.65	0.08	0 • 0 0	2.70	60.6	0.12	2.48	4.10	0.13
۲	Ø.62	0.90	0,90	2.70	8.09	0.12	2.48	4.10	0.13
•	0,65	0.90	0.66	2.70	0000	0,12	2,48	4.10	0.13
10	0.71	00.0	B.80	2.70	80.8	0.12	2,48	4.10	0.13
11	0.64	0.01	0.90	2.70	8.08	0.1 2	2,48	4.10	0.13
12	0.71	0.90	0 • 0 B	2.70	0.89	0,12	2,48	4,10	8.13
13	0.78	0.00	0°06	2.70	88.8	0.12	2.48	4.10	8,13
14	0.70	0.69	0.00	2.70	0,00	0.12	2.48	4°.10	0.13
15	0.77	0,00	0 ° 0 0	2,70	0,39	0.12	2,48	4.10	8,13
16	0.65	0.80	0.00	2.70	60.00	0,12	2,48	4.10	0,13

. 01100 20 00.000

RUNI

G

ł

4 NN B	69			DYNAMICS	OF PRICES .	•			
		PIG			CATTLE			SUGAR	
PS VEAR	PRODUCER 1000 FT/T	CONSUMER WI 1000 FT/T	CONSUMER WORLD MARKE' 1000 FT/T 1000 S/T	PRODUCER 1000 FT/T	CONSUMER WI 1000 FT/T	WORLO MARKET 1000 S/T	PRODUCER 1000 PT/T	CONSUMER W 1000 FT/T	WORLD MARKET 1000 3/1
	25,60	0°°0	0 . AB	39.18	0,00	1.40	14.08	10.30	0,30
N	23.60	00°u	0°08	30,16	80°8	1.40	12,68	10.30	8.38
•	25.60	0°96	9.00	31,69	0,00	1.40	11.54	10.30	0,30
4	25.60	0000	9.90	31.69	00,00	1.40	10,21	9,27	8,38
'n	25,60	0°0	0,40	31,69	0.00	1.48	9.19	8,34	0,38
æ	25,69	69.6	8,00	31.69	66.60	1.40	8,27	7,51	0,36
	25.60	00.00	8,98	31.69	0,00	1.48	40°6	8,26	0,38
•0	25,60	0,90	0°00	31,69	6.66	1.40	8,64	8,25	0.30
•	25,60	0 4 • 0	8.08	31,69	90,00	1.40	9.01	8,67	0,38
10	25,60	0,00	8°,00	31,69	60.03	1.40	96*6	9.54	0,30
11	25,60	0,40	8 ° A O	31.69	00.0	1.40	8 ° 8	9 - 2 4	8,38
12	25,60	00,00	0.00	31,69	00.00	1.40	99.88	9,44	0.38
13	24.32	99.6	8.68	31,69	0.20	1.40	10.67	10,39	0,30
14	21,89	0.00	0.00	33,27	00 0	1.40	9.78	9,35	0,38
15	19.70	6,00	0.60	33,27	00.00	1.40	10.76	10,28	8,38
16	21.67	0,00	0 . AG	29 ° 95	0,00	1.40	11,83	11,31	8,38

