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Abstract 
 
For structured populations in equilibrium with everybody born equal ln(R0) is a useful 
fitness proxy for ESS and most adaptive dynamics calculations, with R0 the average 
lifetime number of offspring in the clonal and haploid cases, and half the average 
lifetime number of offspring fathered or mothered for Mendelian diploids. When 
individuals have variable birth states, as is e.g. the case in spatial models, R0 is itself 
an eigenvalue, which usually cannot be expressed explicitly in the trait vectors under 
consideration. In that case Q(Y | X) := !det I ! L(Y | X)( )  can often be used as fitness 
proxy, with L  the next-generation matrix for a potential mutant characterised by the 
trait vector Y  in the (constant) environment engendered by a resident characterised by 
X . If the trait space is connected, global univadability can be determined from it. 
Moreover it can be used in all the usual local calculations like the determination of 
evolutionarily singular trait vectors and their local invadability and attractivity.  

We conclude with three extended case studies demonstrating the usefulness of 
Q: the calculation of ESSes under haplo-diploid genetics (I), of Evolutionarily Steady 
genetic Dimorphisms with a priori proportionality of macro- and micro-gametic 
outputs (an assumption that is generally made but the fulfilment of which is a priori 
highly exceptional) (II), and of ESDs without such proportionality (III). These case 
studies should also have some interest in their own right for the spelled out calculation 
recipes and their underlying modelling methodology. 
 
 
Key words: Fitness, fitness proxy, haplo-diploid ESS, Evolutionarily Steady genetic 
dimorphism, Evolutionarily Stable genetic dimorphism, Ideal Free genetic 
dimorphism, Evolutionarily Steady Polymorphism, Evolutionarily Stable 
Polymorphism, Ideal Free Polymorphism.
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0. Methodological preamble 
 

This paper is about an efficient tool for analysing relatively complicated eco-
evolutionary models. Models are mathematical structures plus interpretation rules; 
theories are rules for constructing and analysing models. Theoretical evolutionary 
biology aims to predict the properties of organisms from evolutionary considerations. 
Therefore we want our population dynamical model formulations to be interpretable 
at the level of individuals. This makes the natural framework for our discourse that of 
the theory of structured populations, which is fundamentally different from the 
classical ODE and discrete time formalisms. The only individual level parameters that 
are well represented in the latter formalisms are migration rates. In other aspects but 
few organisms satisfy the assumptions implicitly made in the construction of discrete 
time models with non-overlapping generations, and no organism comes close to the 
life histories implicitly assumed in ODE population models. 
 

Example: Logistic population growth. With the individual-oriented concept of 
environment espoused in the theory of structured populations, the classical logistic 
equation with n the spatial density of individuals can be rewritten as dn/dt = r(E)n, 
with E = n/K and  r(E) = r0(1-E), to bring out that the non-constancy of  r should be 
due to a reaction of the individuals to their surrounding environment. To delve a little 
deeper in this reaction, r should be decomposed into a sum of per capita birth and 
death rates, r(E) = b(E) - d(E), as these two contributions represent radically different 
modes in which individual level mechanisms can affect r. We leave open the 
somewhat awkward question of how the E-dependence of r should be thought of as 
being derived from an E-dependence of b and d (this dependence easily becomes 
complicated since negative birth rates are not allowed). Instead we go for the 
microscopic perspective. To this end consider a thought experiment in which E is kept 
artificially constant, e.g. by harvesting or adding individuals, depending on whether n 
is larger or smaller than K. In that case b and d become constants. For the deaths this 
means that individuals die at random, for the births this means that young are born in 
clutches of average size c (with possibly c = 1) that are produced in a Poisson process 
with rate b/c. There exist no organisms with this life history.     !  
 

Classical ODE population models can be very useful for generating ideas about what 
real population models might do. However, their parameters are basically 
phenomenological and any relations with individual level parameters are at best 
fudged. This lack of sufficiently clear-cut interpretation rules to a matching biological 
reality makes that they cannot be considered models in the strict sense of the word and 
should rather be called metaphors or toy models. 

Although in their immediate interpretation the epistemological status of 
classical discrete time population models fares but a little better than that of the ODE 
models, they are further saved by the fact that at equilibrium the birth rate of a 
structured population generally satisfies an equation equal to the equilibrium equation 
for the population densities of a discrete generation model with matching expected 
lifetime offspring numbers. Under the assumption of random mating this statement 
also extends to the models of classical population genetics. Not only that, also the 
invasion of a new type into an existing equilibrium, if looked at on a generation as 
opposed to a real time basis, is described by equations that match those of familiar 
discrete time models. So although throughout we use the language of structured 
population models, you may in the concrete examples first read the interpretation of 
the various symbols only cursorily before turning to the equations to regain your sense 
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of familiarity, and thereafter reread the definitions to acquaint yourself with the 
structured population perspective.  

