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ABSTRACT: 

 

With an increasing number of reported cases of hybridization and introgression, 

interspecific gene flow between animals has recently become a widely accepted and 

broadly studied phenomenon. In this study we examine patterns of hybridization and 

introgression in Ophthalmotilapia spp., a genus of cichlid fish from Lake Tanganyika, 

using mitochondrial and nuclear DNA from all four species in the genus and 

including specimens from over 800 kilometers of shoreline. These four species have 

very different, partially overlapping distribution ranges, thus allowing us to study in 

detail patterns of gene flow between sympatric and allopatric populations of the 

different species. We show that a significant proportion of individuals of the lake-

wide distributed O. nasuta carry mitochondrial and/or nuclear DNA typical of other 

Ophthalmotilapia species. Strikingly, all such individuals were found in populations 

living in sympatry with each of the other Ophthalmotilapia species, strongly 

suggesting that this pattern originated by repeated and independent episodes of 

genetic exchange in different parts of the lake, with unidirectional introgression 

occurring into O. nasuta. Our analysis rejects the hypotheses that unidirectional 

introgression is caused by natural selection favoring heterospecific DNA, by skewed 

abundances of Ophthalmotilapia species, or by hybridization events occurring during 

a putative spatial expansion in O. nasuta. Instead, cytonuclear incompatibilities or 

asymmetric behavioral reproductive isolation seem to have driven repeated, 

unidirectional introgression of nuclear and mitochondrial DNA into O. nasuta in 

different parts of the lake.  



INTRODUCTION: 

 

With a growing number of hybridization events reported among animal species, the 

last decade has seen a shift in the way evolutionary biologists face hybridization 

amongst taxonomically valid species (e.g. Baack and Rieseberg 2007; Schwenk, 

Brede and Streit 2008). Recent research has shown that interspecific gene flow might 

be temporarily or spatially restricted, and may occur in some parts of the genome but 

not in others (reviewed in Baack and Rieseberg 2007), and the role of hybridization in 

animal speciation has been acknowledged (e.g. Mallet 2007). This shift in thinking 

became possible due to advances in theoretical research (Beerli and Felsenstein 1999; 

Beerli and Felsenstein 2001; Nielsen and Wakeley 2001; Hey and Nielsen 2004; 

Kuhner 2009), an increase in computing power, and the increasing availability of 

multilocus datasets for a variety of organisms  

When studying interspecific hybridization, one often relies on the analysis of 

patterns of gene flow between two, usually sister, species (e.g. Carson and Dowling 

2006; Di Candia and Routman 2007; Fitzpatrick et al. 2008; Nadachowska and Babik 

2009). Strikingly, many such studies have found that following hybridization 

introgression of genetic material is typically unidirectional (e.g. McGuire et al. 2007; 

Alves et al. 2008; Plotner et al. 2008; Nevado et al. 2009; Keck and Near 2009). 

Different mechanisms have been suggested as responsible for this pattern, including 

natural selection (Ballard and Whitlock 2004; Nolte, Freyhof and Tautz 2006; Pfennig 

2007; Alves et al. 2008; Plotner et al. 2008; Fitzpatrick et al. 2010), differences in the 

relative abundance of the involved species (Hubbs 1955; Wirtz 1999; Chan and Levin 

2005; Carson and Dowling 2006; Linnen and Farrell 2007), cytonuclear 

incompatibilities or different survivability of reciprocal crosses (Bolnick et al. 2008), 



or asymmetric behavioral reproductive isolation (Egger, Mattersdorfer and Sefc 

2009).  

Comparatively few studies have addressed patterns of hybridization between 

more than two species (Grant, Grant and Petren 2005; McDonald et al. 2008; Alves et 

al. 2008; Keck and Near 2009). These studies have increased our knowledge about 

interspecific hybridization by showing that two species may “hybridize indirectly” by 

common interaction with a third species (McDonald et al. 2008; Keck and Near 

2009); and by showing that, in unidirectional introgression between multiple species, 

the donor species (Alves et al. 2008) or the recipient species (Keck and Near 2009) 

are often the same. These observations highlight the importance of an inclusive 

taxonomic sampling to properly understand patterns of gene flow amongst species, 

and suggest that intrinsic characteristics of the involved species may determine the 

outcome of hybridization events.  

Particularly good predictors of the direction of introgression seem to be a 

species’ distribution range and demographic history (Currat et al. 2008; Petit and 

Excoffier 2009). Under such scenario, individuals living at the distribution edge of a 

spatially expanding population become particularly susceptible to introgression of 

genetic material from species with which they come into contact during the range 

expansion. This could result in widespread species carrying genetic material of 

different species throughout its distribution range (e.g. Keck and Near 2009). The 

relative contribution of this phenomenon to the overall pattern of interspecific 

hybridization and introgression in animals depends on how many such cases are 

reported, and it thus seems timely to analyze groups of closely related species with 

different, overlapping distribution ranges. 

Preliminary analyses revealed extensive sharing of mitochondrial DNA 



(mtDNA) variation amongst the four species of the cichlid genus Ophthalmotilapia, 

part of the endemic Tanganyikan tribe Ectodini. If this sharing of genetic variation 

were due to interspecific hybridization, the Ophthalmotilapia genus would represent a 

particularly suitable group with which to address the role of a species’ distribution 

range in the direction of introgression between potentially hybridizing species. This is 

because (i) the different species have different distribution ranges, which are partly 

overlapping (figure 1); (ii) the life history and ecological characteristics of the 

different species are very similar; and (iii) the Lake Tanganyika’s species flock is old 

enough that it should allow discerning alternative scenarios of incomplete lineage 

sorting and introgression. The genus Ophthalmotilapia comprises four species: O. 

boops, O. heterodonta, O. nasuta and O. ventralis (Poll 1986); all these species feed 

on plankton and biocover and inhabit intermediate (sandy bottoms with rocks and 

boulders) shallow habitats (Poll 1986). All four species are sexually dimorphic, with 

males being more colorful and having extremely elongated pelvic fins with bright 

spatulated tassels at their tips (Hanssens, Snoeks and Verheyen 1999). The males also 

defend a breeding ground, to which females are attracted for spawning, and which 

varies from species to species. Following spawning, females mouthbrood the eggs and 

provide care for the fry (Nagoshi and Yanagisawa 1997). The four Ophthalmotilapia 

species show very different distribution patterns: O. heterodonta and O. ventralis 

have a complementary north-south distribution; O. nasuta is lake-wide distributed; 

and O. boops is restricted to a short stretch of shoreline in the south-eastern shore 

(Hanssens, Snoeks and Verheyen 1999). Given these dissimilar distribution ranges, 

we can analyze patterns of gene flow between both sympatric and allopatric 

populations of each species. 

In this study, we address the role of interspecific gene flow in the evolutionary 



history of a group of closely related species with very different and partly overlapping 

distribution ranges, by studying all the four species described in the genus 

Ophthalmotilapia. We use a mitochondrial gene (partial control region) and 9 nuclear 

microsatellites in order to answer the following questions: (i) can the genetic variation 

shared among species be attributed to hybridization (to the exclusion of alternative 

scenarios)?; (ii) if so, does the introgression of genetic material present a particular 

pattern, or is it random with respect to the species involved?; and (iii) if there is a 

particular pattern of introgression of genetic material, can any of the mechanisms 

typically invoked to explain such cases adequately account for the observed pattern?  