	9			DYNAMICS	OF PHICES .	3 .			
		PORK			PROCESSED	MEAT		BEEF	
YEAR	PRODUCER 1000 FT/T	CONSUMER WO 1000 FT/T	СОИЗИНЕР МОРЦО НАРКЕТ 1000 FT/T 1000 S/T	PRODUCER 1000 FT/T	CONSUMER W 1000 FT/T	CONSUMER WORLD MARKET 1000 FT/T 1000 S/T	PRODUCER 1000 FT/T	CONSUMER 1000 FT/T	CONSUMER WORLD MARKET 1000 FT/T 1000 S/T
	55,00	39,00	1.20	192,09	67.00	2.10	68.88	35,50	1.50
~	55.00	39.00	1.20	102.00	67,00	2.10	60.00	35,50	1,50
n	55.00	39.80	1.20	102.00	67,00	2.10	63,80	37,27	1,50
7	55,00	39,00	1.20	167.10	70,35	2.18	66.15	39.14	1.50
ŝ	55.00	39,00	1.20	117.81	77,39	2.10	69 . 46	41,10	1,50
Ð	55.00	39.00	1.20	129,59	85.12	2.10	72.93	43,15	1.50
•	55.00	39.00	1.20	129.59	85,12	2.10	76.58	45,31	1.50
80	55.00	39.00	1.20	129,59	85,12	2.10	76.58	45,31	1.50
6	55,00	39.00	1.20	129,59	85,12	2.10	76.58	45,31	1,50
10	55.00	39.00	1.20	129.59	85,12	2.10	76,58	45,31	1.50
11	55.00	39.00	1.20	129.54	85.12	2.18	76 . 58	45,31	1,50
12	55.00	39.00	1.20	123,11	85,12	2.10	72.75	45,31	1.50
13	52,25	39,00	1.20	110.30	85.12	2.10	76.39	47.57	1.50
14	47.02	39.00	1.20	121,08	93.64	2 .10	80° 20	49,95	1.50
5	42,32	39,00	1.20	109.69	93.64	2.10	80,20	49,95	1.50
16	46.55	42.90	1.20	120.66	103,00	2.10	72.18	£6°65	1.50

RUNI Ø

RUNS	0	
	-	INDEX
YEAR	PRODUCER	CONSUMER
1	100.00	100.00
2	99.14	100.48
3	99,72	102,50
4	99.70	105.19
5	100,00	108.21
6	100,57	111,05
7	100.41	114,39
8	99,96	117,56
9	100.02	119,98
10	100.25	123,31
11	99,95	126.02
12	99,53	128,81
13	99,57	130.07
14	99,67	132.88
15	99.44	135.67
16	101,16	138,13

				DYNAMICS OF I	INVESTMENTS # 1 #	
	A G R I	CULTURAL	INVEST	H E N 1 S		AGRICULTURAL
	TRACTOR	ANDITIONAL Equipment	PIG BARN	CATTLE Barn	OTHER Fixed Assets	INVESTMENTS TOTAL
YEAR	1000 UNI 79	нJLL。FT。	1 000 Héads	1000 HEADS	MILL.FT.	MILL.FT.
-	0 0	4199,95	8.98	00°0-	99	4199,95
N	5.04	5495.74	9 .48	217,89	907,39	13231,23
n	60.81	4966.15	218,22	234,24	4381.11	22789.02
7	54,86	5269,92	620.42	258,96	3934,50	28417,56
ŝ	51,60	5204,20	677,16	286,92	3676,20	29506,28
4	15,51	2910,69	753 , A9	319.28	1925,63	24510,06
•	76.41	7079.75	844 . 34	359,33	6857 . 41	40428.79
•	38,63	4052.52	955,70	408.20	4786.96	36045,57
œ	49,20	4915 . 91	1093,69	468.76	5878.64	42355,28
10	88,89	7894,73	1267.80	00 * 0	4245 ° 53	34549.86
11	16.96	2573,15	1492.17	317.60	6431.02	39477,49
12	58,30	5697.88	1788,73	0.64	4617.12	37661,93
13	89,06	7900.95	2192,95	00.0	1326,09	43762,09
14	18,36	3003.72	2765,36	0.00	5084.67	46252。24
15	59,89	5922,45	a.an	2810.38	2633,19	96300,51
16	95,25	8296 , 68	0.69	00	1839,80	14796,45