Dealing with the dynamics of structured population models often leads to 
uncomfortably heavy mathematical formalism. Luckily the subject of this paper lets 
us restrict ourselves to population dynamical equilibria and generation-wise argument, 
where the equations simplify to more familiar ones, only interpreted with a more 
proper attention to biological reality (Diekmann et al. 2003). 

 
1. The concepts of invasion fitness and fitness proxies 
 

Ecologically, fitness can be defined as the hypothetical asymptotic time-averaged rate 
of exponential growth ρ(Y,E) which results from a thought experiment in which one 
lets a clone of type Y grow in an ergodic environment E (see e.g. Metz et al., 1992; 
Metz, 2008). Here the term “environment” is, in the tradition of the theory of 
structured populations (e.g. Metz & Diekmann 1986; Diekmann et al. 2001, 2003), 
supposed to refer to everything, whether biotic or abiotic, outside an individual that 
has the potential to influence its population dynamically relevant behaviour. If, as 
depicted in Figure 0, the environment is determined by the attractor of a resident 
population, E = Eattr(X), one speaks of invasion fitness (or invasion exponent, Rand et 
al., 1994). Another name is dominant transversal Lyapunov exponent, or in the 
special case that the environment is constant, dominant transversal eigenvalue 
(Hofbauer and Sigmund, 1998). Invasion fitness is the main tool for dealing with long 
term Darwinian evolution, with mutants in the role of (prospective) invaders. 
 

             
 

Figure 0: Illustration of the idea of transversal eigenvalue and Lyapunov exponent. In 
the special case of a scalar population state the transversal Lyapunov exponent can be 
calculated as the time average of the mutant growth rates at the community attractor. 
 

One reason for using the adjective “hypothetical” in the opening sentence is 
that most populations of interest do not reproduce clonally but follow some 
Mendelian pattern. Part of the mental construction of hypothetical clonal individuals 
out of diploid Mendelian ones is to diminish the average offspring number of a 
biological individual by a factor one half to make up for the fact that it transmits only 
half of its alleles to each of its offspring. Hence, the fitness of a diploid phenotype is 
defined as the asymptotic time-averaged relative growth rate of the so diminished 
number of descendants, in a thought experiment where these descendants all have the 
same life history parameters as their ancestor. These parameters include mating 
propensities while mating opportunities are considered a component of the 
environment. This construction works, at least for most of the ecological scenarios 
considered so far, in that by means of this fitness concept one arrives at the same 
evolutionary predictions for phenotypes as by working through the full intricacies of 
Mendelian inheritance (e.g. Metz 2008). Be aware though that when it comes to 
calculating polymorphic evolutionary outcomes in the presence of genetic constraints, 
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and also for some complicated sexual interactions (Eshel, 1991), this shortcut no 
longer works, and there is no alternative but to go back to the basics and calculate the 
invasion fitness of alleles on loci potentially affecting the traits under consideration to 
arrive at the correct prediction. 

Only in the simplest cases it is possible to find explicit formulas for the 
invasion fitness. However, for some of the simpler ecological scenarios there exist 
good proxies (which unfortunately often are incorrectly referred to as just fitness). 
With proxy we mean here a quantity that is not on all occasions quantitatively equal to 
fitness, yet can be substituted for it in some evolutionary calculations. In this paper we 
will derive one further proxy, or rather an even simpler proxy for a commonly used 
proxy, that should ease evolutionary calculations for a large class of complicated 
ecological and population genetical scenarios. 

What quantities can be used as fitness proxy depends on the use one wants to 
make of fitness. The main use of invasion fitness is in ESS theory and adaptive 
dynamics, such as the calculation of Pairwise Invasibility Plots (PIPs), a convenient 
tool for analysing ESSes and their evolutionary stability properties for scalar traits 
(see Figure 1; we shall interpret the abbreviation ESS here as Evolutionarily Steady, 
i.e. uninvadable, Strategy since the definition of the ESS concept does not imply that 
ESSs are evolutionarily stable). For those particular uses often all one needs is a 
quantity that is sign equivalent to fitness: sign(proxy) = sign(ρ).  
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Figure 1: Pairwise Invasibility Plots: sign, as indicated in the upper left panel, of the 
fitness of potential mutants as a function of the mutant and the resident traits. The four 
panels show some alternative possible configurations, indicative of correspondingly 
different evolutionary phenomena. The abbreviation ESS stands for Evolutionarily 
Steady Strategy. The upper right panel explains our use of Steady instead of the still 
more common Stable as interpretation for the middle symbol in ESS. 