 

MATERIAL AND METHODS: 

 

Taxon and genetic sampling 

Taxon sampling (supplementary table S1) included 44 O. boops, 36 O. heterodonta, 

117 O. nasuta and 60 O. ventralis from 25 different localities across the lake (figure 

1). Tissue samples collected in the field were kept in 80% ethanol until extraction of 

DNA following standard protocols (Quiagen DNeasy kit). The mitochondrial control 

region was amplified for all specimens using published protocols (Nevado et al. 2009) 

and the first most variable segment of the control region obtained by sequencing in 

the forward direction on a ABI 3130XL sequencer following the manufacturer’s 

protocol. 

For a subset of the specimens (178 individuals from all four species, see 

supplementary table S1) nine microsatellite loci were amplified: UME002 and 

UME003 (Parker and Kornfield 1996); TmoM4, TmoM11, TmoM25 and TmoM27 

(Zardoya et al. 1996); Pzeb1 and Pzeb2 (van Oppen et al. 1997); and OSU19D (Wu, 



Kung and Chow 1996) using the protocols detailed in supplementary table S2. The 

individuals in the microsatellite dataset were chosen so as to have representative 

population samples from several localities where patterns of gene flow between 

species were investigated in detail using mtDNA data (see below).  

 

Phylogenetic analysis 

Sequences were aligned with CLUSTALW v 1.83 (Thompson, Higgins and Gibson 

1994) and the alignment checked by eye using the program SEAVIEW v 3.2 (Galtier, 

Gouy and Gautier 1996). Identical sequences were collapsed into haplotypes using the 

program collapse in TCS v 1.21 (Clement, Posada and Crandall 2000). Sites containing 

gaps were treated as a 5th character. JMODELTEST v 0.1.1 (Posada 2008) was used to 

select the best-fitting nucleotide substitution model (amongst three substitution type 

models) using both the Akaike Information Criterion (AIC, Akaike 1974) and the 

Bayesian Information Criterion (Schwarz 1978). Phylogenetic analysis was performed 

in MRBAYES v 3.1.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 

2003) and in PHYML v 3.0 (Guindon and Gascuel 2003) using the previously selected 

nucleotide substitution model. For Bayesian inference two simultaneous runs (four 

chains each, temperature = 0.2) were sampled every 1000th generation for 10 million 

generations until the average split frequencies between the two runs reached a value 

smaller than 0.01. After removing a burn-in period and checking (by eye) its 

appropriateness, the remaining trees were summarized to obtain posterior probabilities 

for the nodes obtained. For maximum likelihood the parameters of the nucleotide 

substitution model and topology were optimized sequentially until no change in 

likelihood was found, and support for the resulting topology was obtained by 

performing 100 bootstrap replicates. 



 

Analysis of gene flow using mtDNA 

As the phylogenetic reconstructions showed that none of the four species is 

monophyletic (see results), and in order to distinguish between incomplete lineage 

sorting or interspecific gene flow as possible causes for the lack of monophyly, we 

used the Bayesian approach implemented in the program MIGRATE-N v 3.0.3 (Beerli 

and Felsenstein 1999; Beerli and Felsenstein 2001; Beerli 2006) to estimate amount 

and direction of gene flow between sympatric and allopatric populations of the 

different Ophthalmotilapia species. Our hypothesis was that if following separation 

the four Ophthalmotilapia species did not exchange genes, migration patterns 

between allopatric and sympatric populations (of different species) should be similar 

(e.g. Grant, Grant and Petren 2005). On the other hand, if some level of gene flow 

persisted following separation, migration patterns are likely to be different between 

sympatric and allopatric populations: there is no planktonic life-stage in 

Ophthalmotilapia species, and fertilization of eggs occurs inside the female’s mouth, 

thus hybridization can only occur between sympatric populations, and gene flow 

should correspondingly be higher between such populations.  

We treated individuals of each species collected in the same locality as 

representing a single population (insofar as at least 10 individuals were available). For 

O. ventralis, we treated individuals collected in localities 8 through 12 (figure 1) as 

belonging to the same population, due to the small number of individuals collected at 

each of these localities. Likewise, individuals of O. heterodonta from localities 19, 20 

and 21 were treated as a single population. For each species, adequateness of the 

pooling of individuals was supported by non-significant FST values between these 

localities (data not shown). The populations defined in this step are hereafter named 



according to the species and locality of origin (e.g. On_21 corresponds to O. nasuta 

individuals from locality 21; Oh_19-21 to O. heterodonta individuals from localities 

19 to 21). 

We performed all possible pairwise comparisons between populations from 

different species, in each analysis considering only two populations from different 

species.  Parameters of the only nucleotide substitution model implemented in 

MIGRATE-N, F84 (Felsenstein and Churchill 1996) were estimated a priori in PAUP v 

4.0.b10 (Sinauer Associates, Inc. Publishers) and kept constant throughout the runs. 

Priors for the analysis in MIGRATE-N were selected by performing preliminary runs, 

and selecting prior distributions that encompassed the complete posterior distributions 

for each parameter. Each pairwise population analysis was performed twice 

independently (100,000 steps as burn-in, followed by 500,000 states recorded every 

100 steps). Results were checked by analyzing the shape of the posterior distributions 

for each parameter, the change in the parameters’ values throughout each run (using 

TRACER v1.5, available from http://tree.bio.ed.ac.uk/software/tracer/) and by 

comparing the results from independent runs. 

In case patterns of gene flow are different between sympatric and allopatric 

populations, and if this were due to interspecific genetic exchange, it would be 

interesting to gauge the time of such interspecific gene flow. With this purpose, we 

analyzed 100 datasets simulated under alternative scenarios of isolation and gene 

flow: the Isolation scenario (no gene flow after separation of the two populations, 

named scenario I hereafter), the Migration (constant amount of gene flow following 

separation, named M), the Secondary Contact (identical to the Isolation scenario, but 

with a recent period of gene flow, named SC) and the Isolation with Gene Flow 

scenarios (same as the Isolation scenario, but the two populations exchange genes at a 



constant rate for a short period after the separation, denoted IwGF). We then 

qualitatively compared the patterns obtained under these simulated scenarios to the 

results obtained in the analysis of the real data.  

