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Dynamics of Reservoir Operation under Power Production

Eric F. Wood

One persistant problem within mathematical simulation

modelling of river basins has been the operation of reservoirs-

especially reservoirs for power production. These reservoirs

consistantly end up empty in their attempt to meet power tar

gets. The reason for this behavior arises from the combined

effects of stochastic inflows and the prescribed operating

rule. 1-1ost simulation models follow the well known "normal"

operating policy which tries to fulfill the targets (either

for power production, irrigation demands, etc.) as long as

there is water in the reservoir. No thought is given for

the next period's demand. Such a policy is especially poor

in power production because power (P) is generated as a

combination of outflow (Q) and hydraulic head (H),

(1 ) P = a.QH ,

so that the worse the state of the reservoir (near empty) the

worse it becomes.

This small paper looks at some of the dynamics of reser

voir operation and suggests some areas of continued work.

Furthermore, new operating rules could be formulated that

would consider the expected value of future power.
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Dynamics of Power Production

Power production is a function of both the discharge

and the hydraulic head;

(2) P = aQH

where

P = power (k-watts/hour)

Q = discharge (m Is)

H = hydraulic head (m)

a = conversion constant (2.73 x 10-6 )

Figure 1 shows lines of constant power production. One

interesting question is: starting at an initial head, H ,
o

where will the state of the reservoir be at time t 1? This

state will depend upon the operating policy. Assume that

the operating policy is to maintain a constant level of power

production, P. Then starting from H,Q the reservoir willo 0 0 .

follow the Po power curve to H1 ,Q1' Another operating rule

may be to hold Q constant. Then starting from H ,Q , the
000

amount of power produced will decrease and after a time t
1

the reservoir will be at a different set of head and discharge
, ,

H1 ,Q1. Figure 2 illustrates these two operating rules. The
, ,

location of H1 ,Q1 and H1 ,Q1 will now be found analytically.

Case 1: Constant Power Production, P. The assumption
o

that the inflow for the season will occur instantaneously at

t = 0 will be made. The storage after the inflow will be

So with the hydraulic head Ho . The power at any time t will be

(3) P = aQ(t)H(t)
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and the energy generated up to time t = T is

T T

(4) E (t) = f Pdt = f aQ(t)H(t)dt

0 0

Since P is constant at P
0'

the energy developed is PoT. To

find the state of the reservoir the right hand integral must

be solved. From the dynamics of reservoir storage the

following holds true

(5) Q(t)dt = -dS(t)

where dS(t) is the change in storage at time t.

A general relationship between hydraulic head and

storage is

(6) H = (yS) B

where

13 is about .5

y is a constant

dS 1 H 1-8
(7a) dH = By

-S-

and for = .5

(7b) dS 2 H
dH = Y

Equation (4) can be rewritten, using equations (5) and

(7a) as
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a 1/13
Sy H dH =

a

y(1+S}

1+13
H-S-

Thus H1 , the final head level after time t = T is just

1+13 13

(9) H1 = [H
o

- S (1 + S}y P T ] 1+13
a 0

and for 13 = .5

( 1 O) [ ]

1/3
H = H3 _ 1.5y P T

1 0 a 0

Case 2. Outflow Discharge Is Constant At Qo. For this analysis,

we still assume that the inflow for the season occurs

instantaneously at t = 0, resulting in an initial storage 8 •o

The outflow discharge, Qo,is constant which results in a

decreasing power output. If the initial storage level was

8
0

, then the storage level after t = T would be 8 - Q T.o 0

The total energy output, E (t) , can be found by solving

T 8 -Q T

E (t) = J a Q H(t}dt = ayS f 0 0 - 8 Sd8

t=O 8
0

( 11)

= ayS [8 13 + 1 - (8 - Q
o

T}S+1]
8+1 0 0

The second operating rule produces less energy but since

the final hydraulic head is larger the potential for generating

power in the next time period is higher. This may· be import-

ant if the probability of a low inflow is quite high.

Case 3. Constant Power Po' Constant Inflow QI. A more

realistic analysis would consider the condition when a

constant inflow QI occurs throughout the season. This analysis

is much more complicated because the constant inflow contributes
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to a smaller and smaller portion of the energy target as the

hydraulic head (and storage) decreases. The remaining

portion of the power target is met by taking water from

storage. Figure 3 illustrates this. The dotted lines are

curves of constant power, like those illustrated in Figure 1.

The solid lines illustrate the power component generated

from water released from storage when Qr is as specified.

The curves correspond to a total power target of 3 x 10-3

m-w/hr. When the curves indicate Q
st

= 0, that is, no water

being released from storage, then the reservoir is either

filling or remaining stationary. For a power target P, the

curves follow the relationship:

( 12)

Let Ho be the intial hydraulic head and Qst(O) be the initial

outflow from storage, i.e. Qst(t) at time t = O. Then it

can be shown that:

( 13) H(t) = H
o

Using the head-storage relationship of equation (7b), i.e.

s = .5 and the outflow storage relatioship of equation (5),

then the following relatioships hold

( 14a) dS(t) = -Qst(t)dt

( 14b) = ~ H(t) dH(t)
Y
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which results in

( 15a)

(15b)

H(t)dt -2H (t)dH(t)= yQ (t)