 
The main type of ecological scenario where a good deal of biological detail 

can be incorporated and yet a good fitness proxy is available, is where the community 
state converges to an equilibrium point giving rise to a correspondingly non-
fluctuating environment. In that case the appropriate, for easily interpretable and if all 
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individuals are born equal easily calculable, fitness proxy is ln(R0), the logarithm of 
the average lifetime offspring number, or basic reproduction ratio, R0. 

Throughout this paper we consider only non-fluctuating resident 
environments. A second assumption is that the demographic parameters, and hence R0 
and ρ , are smooth in the traits  (c.f. Ferrière and Gatto, 1995). 
 In general, individuals can be born in more than one possible state, as is for 
example the case in spatially distributed populations which have to be dealt with by 
taking spatial location on board as a component of the h(eterogeneity)-state of 
individuals, which then consists of a location and a physiological state, plus possibly a 
marker of social status, etc., etc.. Due to our assumption of environmental constancy 
the physiological state can be replaced by a proxy state consisting of age together with 
the state at birth. Integrating out over age gives the next-generation operator L. R0 
corresponds to the dominant eigenvalue of this operator. As spelling out the general 
argument in mathematical as opposed to heuristic terms requires the introduction of 
technical mathematics that is not germane to the message of this paper, we only give 
two examples showing the essentials in the simplest possible case. The mathematical 
details of the definition and calculation of R0 in the general case may be found in 
Diekmann et al. (1990, 2003), with the latest generalisation in Thieme (2009). 
 
Example: Finite h-state spaces and clonal reproduction.   
The growth of a population of finite state individuals in continuous time is given by 

 

d

dt
N = (R + T)N , 

 

N the vector of spatial densities of individuals in different states. (In our present 
context N refers to the mutants. To keep the notational burden low we suppress 
dependences on the trait vector of the mutants and resident environment.) The 
matrices R and T are built up from per capita rates. The off-diagonal components of T 
equal the transition rates between the corresponding h-states, the diagonal components 
equal minus the overall rates of state transitions from the h-states minus the h-state 
dependent death rates. The components of R equal the average pro capita birth rates in 
dependence on the h-state of the parent  split according to the h-state of the offspring. 
The invasion fitness ρ   corresponds to the rightmost eigenvalue of R+T. 
 Arguing on a generation basis from births to births is possible only for 
constant environments. The reason for choosing the births as reference points is that 
usually the set of birth states is considerably smaller than the full complement of 
states necessary to describe how an individual passes through its life. The first 
components of N will refer to the birth states. To step back and forth between a 
population state and a birthrate based formalism we need a matrix K injecting the 
vector of birth rates into the space of changes in densities of all individuals, young 
and old alike: 

 

K
T
=

1 0 ! 0 0 ! ! 0

0 " " # # #

# " " 0 # #

0 ! 0 1 0 ! ! 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. 

 

As can be seen from this formula, KT projects the space of population rates onto the 
space of birth rates.  
  The Diekmann-Gyllenberg-Metz birthrate based approach to structured 
populations is to put individuals center-stage.  In the present case the state of an 
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individual moves according to a Markov chain with killing, and the probability that 
individuals born in certain birth states at age a are alive and reside in certain states is 
given by the matrix eaTK . Hence the average birth rate at age a split out according to 
the birth state of the parent and that of the kids is !(a) = KT

Re
aT
K . This expression 

shows that given the mechanism as embodied in the matrices R, T and K it is possible 
to calculate the average birth rate of an individual. Hence, age and birth state together 
are a proxy state for the goal of calculating the average birth rates of individuals over 
their life.  
 The vector of population birth rates satisfies a matrix version of Lotka’s 
integral equation 

B(t) = B t ! a( )
0

t+"

# $(a)da + KT
Re

(t+" )T
N(!" )  

 

which for ! " #  reduces to 

B(t) = B t ! a( )
0

"

# $(a)da . 

Substitution of an exponential trial solution e!aU  gives that the invasion 
fitness ρ can be calculated from ! by solving characteristic equation: 

 
dominant eigenvalue of !!(") = 1, with  

 

!!(z) := e
"za!(a)da

0

#

$  

and that U equals the eigenvector with eigenvalue 1 of  
 
!!(") . The general theory of 

renewal equations tells that for ! " #  indeed B(t) will grow like e!aU . From the 
fact that also B(t) = KT

RN(t)  it follows that the ρ found in this manner also satisfies 
det(R + T ! "I) = 0 . 