The program SIMCOAL (Excoffier, Novembre and Schneider 2000) was used to 

simulate 100 datasets for each of four different scenarios of isolation and migration (I, 

M, SC and IwGF). The Kimura 2 parameter model of nucleotide substitution (Kimura 

1980) was used for the simulations (amongst models implemented in SIMCOAL, this is 

the most similar to the best-fitting model selected for our real data) using a transition 

bias of 0.9 (resulting in transition/transversion ratios of approx. 13 as observed in our 

data). To mimic as closely as possible our real data, population sizes of the two 

populations were set to 150,000 individuals (inferred from thetas of 0.003 to 0.018 

observed in our data) and kept constant (no strong growth/decline was detected in our 

real data). The substitution rate used for the simulations (2.8%) was the average of the 

values obtained using the method of Sturmbauer et al. (2001) in a dataset trimmed 

from the one used in Nevado et al. (2009) and corresponding to the first 500 bp of the 

control region (as used in this study). Time of separation of the two populations in 

each simulation was set to 500,000 years (from an average sequence divergence of 2-

3% between the main mtDNA lineages in our data) and a 500 bp gene sequence was 

obtained for 20 individuals of each population at the end of the simulation. In the 

scenarios involving migration, a single individual was moved from population 1 to 

population 2 per generation (no migration in opposite direction): (i) for the entire 

500,000 years (M), for the last 100,000 years of the simulation (SC), or for the first 

100,000 years following separation (IwGF). For each scenario, simulated datasets 

were analyzed in migrate-n, and the results obtained (posterior distributions for 

migration values and for migration events through time) were averaged over the 100 



datasets. The simulated datasets were also used in PAUP to build neighbor-joining 

trees, and the proportion of datasets resulting in reciprocal monophyletic relationships 

between the two simulated datasets was recorded for each simulation scenario. 

 

Analysis of nested migration models in IMA 

In order to obtain a more quantitative assessment of the support for alternative 

scenarios of gene flow between Ophthalmotilapia species, we performed a similar 

analysis of pairwise (sympatric and allopatric) congeneric populations, but used the 

program IMA (Hey and Nielsen 2007). For each pairwise comparison (involving O. 

nasuta populations), preliminary runs were performed to choose prior distributions for 

parameters of the model (population sizes of both current populations and of ancestral 

population, time of separation and migration amount between populations). We then 

performed two long runs for each analysis, with 100,000 burn-in steps followed by 

100,000 sampled states (sampled every 100th step). To fully explore the parameter 

space, we used a geometric heating scheme (30 chains, heating parameters 0.98 and 

0.75). Convergence was checked by comparing results of the two independent runs. 

Resulting genealogies were then used to estimate posterior distributions for all 

parameters of interest, and to calculate the likelihood of the full isolation and 

migration model as well as that of nested sub-models (Hey and Nielsen 2007). We 

then performed likelihood ratio tests (LRT) to compare the full model (allowing 

migration in both directions) and three sub-models (no migration from population 1 to 

2, no migration from population 2 to 1, and no migration in either direction). 

Significance of LRT was assessed by chi-square approximation, an approach which is 

statistically inappropriate because (i) the parameters of the nested sub-models were 

fixed at the boundary of the parameter space of the full model (Chernoff 1954) and 



(ii) because the sites in the mtDNA gene do not represent independent observations 

(Nielsen and Wakeley 2001). We thus estimated, in addition to LRT, the AIC which 

calculates the relative support of the data for alternative models.  

 

Neutrality tests and demographic reconstructions 

As demographic histories of species and populations can affect patterns of 

hybridization and introgression, we estimated past demographic changes by 

estimating the following neutrality statistics in DNASP v 5.10 (Librado and Rozas 

2009): Tajima’s D (Tajima 1989), Fu and Li’s D and F (Fu and Li 1993), Fu’s Fs (Fu 

1997) and Ramos-Onsins and Rozas R2 (Ramos-Onsins and Rozas 2002). 

Expectations for each test and significance of departure from these expectations were 

estimated with coalescent simulations (1000 replicates).  

We further used the program BEAST v 1.5.3 (Drummond and Rambaut 2007) 

to reconstruct past demographic changes. We used the best fitting nucleotide 

substitution model (as selected by JMODELTEST) and with parameters of the model 

estimated by BEAST (except for the nucleotide frequencies, for which empirical values 

were used). We implemented a strict molecular clock, and priors for population size 

were obtained using the Bayesian skyride method (Minin, Bloomquist and Suchard 

2008). All parameters’ priors were set to their default values except for the alpha 

parameter of the gamma distribution (we used a uniform distribution between 0 and 

100). Sampling was set to once every 1000th steps for a minimum of 5 million steps 

and a maximum of 100 million steps (depending on datasets) in order to achieve 

Effective Sample Sizes (ESS) over 200. Though rarely, some parameters in a few runs 

exhibited ESS<200 (but higher than 100) after the maximum of 100 million steps, but 

sampling was not carried further than the 100 million steps. We checked for 



convergence of independent runs using TRACER by plotting the change in likelihood 

values through each run, and by comparing results of two (or three when any ESS 

value was below 200) independent runs. Results from these runs were combined using 

the program LOGCOMBINER v 1.5.3  (part of the BEAST package) and demographic 

histories plotted.  

Neutrality tests and demographic histories were estimated using the 

mitochondrial control region for each of the populations defined in the analysis of 

gene flow, and for each of the defined O. nasuta populations after removing suspected 

hybrid individuals (except for On_15, due to the low number of specimens carrying 

the nasuta I mtDNA lineage in this locality).  

 

Microsatellites 

Significance of deviations from Hardy-Weinberg equilibrium (HWE) in the nuclear 

dataset was estimated in GENEPOP v 4.0 (Raymond and Rousset 1995) by performing 

global (across all loci) heterozygosity excess and deficit tests for each locality and 

species. For each test, a Markov Chain (MC) was run for 10,000 steps 

(dememorization phase) followed by   20 batches of 5,000 iterations each. Linkage 

between loci was tested using the composite linkage disequilibrium test (Weir 1996) 

implemented in GENEPOP. Significance was assessed with MC sampling (same setting 

as above for HWE test).  

The program STRUCTURE v 2.2 (Pritchard, Stephens and Donnelly 2000) was 

used to select the most likely number of clusters of individuals (K) in the dataset 

following the method of Evanno, Regnaut and Goudet (2005). For each value of K (1 

≤ K ≤ 10) three independent runs were sampled for 1 million generations following an 

initial burn-in period of 250,000 generations. Given the evidence in favor of 



hybridization between Ophthalmotilapia species, we used the admixture model 

(individuals allowed to have mixed ancestries from different clusters) and assumed 

that allele frequencies are correlated among populations (i.e. that the allele 

frequencies in different clusters are likely to be similar due to migration or shared 

ancestry). Convergence of independent runs was checked graphically by plotting the 

likelihood values throughout each run, and by comparing likelihood values between 

the runs.  

 

Analysis of gene flow using nuclear microsatellites 

To investigate further patterns of gene flow between populations of different species, 

and to compare results from mtDNA with those from nuclear microsatellites, we 

performed a similar analysis of pairwise, sympatric and allopatric, populations of the 

different Ophthalmotilapia species, using the microsatellite dataset. As 3 of the 9 

microsatellites used in this study have complex repetition motives (supplementary 

table S2), and given that a significant proportion of the alleles found in all 

microsatellites do not fit a stepwise mutation model (likely due to these 

microsatellites having been designed for species of a different cichlid tribe, the 

Tropheini), we could only use the infinite allele model (IA) as implemented in 

MIGRATE-N (IMA currently does not implement this model for microsatellites). 