	9			DYNAHICS OF IN	INVESTHENTS # 2 #		
1	N V E S T M E	N T I N F O	0 D P R O C	E S S I N G	DIRECT GOVERNMENT	INVEGTNENTS	TOTAL
	GUGAR Plant	SL DUGHTER HOUSE	HEAT Processing Plant	TOTAL	INVEBTMENTS In Food and Agriculture	IN THE REST Of The Economy	UNCENTRENTO
YEAR	1000 MT.	1 8 9 8 HT.	1 A A A A A	MILL.FT.	MILL FT.	MILL .FT.	MILL.FT.
-	530,77	9.98	25,44	5988,00	1837.94	184250.4	194488.3
~	259,36	66.6	103,05	16942,66	846.95	213631.4	244652°3
'n	257.11	0.00	46.66	7916.17	2747,78	224989,3	258442.3
7	288.50	9.90	68 89	11479.23	982,97	238549 ,3	279429.0
ŝ	0.00	0,00	73,36	11738.21	1054.32	250889.7	293188.5
9	0.40	99,99	78.89	12622.27	1158,81	223522,0	261813,2
-	0.40	339,58	87.62	14853,94	1252,88	242758.6	299288,2
¢	0 ,00	210,62	117.71	19352,63	1143.98	261458.4	318888.6
o	9.90	246,60	107.78	11821°19	1230,75	283238 . 0	344675.2
10	9.98	00.00	119.30	19088.17	1285.64	28639.4	343554.1
	9.90	366.44	111.19	18692,21	1390.74	1 866662	359559.6
12	9.48	0,00	145.99	23358,73	1419 45	368473,8	190913.1
13	9.99	9.90	82,27	13163,23	1653,63	378623.8	437202,0
14	0000	214,07	117.11	19264 63	2075.11	379351.7	446943.7
15	0.00	325,95	0.00	801,63	828,78	463986.2	561837.5
16	99.99	69,69	0.00	0.40	2221 55	400448.7	417466,7

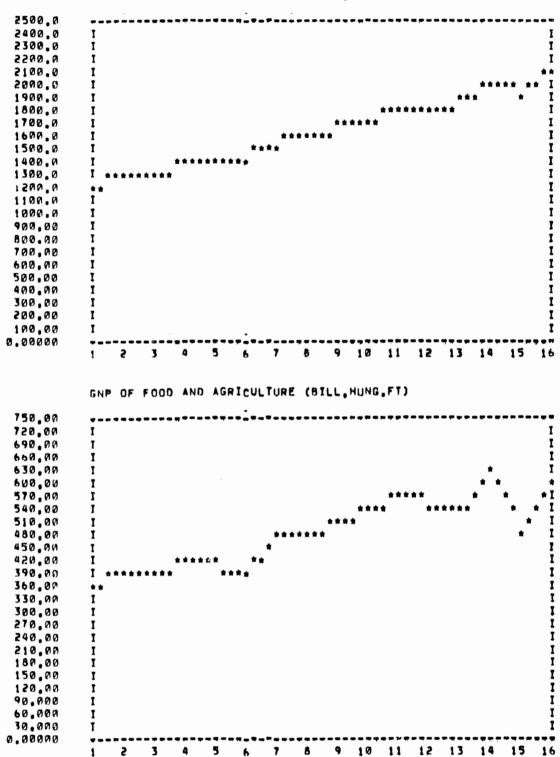
Ø

ß RUNI

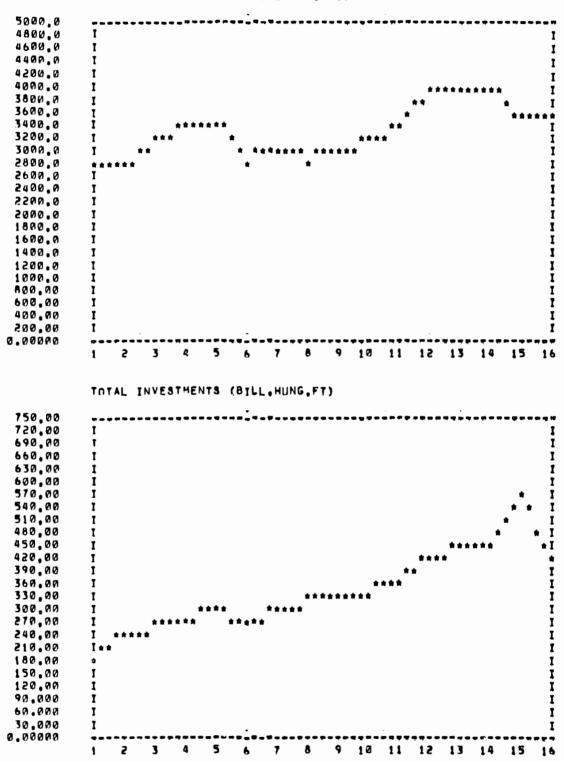
YEAR= 1 RUNI Ø		
RESOURCES	AND PRO	DUCTION STRUCTURE
KIND OF RESOURCE S	MBOLS	AVAILABLE RESOURCES
POPULATION, THOUSANDS	T P	10524,0
LABOR FORCE, THOUSANDS	LA	814,6
	LAF	1039.2
	LAN	4335,8
ARABLE LAND, 1000HA	LS	5497.5
TRACTOR, THOUSANDS	R 8 2	440,0
ADD, MACHINERY, HIL, FT	R53	30000,0
PIG BARN, THOUSANDS	R\$4	9040.0
CATTLE BARN, THOUSANDS	R \$ 5	3000,0
OTH,AGR,ASSETS,HIL,FT	RS6	50000.0
SUGAR PLANT, 1000 TONS	RP1	3608,0
SLAUGHTER PLANT,1000 T.	RP2	5000.0
MEAT PROC.PLANT,1000 T.	RP 3	300.0