For this model  

 

L := !(a)da
0

"

# = !!(0)    and   R0 = dominant eigenvalue of L . 

Since all components of 
 
!!(z)  are positive and decrease with z, also its dominant 

eigenvalue decreases with z. Hence, ρ is positive when R0  > 1 and is negative when 
R0 < 1. 

Finally, the following argument shows that this R0 rightfully can be interpreted 
as an average lifetime offspring number. The average lifetime numbers of offspring 
by individuals born in different states equals 1TL, where 1 is a vector that has all its 
components equal to 1. The natural probability distribution to average these numbers 
over is the stationary distribution generated by the generation process itself, i.e., the 
right eigenvector U of L corresponding to R0, normalised such that 1TU=1. Doing so 
gives 1TLU = 1TR0U = R01TU = R0.         !  

 
Example: Mendelian diploids with everybody born equal, but potentially for a 
distinction between males and females.   
In the case of diploid hermaphrodites with but a single birth state, R0 equals half the 
sum of the average numbers of offspring fathered or mothered. The factor one half 
again comes from the wish to define R0 such that the outcome from naive evolutionary 
calculations based on this “offspring number” for individuals matches the outcome 
from more detailed genetically based calculations. 
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When the sexes are separate, the sex difference comes on top of the 
physiological structure. So in the simplest case the h-state equals the pair (sex, 
physiological state).  In diploids, if everybody is born equal but for their sex, the 
corresponding next-generation operator is  
 

 

L =
1

2

!
ff
!
fm

!
mf
!
mm

!
"#

$
%&

, 

 

with 
 
!
ff

 the lifetime number of daughters of a female, 
 
!
fm

 the lifetime number of 
daughters of a male, 

 
!
mf

 the lifetime number of sons of a female, and 
 
!
mm

 the lifetime 
number of sons of a male, all for the mutant, as they happen to occur in the 
environmental and genetic background provided by  the resident population. The 
simplest case is when the sex determination is independent of the locus in which the 
mutant differs from the resident as then we can write 

 
!
ff
= p

f
f , 

 
!!
mf

= p
m
f , 

 
!
fm
= p

f
m , 

 
!
mm

= p
m
m , with m and f the numbers of offspring fathered and mothered 

over a lifetime, and pm and pf the probability of being born a male or a female. In that 
case L has rank one and  

R
0
= 1

2
p
f
f + p

m
m( ) . 

 

This result could also have been obtained more directly by observing that everybody 
is born stochastically equal, having exactly the same probability of being born male or 
female. We then get R0 by just averaging over the possibilities.  

As a curiosity we mention that when the locus on which the mutant differs has 
an influence on the sex determination we can still end up with the same formula by 
defining pm and pf to be the asymptotic probabilities of being born a male or a female, 
i.e., by choosing for pm and pf the components of the right eigenvector U of L, and 
defining m and f again as the number of offspring fathered or mothered over a 
lifetime, i.e.,  

 
f = !

ff
+ !

mf
 , 

 
m = !

fm
+ !

mm
. Then, by using R0=1TLU, exactly the 

same formula for R0 is obtained. Only the similarity of the expressions is pleasing: to 
calculate pm and pf we first have to calculate R0. 
 An other matter is that when it comes to considering trait evolution we will 
have to account for the fact that, contrary to the situation in hermaphrodites, the 
developmental patterns of separate sexes are necessarily different. Hence, trait vectors 
will generally consist of two components, the traits of the male, Ym or Xm, and those of 
the female, Yf or Xf. In general these two sex-dependent trait vectors do not evolve 
independently as they are coupled by their genetic covariance (or mutational 
covariance, depending on whether one focuses on intermediate term evolution starting 
with enough accessible genetic variation, or on evolution starting from a genetically 
impoverished population or going on for so long that it runs out of the initial 
variation). Only in the extreme case that the covariances between male and female 
traits are all zero the female and male co-evolve as if they were separate species. In 
the other extreme case, Xm = G(Xf), the standing and mutational variation in the male 
and female trait vectors is fully correlated, and we can speak of a single evolutionary 
trait vector, expressed differently in males and females (except when G is equal to the 
identity, in which case we have just a single trait vector).      !  
 