Preliminary runs were used to choose adequate priors for theta and migration values, 

after which two independent runs were performed for each pairwise comparison 

(25,000 burn-in steps, followed by 100,000 states recorded every 100 steps, static 

heating scheme with 4 concurrent chains). Results of independent runs were checked 

for convergence by comparing resulting posterior distributions and estimated values 

of parameters. 



 

RESULTS: 

 

Phylogenetic analysis 

We found 78 haplotypes amongst 257 control region sequences of Ophthalmotilapia 

spp., with eight of these haplotypes being shared between species (figure 2). Six of 

these eight haplotypes were shared between O. nasuta and one (or two) of the other 

Ophthalmotilapia species (figure 2), and these haplotypes were always found in 

sympatry or in nearby localities. We performed a permutation test to assess the 

probability that this pattern would occur by chance alone, in the following way: 

individuals of each of the species were randomly redistributed across localities, such 

that individuals carrying haplotypes shared amongst species could now be found in 

any locality. We then estimated, for each O. nasuta individual carrying a shared 

haplotype, the “geographic” distance between them and the individuals of the other 

species carrying the same haplotype. Note that the geographic distance was estimated 

by the number of localities between the two haplotypes, and as such does not 

accurately represent the real, physical distance between the individuals, but only the 

number of sampled localities between them. However, the same “geographic” 

distance was calculated for the empirical data, so this should not affect the result of 

this test. We performed 10,000 such permutations, and plot the resulting distributions 

of average and maximum distances obtained for these permutations in figure 3. The 

average and maximum number of distances estimated from the real data are 

represented by arrows in figure 3. It can be seen that both average and maximum 

number of distances in the real data do not fall in the ranges of distributions obtained 

in the permutations. This strongly suggests that the geographic distribution of shared 



haplotypes observed in Ophthalmotilapia spp. is not random.  

Both Akaike and Bayesian Information criteria implemented in JMODELTEST 

selected the Hasegawa-Kishino-Yano model of nucleotide substitution (Hasegawa, 

Kishino and Yano 1985) with a proportion of invariable sites and (gamma distributed) 

rate heterogeneity among the remaining sites (HKY+I+G). Bayesian Inference and 

Maximum Likelihood searches returned similar trees with the same (albeit often 

weakly supported) five main clades (figure 2, supplementary figure S3):  one clade 

containing most (and exclusively) O. nasuta individuals, hereafter referred to as clade 

nasuta I; a second clade containing 17 O. nasuta individuals collected in localities 21 

and 22 (clade nasuta II); a third clade containing most O. boops individuals (boops 

clade); a fourth clade containing most individuals of O. ventralis (ventralis clade); and 

a clade containing most individuals of O. heterodonta (heterodonta clade). The last 

two clades (ventralis and heterodonta) were not clearly separated, and two O. 

heterodonta individuals could not be assigned to either of these clades (figure 2). 

Interestingly, while several O. nasuta specimens clustered within the ventralis, the 

heterodonta or the boops clades, the two nasuta clades (nasuta I and nasuta II) 

contained exclusively O. nasuta individuals. Furthermore, O. nasuta individuals 

carrying mtDNA lineages typical of (i.e. clustering with) other species were always 

found within the distribution range of the latter species (inset figure 2). 

 

Analysis of gene flow using mtDNA 

We defined eight populations (four of O. nasuta, two of O. ventralis and one of each 

of the other species) and analyzed patterns of gene flow between all 21 possible 

interspecific population pairs. This included three sympatric population pairs (O. 

nasuta and each of the other three Ophthalmotilapia species) and 18 allopatric 



comparisons (figure 4). In the analysis of O. nasuta and O. boops populations, it is 

evident that sympatric and allopatric populations of the two species exhibit different 

patterns of gene flow. In sympatric populations, the estimated amount of gene flow 

from O. boops into O. nasuta was much higher than between allopatric comparisons 

of populations of these species. On the other hand, the estimated amount of gene flow 

in opposite direction (from O. nasuta into O. boops) was similar across sympatric and 

allopatric comparisons (table 1, figure 4). A very similar pattern was found when 

analyzing O. nasuta and O. ventralis populations, with estimated amount of gene flow 

from O. ventralis into O. nasuta exhibiting much higher values in sympatry than in 

allopatry. Conversely, the estimated amount of gene flow between O. nasuta and O. 

heterodonta was generally low whether sympatric or allopatric populations were 

analyzed, with the highest amount of gene flow estimated from Oh_19-21 to On_15. 

Finally, amount of gene flow estimated between O. boops and O. ventralis, O. boops 

and O. heterodonta and O. ventralis and O. heterodonta (figure 4) was always low.  

The results of our analysis of simulated datasets show that the I and IwGF 

scenarios can be distinguished from the M and SC scenarios by observing the shape of 

the posterior distribution for the amount of gene flow and the frequency histogram of 

migration events through time (figure 5). For the I and IwGF scenarios, posterior 

distributions for the amount of gene flow between populations (in both directions) 

peak at zero (i.e. the mode exhibited a very low value). For the M and SC scenarios, 

the posterior distribution for the amount of gene flow from population 1 to population 

2 exhibit a mode at positive values (in the opposite direction, posterior distributions 

peak at zero). Similarly, the histogram of the frequency of migration events through 

time is different between the M and SC, and the I and IwGF scenarios. For the first 

two, the shape of the histogram resembles an exponential decay curve. For the latter 



two the histogram of migration events through time resembles a sigmoid curve (in 

individual runs, the frequency of migration events exhibits positive modes, but given 

its variance across replicates the resulting summary distribution in figure 5 does not 

present a clear peak). Phylogenetic relationships were estimated in all 100 simulated 

datasets for each scenario. Most datasets obtained under the I (99) and under the 

IwGF (98) scenarios resulted in reciprocal monophyletic relationships between the 

two simulated populations. Conversely, in the M and SC scenarios almost all datasets 

resulted in polyphyletic relationships between simulated populations (98 in the M and 

96 in the SC scenarios). 

 

Analysis of nested migration models in IMA 

In all runs performed in IMA, resulting posterior distributions for all parameters were 

very smooth and unimodal, with the exception of the parameter reflecting the time 

since separation of the two populations. Often, posterior distributions for this 

parameter exhibited long tails into high values, likely reflecting the long separation 

time of the two populations and as well the violation (in our data) of one of the major 

assumption of IMA: that the two populations under study are the closest related 

populations, and are not exchanging genes with other, unsampled populations. As our 

comparisons involved populations from different species, this assumption is certainly 

not met in our analysis, and thus the results obtained should be interpreted with 

caution. In this respect, it is worth noting that the results of independent runs were 

almost always very similar, not in the estimated likelihood of the models, but in the 

result of LRT and AIC analysis (table 2 and supplementary table S4).  