		PRODUCTION S	TRUCTURE		PRODUCTIO	N STRUCTURE
NR	PRODUCT	AREA,LIVESTOCK Thousands SP G#S	PRODUCTION 1000 Tons P, SP, PN	STOCKS 1000 TONS S	VALUE IN Fixed prices	X OF TOTAL VALUE In Food and Agr.
1	SUGAR BEET	824,6	33046.1	0.0	33046,1	8.9
5	CORN	2681.4	13787.7	10.0	37226.8	10.1
3	WHEAT	1991,3	7128.8	10.0	20673,4	5,6
4	PIG	12428,6	1740.0	0.0	44544,0	12.0
5	CATTLE	3000.0	1603.2	0.0	48384,6	13,1
6	SUGAR	0.0	4130.8	50.0	57830,7	15,6
7	PORK	6.0	966.7	50.0	53166.7	14,4
8	PROC. MEAT	0.0	305,2	5,0	31130.0	8.4
9	8EEF	0.0	736.7	50.0	44200.8	11,9
10	N-TH PRODUCT	0.0	863048.1	60743.4	863048.1	

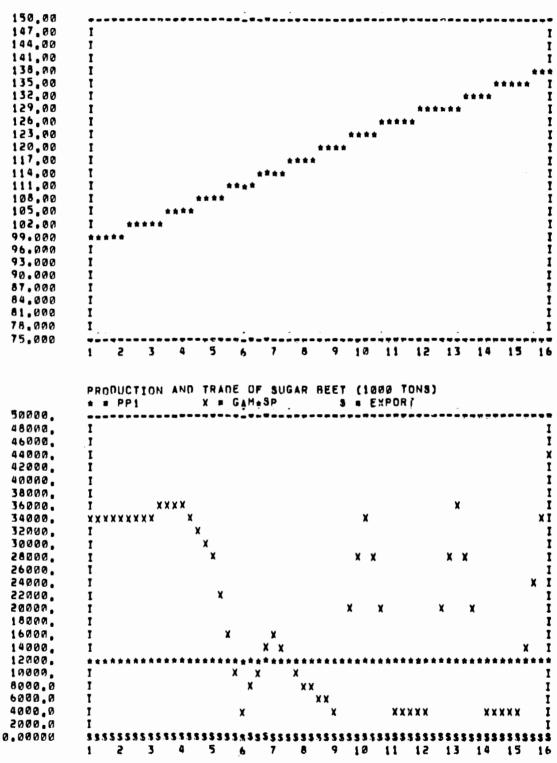
,

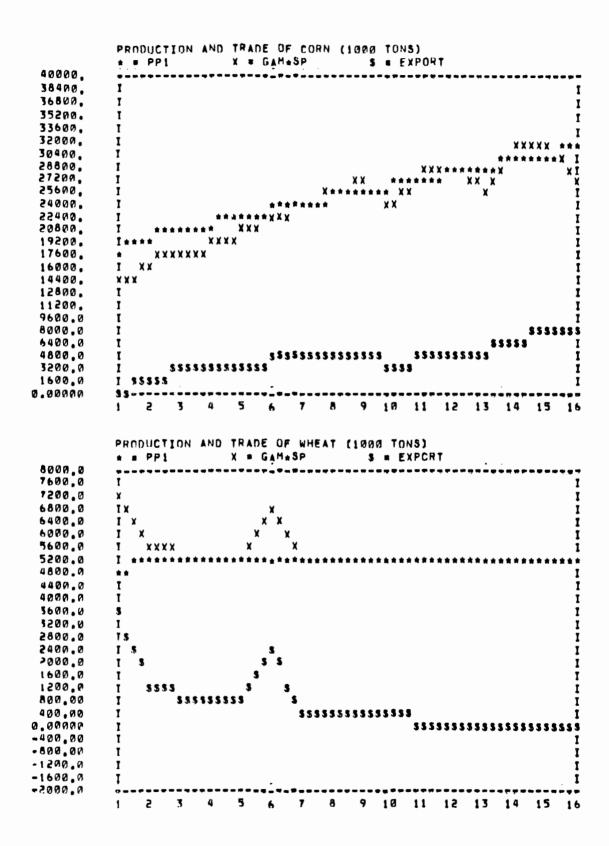

KIND OF RESOURCE	SYMBOLS	AVAILABLE RESOURCES
POPULATION, THOUSANDS	TP	10749.0
LABOR FORCE, THOUSANDS	L A	742.9
	LAF	1061.1
	LAN	4291.4
ARABLE LAND, 1000HA	LS	5456,2
TRACTOR, THOUSANDS	R\$2	367.8