2H 3 (t) dH (t)
=

The energy generated in time T can be found by integrating

equation (12) with respect to time:

t=T

(16) E = P • T = a J [QI + Qst(t)] • H(t)dt

t=O

Equation (16) can be divided into two components, one

component accounts for the energy developed by the water

leaving storage. The value of this energy is

t=T

(17) E1 - f aQst(t) H(t)dt

t=O

which is similar to case 1 when no inflow occurred. The

solution of equation (17) is

( 18)

The other component is from the energy developed by the

inflow and can be calculated by solving:

t=T

(19) E2 = Qr J H(t)dt

t=O

Case 4. Constant Inflow, Constant Outflow. The fourth

operating condition that can be analyzed is when there is a

constant ourflow target and a constant inflow discharge. Let
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Qo represent the outflow and QI the inflow. Then the dis

charge into or out of storage is just

The final storage, after a time T, given S being the ini
o

tial storage, is

Assuming that the head-storage relationship of equation (6 )

is still valid, then the final hydraulic head, HT is

(22) H = y6 e (S + Q T)6
T 0 st

The amount of energy produced in time T is

t=T t=T

(23) E = ex.Q f H(t)dt - ex. f H Q
st

dt
I

t=O t=O

The first part can be solved utilizing equation (22) and is

(24) (6 + 1)
{S + Q T) 1+6 _ S 1+6}

o st 0

The amount of energy produced in time T depends upon whether

Qst is 0 (inflow equals outflow), > 0 (inflow greater than

outflow) or < 0 (inflow less than outflow). These three

cases can be easily analyzed

a) Inflow equals Outflow

t=T

'( 2 j ) E = QI f H d t = ex. QI Y
6

So
6

T

t=O
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b) Inflow greater than Outflow

t=T

(24) E = QI a J H(t)dt - a J H(t) Qstdt

t=O

The first part can be solved utilizing equation (22) and is

(25)
ay8

Q
I

{(So + Q T)1+ 8 - S (1+8)}
(8+1) st 0

The second part of equation (21) can be solved by utilizing

equations (5) and (6). The solution to the second part is

(25)
ay8

------ Q t(S + Q T) 1+8 - S 1+8
(1+8) s 0 st 0

So the complete solution to (24) is

ay8
E = {QI[(SO + Qst T)1+ 8 - S01+8]

(1 +8)
(26 )

+ (S + Q • T)1+8 _ S 1+ 8 }
o st 0 .

E =(25)

c) Inflow less than Outflow

T

a QI f H(t) dt + a

t=O

t=T

J H(t) Qst dt

t=O

Using

(26 ) HT = y8 • (S - Q T)8o st

[S 1+8 _ (S _ Q T) 1+8]
o 0 st

(1 +8)

the first integral equals

aQ y8
I

(27)
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[S 1+6 _ (s _ Q T) 1+8]
o 0 st

(1 +8)

Using Equations (5) and (6) the second integral equals

ay8
(28 )

(S - 0 T) 1+8]
o -st(29 )

So that the complete solution of Equation (28) is

ay8
E = -._. {0 [S 1+8 -

1+8 --I 0

Some Results

It is interesting to look at some results of various

operating rules. The most realistic cases are when inflow

arrives throughout the season, rather than as a 'lump' at

the beginning of the season. Consider Figure 4 which

simulated the generation of a constant power target. The

inflow level was 50 m3 /sec for both time periods. Line A

considered the inflow to be uniformly distributed over

time while line B assumed that the inflow came instantan-

eously at the beginning of the time period. While reservoir

case A went 'dry' in the middle of period 2, case B ended

period 2 with a hydraulic head of 16.25 feet.

Figure 5 illustrates some reservoir behavior under

various inflow patters for constant power production. Case

A was for Q1 = 50 m3 /s, Q2 = 50 m3 /s; Case B was for

Q1 = 50 m3 /s, Q2 = 75 m3 /s, Q3 = 75/100 m3 /s; and Case C

was for Q
1

= 50 m3 /s, Q2 = 100 m3/s, and Q3 = 50 m3 /s.

In studying these curves there appears to be two decision
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variables of interest. One is the power target P and the

other is a minimum hydraulic head, H. The minimum hydraulico

head represents the lowest level that the reservoir should

reach before power production is cut back. This cutting

back of power saves the hydraulic head for power production

in the next time period. Figure 6 illustrates this point.

In Figure 6 a constant outflow discharge is specified to

generate power ( 75 m3/s). Case A has a minimum bydraulic

head of 0 (empty) and an inflow patter of 50/25/50 m3 /s.

Once the reservoir was empty, it was almost impossible to

get the reservoir back into a state where a significant

amount of energy was produced. Case B had a minimum hydraulic

head of 8.5 m. Power production was cut back when the level

was reached but energy was still being generated. Case C

had an inflow pattern of 50/100/50 m3/s and no cut back was

experienced. The outflow discharge target, Qo' (or the

power target, P) and the minimum hydraulic head, H , are twoo

decision variables which should be optimized. In fact, a

stochastic dynamic programming algorithm may be quite appro-

priate for this problem.

Summary

This paper looks at some dynamics of reservoir operation

when power production is considered. These dynamics affect

the amount of energy that can be produced in the current time

period and affect the potential energy that could be

produced in future time periods.
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Such dynamics could be useful for studying the steady

state probability that the reservoir will be in a particular

state, given the operating policy. The dynamics are also

useful if optimization of reservoir operating rules is to

be performed.