For the comparisons involving O. boops and O. nasuta, LRTs were significant 

when comparing models with and without gene flow (into O. nasuta) between 



sympatric populations (in locality 15). The AIC suggested that the best-fitting model 

for this sympatric comparison should include gene flow from O. boops into O. nasuta 

(and not in the opposite direction). For allopatric comparisons between O. boops and 

O. nasuta results mostly suggested absence of gene flow, with two exceptions: LRT 

was marginally significant in one of the runs comparing Ob_15 and On_18 (p=0.03); 

and AIC slightly favored a model including gene flow into O. nasuta in one of the 

runs comparing Ob_15 and On_18 (note that in both cases, these results were 

obtained only in 1 of the 2 independent runs of IMA, the other run suggesting no gene 

flow). 

For the analysis involving O. ventralis and O. nasuta, the only comparison 

which returned consistent evidence for gene flow concerned sympatric populations 

Ov_8-12 and On_12: LRT tests in this case rejected models without gene flow into O. 

nasuta, and AIC selected a model including gene flow into (but not from) O. nasuta. 

For the comparisons involving the population On_15 and Ov_8-12 (or Ov_6), AIC 

suggested the best model to include gene flow into O. nasuta, however LRT tests 

were inconclusive. The remaining allopatric comparisons between these species 

suggest absence of gene flow (non-significant LRT and AIC selecting a model 

without gene flow). 

In the analysis including O. heterodonta and O. nasuta populations, we 

recovered strong support for gene flow occurring between Oh_19-21 and On_15, with 

significant LRT results between models with and without gene flow into O. nasuta, 

and AIC favoring the model which includes gene flow into O. nasuta. None of the 

remaining comparisons returned significant LRT results, and AIC favored models 

without gene flow in two (out of three) comparisons.  

 



Neutrality tests and demographic reconstructions 

Most populations analyzed showed no signs of deviations from neutrality (table 3) 

with the exception of the populations Ob_15 (Tajima’s D, Fu’s Fs and R2 tests all 

significant). Likewise, the demographic histories of populations recovered using 

BEAST suggested rather stable population sizes for all populations analyzed, with the 

exception of Ob_15, which exhibited some growth (supplementary figure S5). Results 

obtained for O. nasuta were very similar whether all specimens, or only specimens 

carrying the nasuta I mtDNA clade, were analyzed (supplementary figure S5).  

 

Microsatellites 

Nine microsatellite loci were scored in 178 Ophthalmotilapia spp. (35 O. boops, 31 

O. heterodonta, 76 O. nasuta and 36 O. ventralis) from 10 localities (supplementary 

table S1). Overall HWE was rejected for O. nasuta populations due to excess 

heterozygosity in locality 21 and due to deficit heterozygosity in localities 12 and 15 

(table 4). None of the pairwise linkage disequilibrium tests was significant 

(supplementary table S6) suggesting that the nine loci are independent. The program 

STRUCTURE was used to estimate the likelihood of our nuclear dataset under a 

different number of clusters (K, between 1 and 10) using the admixture model with 

correlated allele frequencies, and this value was in turn used to estimate the statistic 

∆K (Evanno, Regnaut and Goudet 2005). The likelihood rapidly increased between 

K=1 and K=3 or 4, and then plateaued for higher K values, while ∆K showed a clear 

peak at K=4 (figure 6). In the resulting bar plots with K=4 (figure 6) each cluster 

roughly corresponds to a species. The exceptions include the individuals of O. 

ventralis from the northern end of its distribution range, which cluster with O. 

heterodonta; and O. nasuta specimens from both ends of the analyzed distribution 



range, with southernmost individuals always strongly clustering with O. ventralis, and 

northernmost individuals strongly clustering with either O. ventralis or O. 

heterodonta (in different runs). 

 

Analysis of gene flow using nuclear microsatellites 

Results of the pairwise population comparisons using the nuclear dataset are 

summarized in table 5 and supplementary figure S7. Posterior distributions for the 

amount of gene flow between populations in each analysis almost invariably returned 

unimodal, smooth distributions (only 2 posterior estimates showed bimodal 

distributions). However, independent runs for the same analysis often returned rather 

different results (table 5 and supplementary figure S7). Of the 64 estimated gene flow 

parameters, 12 exhibited posterior distributions with maximum frequency at 0, the 

remaining exhibiting a peak at positive values. The histogram of migration events 

through time (not shown) always resembled an exponential decay curve, with most of 

the posterior distribution situated at time=0. Contrarily to the mtDNA dataset, we did 

not recover any obvious relationship between estimates of gene flow and sympatric / 

allopatric comparisons (table 5).  

 

DISCUSSION 

 

Interspecific sharing of genetic variation: disentangling causes 

The phylogenetic relationships of Ophthalmotilapia species show that none of the 

species is monophyletic. Even though species-specific mitochondrial lineages were 

retrieved, some haplotypes are shared between species, and several individuals carry 

mtDNA haplotypes typical of (i.e. genetically more similar to) other species’ lineages. 



Usual explanations for the lack of monophyly of closely related species include 

incorrect taxonomy, incomplete lineage sorting and interspecific hybridization (Funk 

and Omland 2003; McKay and Zink 2010).  

A morphometric revision of the genus Ophthalmotilapia, with a full list of 

diagnostic characters, was given in Hanssens, Snoeks and Verheyen (1999). The most 

important and easily observable characters to distinguish the four species include the 

dentition, the width of the lower jaw and the number of scales between lateral lines 

(figure 7). Ophthalmotilapia boops can be distinguished from the three other 

Ophthalmotilapia species by its entirely tricuspid outer mandibular dentition (all other 

species have unicuspid outer oral teeth). Ophthalmotilapia boops (lower jaw width 

less than 28.0% of the Head Length, HL) and O. nasuta (less than 27.4 % HL) have a 

narrower lower jaw than O. heterodonta (more than 27.2 % HL) and O. ventralis 

(more than 24.1% HL). Due to allometry (the lower jaw width increases with 

increasing body size) there is a large overlap in the percentages for the entire size 

ranges of all four species. However, when these percentages are plotted against HL, 

almost all specimens can be assigned to either the narrow- or broad-mouthed species 

(figure 3 in Hanssens, Snoeks and Verheyen 1999). The anterior border of the lower 

jaw is also more rounded in O. boops and O. nasuta, while fairly straight in O. 

heterodonta and O. ventralis (the latter is illustrated in figure 7). The number of scales 

between the lateral lines can be used to distinguish between the narrow- and broad-

mouthed species: Ophthalmotilapia heterodonta (two scales between the lateral lines) 

can be distinguished from O. ventralis (three scales); while O. nasuta (two scales) can 

also be distinguished from O. boops (three scales between the lateral lines). All 

individuals used in this study were carefully identified with vouchers kept for most 

specimens (supplementary table 1), and taxonomic misassignment seems unlikely to 



account for the observed number of specimens carrying other species’ DNA. For 

instance, 22 O. nasuta individuals cluster within the boops mtDNA clade, while 

distinguishing these two species is rather straightforward given the entirely tricuspid 

oral dentition of O. boops. Furthermore, there is no reason to expect a directional, 

biased taxonomic misidentification between species (i.e. that O. heterodonta, O. 

boops or O. ventralis would be more prone to be erroneously identified as O. nasuta, 

than vice-versa). Taken together, these observations suggest that the sharing of 

genetic material between O. nasuta and the remaining Ophthalmotilapia species 

cannot be adequately explained by incorrect taxonomic identification. 