ADD.MACHINERY,HIL.FT	R\$3	38812.3
PIG BARN, THOUSANDS	R \$ 4	20064.7
CATTLE BARN, THOUSANDS	RSS	7452.3
OTH, AGR, ASSETS, HIL, FT	R 3 6	65182.3
SUGAR PLANT, 1000 TONS	RP 1	2745.4
SLAUGHTER PLANT, 1000 1	RP2	2523.3
MEAT PROC.PLANT, 1000 1	. RP3	1158.5

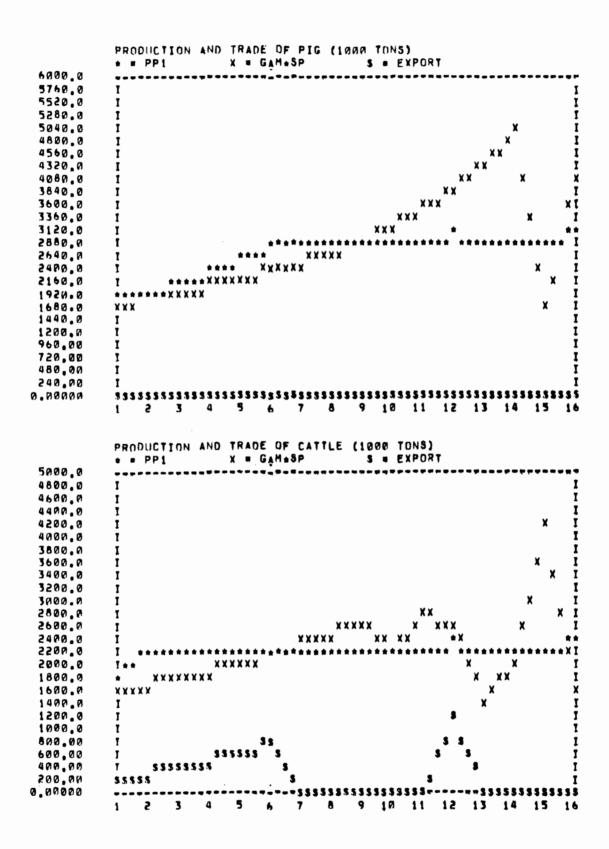
		PRODUCTION STRUCTURE			PRODUCTION STRUCTURE	
NR	PRODUCT	AREA,LIVESTOCK Thousands SP G+S	PRODUCTION 1000 Tons P,SP,PN	STOCKS 1000 TONS 8	VALUE IN Fixed prices	% OF Total value In food and agr.
1	SUGAR BEET	818.4	43867.5	0.0	43867.5	7.4
5	CORN	3583.1	27386.6	10.0	73943.9	12,5
3	WHEAT	1054.6	5374,5	13.0	15586.1	5.6
4	PIG	29410.0	4117.4	0.0	105405.3	17.8
5	CATTLE	2756.3	1501.1	0.0	45303.1	7.7
6	SUGAR	0.0	1700.0	50.0	23799.6	4.0
7	PORK	0.0	2287.4	20,0	125809.3	\$1.2
8	PROC. HEAT	0.0	1110.0	5.0	113215,5	19.1
9	BEEF	0.0	752,4	50.0	45145.8	7.6
10	N-TH PRODUCT	0 ° 0	1525610.0	192764,1	1525610.0	