In general, that is, if they do not reduce to a matrix with some special 
convenient structure, next-generation operators do not allow explicit expressions for 
their dominant eigenvalue. Hence, there is a need for a next layer of proxies, this time 
for R0. 
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The main theorem of the paper, telling how the characteristic polynomial of 
the next-generation matrix evaluated at 1 can be used to decide about global 
uninvadability, is stated and proved in section 3. In section 2 we sketch the essential 
geometrical nature of the result for the special case of 2×2 matrices, as this is the only 
case allowing neat pictures. In section 4 we summarise local calculation recipes which 
can i.a. be used for the determination of (local properties of) Evolutionarily Singular 
Points, that is, points X where [∂ρ/∂Y](X,Eattr(X)) = 0 (the derivative being taken for 
the first argument of ρ, written as Y when ρ was first introduced, after which the 
resulting function is evaluated at (X,Eattr(X))). These two lines of argument culminate 
in Section 4 1

2
 in the introduction of the new fitness proxy Q(Y | X) . In sections 5 to 7 

we present three case studies of how the abstract results can be put to good use. 
  
2. The R0–criterion for invasion and its extension for nonnegative 2×2 matrices  
 

The result that we are after is basically topological in nature. In this section we lay 
bare the underlying structure for the case of 2×2 matrices, where everything can easily 
be visualised. This also allows us to show how the general fitness proxy to be 
described in the next section can be seen as a natural extension of the R0 < 1 non-
invasion criterion for Leslie matrices. The general result is described in section 3. The 
proof there makes no use of the ideas developed in this section. If you are mainly 
interested in applications or in the general proof, you may just as well directly move 
to that section. This section is only meant for those who get motivated by seeing how 
different results connect. 

To keep our arguments relatively uncluttered we shall couch them in the form 
of the derivation of estimates for the sign of the invasion fitness for simple discrete 
time models in matrix form. The insights thus obtained apply without change to 
estimating the sign of ln(R0) in more complicated models that allow the next-
generation operator of the linearised mutant dynamics to be represented as a matrix. 
 

n1 n2

s1

s0
f2

f1

newborns

 
 

Figure 2: Simple life history used to illustrate how R0 can be interpreted as 1-P(1). 
 
Consider the life history graphically represented in Figure 2, with the survival 

probabilities 0 ≤ s0, s1 ≤ 1 and fertilities f1, f2 ≥ 0, determined  by the environment set 
by the  community as well as by a potentially evolving trait vector. (To avoid clutter, 
we shall in this section hide the ever-present arguments (Y | X) .) Time is supposed to 
run in steps and the indices 1 and 2 of the population sizes ni refer to age expressed in 
number of time steps. The population recurrence corresponding to this life history is 

 

!N = AN   with  N =
n
1

n
2

!
"#

$
%&
,!!!!!A =

s
0
f
1

s
0
f
2

s
1

0

!
"#

$
%&

.     
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The characteristic equation for a mutant in a constant environment set by a resident 
community is 

P(λ)  :=  λ2  -  f1 s0 λ  -  f2 s1 s0  =  0,    
and 

ρ  =  ln(λd), 
 

λd the corresponding dominant eigenvalue (i.e. !
d
" !

i
). There is only a single birth 

state, so  
 

R0 (= L) =  f1 s0 + f2 s1 s0. 
 
By rewriting the characteristic equation as 
 

1  = f1 s0 λ-1 + f2 s1 s0 λ-2 
 
it is easy to see (Figure 3) that  
 

R0 >< 1   ⇔    ρ ><  0. 
 

 

 

 

Figure 3: Relation between R0 and λd fot the life history of Figure 1. 
 

 In this example  
P(1)  =   1 - R0. 

Therefore  
P(1) >< 0   ⇔    ρ >

<
  0. 

 

However, unfortunately the latter result does not extend to more general models 
lacking the crucial zero in the matrix A. 

Figure 4 depicts the usual criteria for when the modulus of the dominant 
eigenvalue of a 2×2 matrix is smaller than 1. If we indicate in the same picture the 
realisable values of the trace and determinant for 2×2 Leslie matrices (Figure 5), it 
becomes clear why for such matrices this complicated combination of criteria can be 
replaced by the simple R0-criterion.  

If we then also look which regions in the (trace , det)-plane can be realised by 
general non-negative matrices (Figure 6), it becomes clear why the P(1) > 0 criterion 
does not extend to general non-negative 2×2 matrices. The trouble comes from the 
right upper region between the line P(1) = 0 and the parabola det = 1

4
trace2 in which 

also the second eigenvalue is larger than one. 
 

 



10 

 
 

Figure 4: The values of the trace and determinant of a 2×2 matrix for which its 
dominant eigenvalue is smaller than 1. The parabola separates the regions with real 
and with complex eigenvalues. On the line det = trace -1 a real eigenvalue crosses 1, 
on the line det = - trace -1 a real eigenvalue crosses -1, and for complex eigenvalues 
crossing the line det = 1 corresponds to their modulus crossing 1. Some further details 
about the location of the real eigenvalues are given in Figure 7. 
 