Incomplete lineage sorting and interspecific hybridization are often difficult to 

disentangle (Funk and Omland 2003; McKay and Zink 2010). In our study, several 

lines of evidence strongly supported the hybridization scenario over the incomplete 

lineage sorting. First, eight out of the 78 haplotypes found (c. 10%) were shared by at 

least two species (figure 2), which under the incomplete lineage sorting scenario 

would require extremely young species divergence times, which is unlikely given the 

amount of divergence observed both within and between the species. Second, the 

geographical pattern of haplotype sharing is clearly not random (figure 3), which 

would be expected under the incomplete lineage sorting scenario. Moreover, O. 

nasuta with mtDNA typical of other species (i.e. which in our phylogenetic 

reconstructions were solved within other species’ mtDNA lineages) was only found in 

areas where O. nasuta occurs in sympatry with these other species (figure 2). Third, 

the number of haplotypes shared between species (or clustering within other species’ 

mtDNA lineages) does not correlate with time since divergence. In fact the most 

closely related species O. heterodonta and O. ventralis (as revealed by both the 

mtDNA phylogeny and by the clustering of O. ventralis northern individuals with O. 



heterodonta) exhibit relatively few such haplotypes when compared to the more 

distantly related O. nasuta and O. ventralis or O. boops (figure 2). And fourth, LRT 

and AIC analysis of nested migration models in IMA found consistent evidence (both 

LRT and AIC) for gene flow in sympatric (but not allopatric) comparisons between O. 

boops or O. ventralis and O. nasuta (table 2). For O. heterodonta and O. nasuta, the 

results are somewhat difficult to interpret, as both LRT and AIC results suggest 

significant gene flow between allopatric populations Oh_19-21 and On_15. This is 

due to a single O. nasuta individual found in locality 15 carrying O. heterodonta 

mtDNA (figure 2), and it is not clear why this would result in a significant inference 

of gene flow. It should be noted, however, that in all comparisons involving On_15, 

AIC selected a model with gene flow into O. nasuta, even when comparing this 

population to geographically very distant populations (table 2, supplementary table 

S4).  

The analysis of simulated datasets also supports the claim that hybridization, 

and not incomplete lineage sorting, are responsible for the sharing of genetic material 

between Ophthalmotilapia species. In fact, the results obtained for the amount and 

timing of migration events (i.e. gene flow) when analyzing sympatric populations of 

O. nasuta and O. boops or O. nasuta and O. ventralis (figure 4 and table 1) is very 

similar to the results obtained for the simulated datasets under the M or SC scenarios 

(figure 5). Conversely, allopatric populations’ comparisons almost invariably resulted 

in posterior distributions which resemble the ones obtained under the I and IwGF 

scenarios. Furthermore, out of 200 simulations under the I and IwGF scenarios, only 

three yielded non-monophyletic phylogenetic relationships between the two simulated 

populations (congruent with our own, real data). Conversely, for the two hybridization 

scenarios, the number of non-monophyletic results was 98/100 (M) and 96/100 (SC). 



Therefore, our results provide strong support for the interspecific hybridization 

scenario. They suggest that reproductive isolation between the Ophthalmotilapia 

species is not complete, and in areas of sympatry individuals belonging to different 

species hybridize, leading to introgression of genetic material across species 

boundaries. A similar case has been reported in the Darwin’s finches from the 

Galapagos Islands (Grant, Grant and Petren 2005), with microsatellite data showing 

that species living in sympatry on the same island often were more similar 

(genetically) than allopatric populations (from different islands) of the same species. 

In this work we use both nuclear as well as mtDNA, which allows us to make 

inferences regarding not only the presence/absence of introgression, but also the 

direction of these introgression events.  

 

Patterns of introgression in Ophthalmotilapia spp. 

We found that introgression of mtDNA in Ophthalmotilapia spp. occurs almost 

exclusively from O. boops or O. ventralis into sympatric O. nasuta individuals. The 

fact that O. nasuta individuals carry mtDNA haplotypes identical to other species’ 

haplotypes, as well as some private haplotypes that cluster within other species 

mtDNA lineages suggests that hybridization has occurred in both historical and very 

recent times (possibly being ongoing at present). Furthermore, introgression seems to 

have taken place independently in different areas of the lake, and to have been rather 

extensive, with O. nasuta populations in some localities carrying a big proportion of 

mitochondrial DNA typical of other species (figure 2).  

Contrarily to earlier studies on other animal groups (e.g. Alves et al. 2008; 

Keck and Near 2009), we recovered rather extensive introgression of nuclear DNA 

occurring concomitantly with introgression of mtDNA (figure 6). The results of our 



analysis of nuclear microsatellites in MIGRATE-N was inconclusive, with some gene 

flow being recovered between almost all pairwise comparisons in both directions 

(table 5). To our knowledge, this is probably due to the complexity of the isolation 

with migration model, coupled with the relatively low information content of 

microsatellites using the IA model. This suggests that conclusions drawn using these 

9 microsatellites should be taken with caution, particularly due to the high assignment 

probability of O. nasuta individuals to other Ophthalmotilapia species (figure 6). As 

such, the most-sound conclusions drawn in this study are based solely on mtDNA 

data, an approach with well-known caveats (e.g. Balloux 2010). In future work, the 

analysis herein performed could be complemented with genome-wide data including 

many nuclear genes, which could then be analyzed with better established nucleotide 

substitution models, and support the outcome of our analysis with mtDNA data. 

Regardless of these issues, our results of the clustering analysis performed in 

STRUCTURE suggest introgression of nuclear alleles from O. ventralis and O. 

heterodonta into O. nasuta (figure 6). This occurred in locality 12, with O. ventralis’ 

nuclear DNA introgressing into O. nasuta; and in locality 22, where all O. nasuta 

individuals clustered with either O. ventralis or O. heterodonta. In the first case, 

introgression of nuclear DNA was accompanied by introgression of mtDNA (figure 

2). In locality 22 (and 21), all 17 O. nasuta individuals collected carried one of four 

mtDNA haplotypes, which formed a monophyletic, strongly supported clade (clade 

nasuta II). Together with the ambiguous clustering in the nuclear DNA analysis, this 

suggests that these individuals represent an older hybridization event, between O. 

nasuta and O. heterodonta, or between O. nasuta and the ancestor of O. ventralis / O. 

heterodonta. If the latter hypothesis is correct, then the mtDNA lineage found in O. 

nasuta in these localities would represent a mtDNA fossil (cf. Bossu and Near 2009). 



 While introgression of some nuclear DNA is expected during introgression 

following hybridization, its traces are rarely recovered. This is typically attributed to 

the process of preferably unidirectional backcrosses of hybrids (and hybrids’ progeny) 

with one of the parental species. Over a few generations, this should lead to the 

deletion of the other parental species’ nuclear DNA traces. It should thus only be 

possible to recover nuclear DNA traces from both parental species in first (or early) 

generation hybrids. However, out of seven haplotypes clustering within the ventralis 

clade, and found in O. nasuta (figure 2), five were only found in the latter species, 

ruling out the possibility of these being early generation hybrids between these 

species. To our knowledge, the only explanation for the high proportion of 

introgressed nuclear DNA in O. nasuta several generations after the hybridization 

events (in the absence of selection favoring heterospecific nuclear DNA) is that O. 

nasuta females carrying heterospecific mtDNA successfully mate with O. ventralis or 

O. heterodonta males, resulting in a continuous introgression of nuclear DNA into O. 

nasuta. 