YEAR+16 RUNI Ø

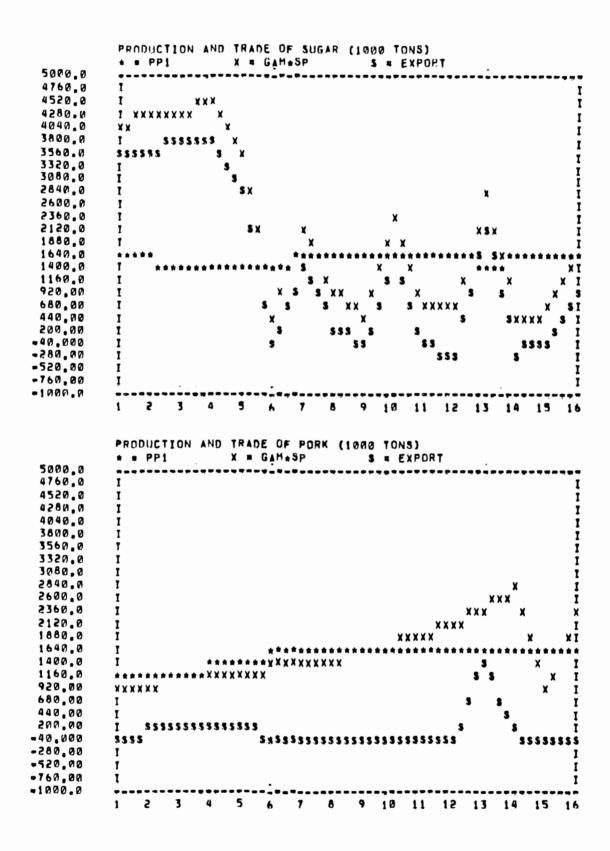
-


RESOURCES AND PRODUCTION STRUCTURE

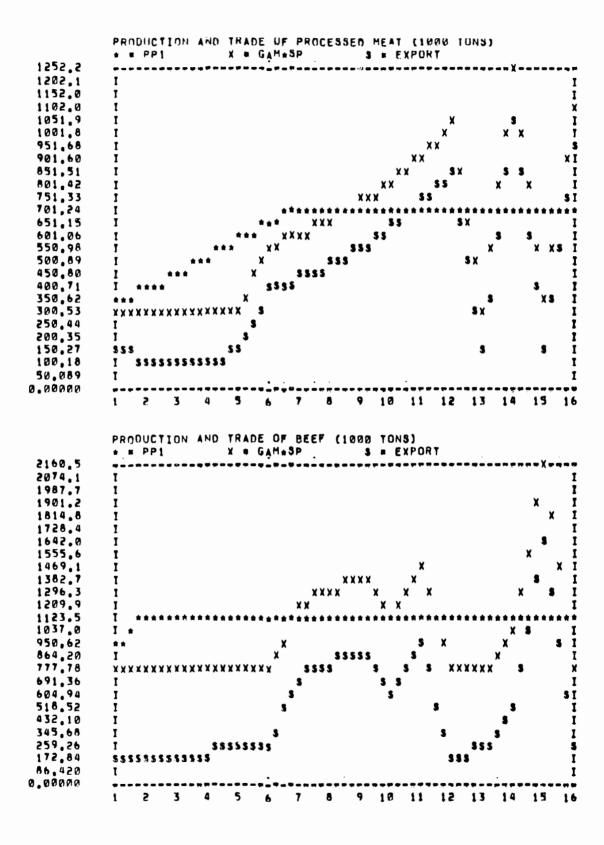

GROSS NATIONAL PRUDUCT (BILL, HUNG, FT)



BALANCE OF PAYMENT (HILL, HUNG, FT.)



DYNAMICS OF CONSUMPTION (INDEX)



-86-

-87-