     P(1) > 0                P(1) = 0                 P(1) < 0
                                ! R0 = 1

"d > 1

"d < 1
1

trace

det

2

-1

-1-2

det

1

0

non-feasible region

0

A =

0 #2

#1 0

$

%
&&

'

(
))

A =
" #
0 0

$

%
&&

'

(
))

 
 

Figure 5: The values of the trace and determinant that can be realised by 2×2 Leslie 
matrices A. The formulas correspond to the generic form of A on the curve indicated 
by the arrow, with !  and (the) !(

i
)  free parameters. Note that P(1) = 1 – trace + det. 

For Leslie matrices 
a b

c 0

!
"#

$
%& , P (1) = 1 – a – bc. 

 



11 

     P(1) > 0                P(1) = 0                 P(1) < 0
                                ! "d = 1

"d > 1

"d < 1
1 trace

det

2

-1

-1-2

det

A =

0 #2

#1 0

$

%
&&

'

(
))

non-feasible region

1

0

0

A =
" #
0 "

$

%
&&

'

(
))

 
 
 

Figure 6: Stability region for a general non-negative 2×2 matrix A. The formulas 
correspond to the generic form of A on the curve indicated by the arrow, with !  and 
(the) !(

i
)  free parameters. 

  
 Figure 6 also suggests how one may still put the P(1) > 0 criterion to good use 
even when the underlying population dynamics leads to more general 2×2 matrices as 
basis for the calculation of the needed invasion fitnesses: any resident, including any 
prospective ESS, has invasion fitness zero. Hence, any mutant equal to the resident 
finds itself on the line segment from (trace,det) = (0,-1) to (trace,det) = (2,1). We shall 
assume first that at the resident phenotype trace2 ≠ 4 det. (This condition is guaranteed 
when for the resident A is irreducible.) Assume now that the strategies under 
consideration are characterised by a trait vector from some Rn. If the life history 
parameters depend continuously on the trait vector, any continuous curve in trait 
space will map to a continuous curve in (trace , det)-plane. If for no alternative strategy 
the corresponding point in (trace,det)-plane ever lies in the region P(1) ≤ 0, then the 
troublesome region can never be reached by following a continuous path in trait space 
starting from the resident.  Hence, no strategy can invade that is connected to it by a 
continuous path in trait space. The conclusion is that if for all strategies but a 
prospective ESS P(1) > 0, then no strategy that can be connected continuously to this 
prospective ESS can invade. Hence, under these conditions if the trait space is 
connected the prospective ESS is indeed uninvadable. 
 Now consider the case where for the resident trace2 = 4 det. Since the 
population is at equilibrium, A then has the form 1 0

0 1

!
"#

$
%&
 instead of the more general 

form indicated in Figure 6 for matrices with trace2 = 4 det.  As an example you may 
think of a population living in two patches with the strategy parameter being the 
migration rate between those patches and no migration for the prospective ESS. In 
that case the previous argument goes through on the condition that close to the 
prospective ESS det < 1, or equivalently trace < 2. 

In the following section we shall extend the above result for 2×2 matrices to 
general n×n matrices. As a preparation Figure 7 shows more details of how in the 2×2 
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case the location of the characteristic polynomial, and hence of its roots, changes with 
trace and det. 

 

(    resident)

1

P

!
1

1

1 trace

!d > 1

!d < 1

det

1

1

1

1

1

11

2

non-feasible region

10

0

10

 
 

Figure 7:  Location of the characteristic polynomial in dependence on trace and det. 
 
3. The P(1) > 0 criterion for general n×n matrices 
 
Let P(λ; Y | X) := det(λI – L(Y | X)) denote the characteristic polynomial of the next-
generation matrix of the linearised dynamics of a Y mutant in an X resident 
community (expressed so that the leading coefficient is positive). 
 
Theorem: The resident X is uninvadable if (i) the demographic parameters depend 
continuously on the trait, and (ii) the trait space is connected, and (iii) 
 

P(1; Y | X) > 0 for all Y ≠ X, 
 

and (iv) !P
!"
(1;X | X) # 0  (which is always the case if L(X | X)  is irreducible) or 

!P

!"
(1;X | X) = 0  and 

� 

R
0

<1 for Y close to X (the latter condition is guaranteed e,g. by 

!
2
P

!"
2
(1;X | X) # 0  and !P

!"
(1;Y | X) > 0  for Y close to X).  