 

Mechanisms responsible for introgression in Ophthalmotilapia spp. 

Due to our inclusive taxonomic sampling of Ophthalmotilapia spp., our extensive 

geographic coverage, and the use of both nuclear and mtDNA markers, we are able to 

reject several of the potential mechanisms responsible for introgression in 

Ophthalmotilapia spp. 

We uncovered extensive unidirectional introgression into the widespread O. 

nasuta, however this does not seem to have resulted from hybridization events 

occurring during a spatial expansion of this species. In fact, we did not find any traces 

of population expansion in any population of O. nasuta analyzed. Our results also 



suggest that local populations of O. nasuta do not consistently outnumber sympatric 

populations of other species, and thus we can exclude the hypothesis of unidirectional 

introgression due to skewed abundances. Natural selection is also unable to account 

for the observed pattern of introgression, as this should result in a single mtDNA 

lineage introgressing into O. nasuta instead of several lineages in different areas. We 

are thus left with two possible explanations for the repeated unidirectional 

introgression of genetic material into O. nasuta: cyto-nuclear incompatibilities which 

affect reciprocal crosses differently, or asymmetric behavioral reproductive isolation. 

The two later hypotheses are hard to discern with our data, as they are expected to 

produce very similar patterns of interspecific sharing of genetic variation.  

In favor of cyto-nuclear incompatibilities, it should be noted that O. nasuta 

females carrying O. ventralis mtDNA seem to have successfully mated with O. 

ventralis males, while no hybridization events seem to have involved O. nasuta 

females carrying nasuta I or nasuta II mtDNA lineages. If this is the case, our results 

provide further support for the claim by Keck and Near (2009) that the key factor 

influencing a species role as donor or recipient in unidirectional introgression events 

is the mtDNA lineage. On the other hand, asymmetric behavioral reproductive 

isolation through sexual selection could occur if females would favor heterospecific 

mates (e.g. Pfennig 2007), and could lead to introgression of nuclear genes 

responsible for sexual traits (e.g. Stein and Uy 2006). Hybrid viability studies and 

mate choice trials involving the different Ophthalmotilapia species would be needed 

to address this question. At any rate, our results show that intrinsic characteristics of 

species play an important role in deciding the fate of introgressing genes following 

hybridization, even in the absence of external factors shown to promote unidirectional 

introgression (such as the relative abundance of the species involved - e.g. Carson and 



Dowling 2006; Linnen and Farrel 2007 - or their demographic and spatial dynamics - 

e.g. Currat et al. 2008; Petit and Excoffier 2009). 
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TABLES 
 
Table 1: Average of the mode (from two runs) for the amount of gene flow estimated 
to (and from) O. nasuta populations with mtDNA.  
 On_21 On_18 On_15 On_12 
Ob_15 48.5 (3.8) 56.3 (3.8) 240.8 (4.7) 3.8 (3.8) 
Ov_8-12 37.5 (3.8) 3.8 (3.8) 71.3 (3.8) 251.2 (3.8) 
Ov_6 26.2 (3.8) 3.8 (3.8) 56.2 (3.8) 60.0 (3.8) 
Oh_19-21 11.2 (3.8) 3.8 (26.2) 101.2 (3.8) 3.8 (3.8) 
Filled cells highlight sympatric comparisons.  
 
Table 2: Summary of the result of the analysis of nested migration models in IMA. 
 On_21 On_18 On_15 On_12 
Ob_15 m1=m2=0* m1=m2=0** m1, m2=0 m1=m2=0 
Ov_8-12 m1=m2=0 m1=m2=0 m1, m2=0** m1, m2=0 
Ov_6 m1=m2=0 m1=m2=0 m1, m2=0** m1=m2=0 
Oh_19-21 m1=m2=0 m1=m2=0 m1, m2=0 m1=0, m2 
m1 - gene flow into O. nasuta; m2 - gene flow from O. nasuta. 
m1=0 means best model does not include gene flow into O. nasuta, m2=0 means it 
does not include gene flow from O. nasuta (as selected by AIC). Comparisons in bold 
denote significant LRT results between models with and without gene flow. Filled 
cells highlight sympatric comparisons. 
*- runs returned different AIC-selected best models. **- runs returned different LRT 
results. For details, see supplementary table S4. 
 
Table 3: Result of neutrality tests performed for each population of each species 
defined in the text. 
Pop A N B Tajima’s D FL D C FL F D Fu’s Fs E R2 F 

On_21 16 0.24 (0.69)  -0.5 (0.31)  -0.35 (0.33)  0.14 (0.54)  0.18 (0.58) 

On_18 37  1.10 (0.90)  0.16 (0.54)  0.55 (0.73)  3.35 (0.90)  0.16 (0.88) 

On_15 15  0.31 (0.65) -0.18 (0.37) -0.05 (0.43)  5.59 (0.98)  0.17 (0.77) 

On_12 22  1.72 (0.98)  1.38 (0.98)  1.73 (0.99)  1.63 (0.79)  0.19 (0.99) 

Oh_19-21 23 -0.91 (0.20)  0.13 (0.54) -0.19 (0.35) -1.77 (0.06)  0.09 (0.09) 

Ob_15 26 -1.79  (0.01)* -1.11 (0.14) -1.53 (0.12) -4.79 (0.00) *  0.08 (0.04) * 

Ov_8-12 13 -0.21 (0.47) -0.03 (0.47) -0.09 (0.47) -2.26 (0.09)  0.13 (0.28) 

Ov_6 24  1.28 (0.92) -0.26 (0.38)  0.22 (0.56)   2.75 (0.91) 0.18 (0.91) 
A - Population name; B - number of sequences; C - Fu and Li’s D; D - Fu and Li’s F; E - 

Fu’s Fs; F - Ramos-Onsins and Rozas R2. Significant deviations marked with *. 
 
 
Table 4: Result (p-values) of Hardy-Weinberg Equilibrium tests (for heterozigosity 
deficit and excess) performed for the microsatellite dataset for each locality of each 
species. 