 
On the other hand if 

P(1; Y | X) < 0 for some Y, 
then that Y can invade X.  
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Proof: Invasion fitness and R0 are continuous in the demographic parameters and 
hence in the traits. R0 of the resident equals 1. By assumption all alternative strategies 
can be reached from the resident by following a continuous path through trait space. 
Therefore, only values of R0 can occur that can be reached through bifurcations 
compatible with R0 being the dominant eigenvalue of a non-negative matrix and the 
assumption that P(1; Y | X) > 0. The existence of such an eigenvalue is guaranteed by 
the Perron-Frobenius theorem. The assumptions of non-negativity make the dominant 
eigenvalue non-negative real and hence a continuous function of the demographic 
parameters and of the traits. (Eigenvalues are smooth functions except for an 
indeterminacy where they cross; given that the dominant eigenvalue is always real it 
is necessarily continuous, although not smooth, over such a crossing.) The assumption 
that P(1; Y | X) > 0 makes that the dominant eigenvalue is not allowed to move 
continuously to above 1 in the manner indicated in the lower left panel of Figure 8.  
For the second part, if P(1; Y | X) < 0 for some Y there must be some real λ > 1 such 
that P(λ; Y | X) = 0.  Since this λ is an eigenvalue and since R0(Y | X) is dominant, 
either R0(Y | X) = λ > 1 or  R0(Y | X) > λ > 1.         !  
 
(For general polynomials P with positive leading term there is also a way to produce a 
positive real root above 1 from a starting situation where there are no such roots while 
all the time keeping P(1; Y | X) > 0, to wit through the bifurcation depicted in the lower 
right panel of Figure 8. However, for non-negative matrices this bifurcation is ruled 
out by observing that just before such a bifurcation would occur there have to exist 
complex eigenvalues with modulus larger than the non-negative real dominant 
eigenvalue, which would contradict its dominance.) 
 

1

P

!
1

Im

Re

i

1

1

impossible:

since:

Y = X : other Y :

not allowed by assumption:

1

 
 

Figure 8: Starting from a situation where the dominant eigenvalue equals 1 certain 
bifurcations of the root pattern of the characteristic polynomial of a positive matrix 
are excluded by the assumption that P(1; Y | X) > 0. 
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In the next section we shall consider in more detail the toolbox for higher 
dimensional trait spaces, which is based largely on local calculations. Here we only 
discuss the implications of the above Theorem for the drawing of PIPs. 
 For the calculation of PIPs one can largely concentrate on solving for Y in 
P(1; Y | X) = 0. See Figure 9. If one in addition knows some point in the (X,Y)-plane 
for which the invasion fitness is negative, then the invasion fitness is also negative in 
all points that connect to this point by a continuous path that does not cross one of the  
solution curves of P(1; Y | X) = 0. As soon as such a curve is crossed, the fitness 
changes from negative to positive. Similarly, if one knows a point for which invasion 
fitness is positive, then invasion fitness is also positive in all points that connect to 
this point by a continuous path that does not cross one of the solution curves of 
P(1; Y | X) = 0. Since in this case also some other eigenvalue may pass through 1 when 
a solution curve is crossed, fitness may or may not change sign there. 
 

 

P(1;Y | X) = 0

?

+

+

–

–

 
 

Figure 9: The information given by the solutions of the equation P(1; Y | X) = 0 in the 
(X,Y)-plane about the signs of the invasion fitness. 

 
4. Local theory 

 

The general theory of Section 3 is dependent only on the connectivity of the trait 
space, but its application is subject to constraints. In particular, simple graphical tools 
like PIPs require the traits to be scalar. Therefore for higher dimensions, and for most 
numerical work, local calculations dominate the trade.  

As far as we are aware, the first authors to derive local invadability properties 
directly from the characteristic polynomial of the linearised invasion dynamics were 
Taylor and Bulmer (1980). Their calculations were taken further by Courteau and 
Lessard (2000). As these techniques are extremely useful in applications we 
summarise here their extension to higher dimensional trait spaces.  

To keep the calculations simple we shall throughout this section assume that 
the next generation matrix is always irreducible. 
  Let  

s(Y | X) := ρ(Y | Eattr(X)). 
 