Species Locality Excess Deficit 
O. boops 15 0.87 0.16 
 18 0.16 0.82 



O. heterodonta 15 0.08 0.93 
 18 0.69 0.32 
 19 0.77 0.24 
 20 0.79 0.21 
 21 0.87 0.13 
O. nasuta 12 0.99 0.00 * 
 15 0.99 0.01 * 
 16 0.88 0.12 
 18 0.67 0.39 
 21 0.02* 0.98 
O. ventralis 3 0.93 0.08 
 6 0.89 0.18 
 12 0.95 0.06 
 15 0.96 0.12 
 16 0.45 1.00 
*- Denotes significant results  
 
Table 5: Modes for the amount of gene flow estimated to (and from) O. nasuta 
populations using microsatellites.  
 On_21 0n_18 0n_15 0n_12 
Ob_15 23.5 (8.5) 

19.5 (0.5) 
0.5 (11.5) 
29.5 (0.5) 

4.5 (0.5) 
0.5 (0.5) 

114.5 (38.5) 
42.5 (0.5) 

Ov_12 0 (0) 
76.5 (22.5) 

32.5 (69.5) 
8.5 (78.5) 

20.5 (31.5) 
22.5 (31.5) 

33.5 (32.5) 
49.5 (57.5) 

Ov_6 32.5 (13.5) 
16.5 (16.5) 

0.5 (20.5) 
0.5 (21.5) 

5.5 (0.5) 
0.5 (0.5) 

91.5 (17.5) 
26.5 (16.5) 

Oh_19-21 24.5 (16.5) 
36.5 (21.5) 

5.5 (18.5) 
19.5 (14.5) 

22.5 (5.5) 
4.5 (23.5) 

30.5 (5.5) 
31.5 (18.5) 

Filled cells highlight sympatric comparisons. For each pairwise comparison, we show 
the results of two independent runs. 
 
 
FIGURE LEGENDS: 

 

Figure 1: Outline of Lake Tanganyika showing the 25 localities sampled in this study. 

The blue shades in the lake represent depth (darker areas are deeper). Inset shows 

approximate location of Lake Tanganyika in East Africa. Colored areas in the lake 

show distribution ranges analyzed in this study for O. boops (red), O. heterodonta 

(orange) and O. ventralis (blue). Note that our sampling did not include the complete 

distribution range of O. heterodonta (which inhabits most of the northern half of the 



lake). Note also that O. nasuta’s distribution range encompasses the complete lake 

(not shown for clarity). 

 

Figure 2: Phylogenetic relationships among 78 unique mtDNA haplotypes found in 

Ophthalmotilapia spp. Numbers below nodes denote posterior probabilities (PP), 

above nodes show bootstrap support (BS). Support not shown for branches with less 

than 0.5 (PP) or 50 (BS). Clade names follow from the text. Circles in front of 

branches of the tree represent number of individuals carrying each haplotype, and are 

colored according to the species where they were found (red for O. boops, orange for 

O. heterodonta, blue for O. ventralis and green for O. nasuta). Inset on the bottom 

shows the proportion of the different mtDNA lineages found in O. nasuta throughout 

the lake (number inside pie charts is the number of O. nasuta specimens collected in 

each locality; the proportion of the pie chart with each color represents the proportion 

of each mtDNA lineage found within O. nasuta’s individuals in each locality).  

 

Figure 3: Result of the permutation analysis performed with haplotypes shared 

between species. The grey area represents the distribution of averages (NLOCaverage, 

upper panel) and maximum values (NLOCmaximum, lower panel) of the number of 

localities between haplotypes shared among species, obtained in 10,000 replicates 

where the geographic distribution of haplotypes within each species was random (x-

axis is the number of localities between individuals carrying identical haplotypes, y-

axis the number of observations). The arrows in both graphs signal the values of these 

two quantities (average and maximum) observed in the real data. As can be seen, 

these fall short of the complete distributions obtained by permutation, showing that 

the geographic distribution of shared haplotypes observed in our data is not random. 



 

Figure 4: Results of the analysis performed in MIGRATE-N using different pairwise 

comparisons of populations from each species. Upper four rows represent 

comparisons between O. nasuta and each of the other Ophthalmotilapia species. 

Bottom two rows show pairwise comparisons between O. boops, O. ventralis and O. 

heterodonta. Inset “S” indicates comparisons between sympatric populations, 

remaining comparisons involve allopatric populations. Within each graph, gray lines 

represent posterior distributions for the amount of gene flow (bottom and left axes), 

black lines represent frequency histograms of migration events through time (upper 

and right axes). For both the estimated amount of gene flow and for the frequency 

histograms of migration events, dashed and solid lines depict the direction of gene 

flow (solid lines represent gene flow into the population depicted above the graphs, 

dashed lines gene flow into populations depicted on the left side). We show only 

results for one of two independent runs performed for each pairwise comparison, 

because the results were always identical in both runs. Lower and upper x axes are 

constant across graphs, and are only depicted on the lower and upper rows. For the 

amount of gene flow, a log scale is used on the y-axis to help visualization. The 

shaded area on the upper four rows represents the values for the amount of gene flow 

into O. nasuta which are inside the 95% highest-posterior credibility (HPC) set. Note 

how in the sympatric analysis involving O. nasuta and O. ventralis or O. boops the 

95% HPC is shifted towards positive values and does not include zero.  

 

Figure 5: Summary of the analysis in MIGRATE-N of simulated datasets obtained in 

SIMCOAL under different scenarios of isolation and gene flow (Isolation, Isolation 

with Gene Flow, Migration and Secondary Contact) between two populations that 



diverged 500,000 years ago. Diagram on top of each panel depicts the timing and 

direction of gene flow events in each simulation (see material and methods for 

details). The graphs in each panel show the resulting distributions obtained for each 

parameter (in gray for the amount of gene flow, in black for the histogram of 

migration events through time) over 100 simulated datasets (black and dashed lines 

represent averages, dotted lines the 5 and 95% of the distribution) in each direction 

(shown in the upper-right of each graph). The layout of graphs follows from figure 3 

(gene flow values depicted on left and bottom axes, frequency histogram of migration 

events on upper and right axes, scale of both x-axes kept constant across graphs, gene 

flow values depicted in log-scale). 

 

Figure 6: Result of the analysis of nine microsatellite loci sampled in 178 

Ophthalmotilapia spp. Upper graph shows the change in estimated likelihood (black 

line, represented on left y-axis) and in the statistic ∆K (gray, right y-axis) with 

increasing number of clusters assumed (K). The bar plot on the bottom was obtained 

with STRUCTURE when K=4 and using the admixture model with correlated allele 

frequencies. The results shown concern only one of the runs performed in STRUCTURE 

with K=4. Different runs of STRUCTURE with K=4 alternatively clustered O. nasuta 

individuals from locality 21 with O. heterodonta (assignment of all other individuals 

remained unchanged across runs). Each bar in the bar plot represents one individual, 

the color(s) in each bar representing the proportion of the individual’s genome coming 

from each of the four assumed clusters. The bar plot is divided into four representing 

the taxonomic classification of the individuals into the four Ophthalmotilapia spp. 

Within each species thin black lines show different localities (denoted below plot). 

 



Figure 7: Main taxonomic characters used in the identification of the different 

Ophthalmotilapia species. Top panel- Tricuspid (left) and unicuspid (right) teeth 

found in Ophthalmotilapia spp. Middle panel- Lower jaw width. This measurement is 

taken with the mouth open, to take this measurement the caliper is closed until it 

touches the edge of the lower jaw, which is at its widest anteriorly. Bottom panel- 

Transverse scale number. The transverse scales are counted at the origin or at the 

anterior part of the lower lateral line and only the non-perforated scales between the 

lateral lines are included. 
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