Points in trait space where [∂s/∂Y](Y | X) = 0, are called Evolutionarily Singular (Metz 
et al. 1996, Geritz et al., 1998). Examples are all the special points indicated in Figure 
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1. The goal of this section is to calculate ESPs and to derive indicators for their local 
invadability and attractivity from the characteristic polynomial. 
  As before we assume that Eattr(X) does not fluctuate. Since all calculations 
below are local, it pays first to write out a number of relations that hold good locally 
for the characteristic polynomial of the next-generation matrix and for invasion 
fitness and R0: 

 

P R
0
(Y | X);Y | X( ) = 0 ,        !P !"[ ] R0 (Y | X);Y | X( ) > 0 ,  

 

with P(!;Y | X) := det !I " L(Y | X)( ) , and 
 

for Y sufficiently close to X,   
     

s(Y | X) ≈ ln(R0 (Y | X))
Tr (X | X)

, 

in particular 

         !s
!Y
(X | X) = "

!s

!X
(X | X) =

!R
0
!Y

T
r

#

$
%

&

'
((X | X)  

  and, when !s
!Y

(X | X) = 0 , 
    

! 2
s

!Y!Y T
(X | X) = 

!2
R

0
(!Y!Y T

)

T
r

"

#
$

%

&
'(X | X) ,  

! 2
s

!X!X T
(X | X) = 

!2
R

0
(!X!X T

)

T
r

"

#
$

%

&
'(X | X)  

with T
r
(Y | X) the mean age at reproduction of Y-individuals in Eattr(X), T

r
(Y | X)  

= a!V
T!(a)!U !da

0

"

#
$

%
&

'

(
) (Y | X) , !(a)[ ](Y | X)  the matrix of average pro capita 

birth rates at age a of a Y-individual in Eattr(X) differentiated according to birth 
states, and U and V the right and left eigenvectors of the next-generation 

matrix L = !(a)!da
0

"

# , co-normalised such that 1TU=1, VTU=1. 

(Durinx et al.,  2008).  (Note that when X is a column vector,  [∂s/∂Y](Y | X) is a row 
vector and [∂2s/(∂Y∂YT)](Y | X) and [∂2s(Y | X)/(∂X∂XT)](Y | X) are square matrices.) 
Moreover, since 

s(X | X) = 0     and     R
0
(X | X) = 1 , 

 

!s

!X
(X | X) = "

!s

!Y
(X | X)      and      !R0

!X
X | X( ) = "

!R
0

!Y
X | X( ) . 

 

By differentiating through the equality P R
0
(Y | X);Y | X( ) = 0  one gets 

 

!P

!"
R
0
(Y | X);Y | X( )

!R
0

!Y
(Y | X) +

!P

!Y
R
0
(Y | X);Y | X( ) = 0 . 

 

Hence, from now on without explicit arguments, 
 

!R
0

!Y
= "

!P
!#

$
%&

'
()
"1 !P
!Y

. 
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Therefore evolutionarily singular points, primarily characterised by 
!s !Y[ ](X | X) = 0 , can alternatively be characterised not only by 
!R

0
!Y[ ](X | X) = 0 , but also by 

!P

!Y
(1;X | X) = 0 . 

 

The latter characterisations should of course be appropriately modified when the ESP 
is partially determined by constraints, see e.g. Intriligator (1971). As otherwise we 
would have to repeat it many times, please insert the last phrase where needed in all 
the following deliberations. 

Further differentiating through the characteristic equation gives: 
 

!2
R

0

!Y!Y T
 = "

!P
!#

$
%&

'
()
"1

 
!2
P

!#!Y
 

!R
0

!Y
 + 

!2
P

!Y!Y T

*

+
,

-

.
/ , 

and  
!2
R

0

!X!X T
 = "

!P
!#

$
%&

'
()
"1

 
!2
P

!#!X
 

!R
0

!X
 + 

!2
P

!X!X T

*

+
,

-

.
/ , 

 

which at singular points X, since there !R
0
!Y[ ](X | X) = !R

0
!X[ ](X | X) = 0 , 

reduces to 

!2
R

0

!Y!Y T
(X | X) = "

!P
!#

$
%&

'
()
"1

 
!2
P

!Y!Y T

*

+
,
,

-

.
/
/
(1;X | X) , 

and  
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R

0

!X!X T
 (X | X) = "

!P
!#

$
%&

'
()
"1

 
!2
P

!X!X T

*

+
,
,

-

.
/
/
(1;X | X) . 

 

Hence, a singular strategy X is uninvadable if the symmetric square matrix 
 

!
"
2
P

"Y"Y
T
(1;X | X)  is negative definite, 

 

and only if it is non-positive definite. 
 Two further properties of interest for evolutionary singular points are strong 
convergence stability, and mutual invadability of at least some neighbouring strategies 
(needed for the build-up of a polymorphism). 

Strong convergence stability amounts to attractivity of the singular point 
whatever the mutational covariance matrix for the deterministic evolutionary 
dynamics that results when the mutational steps are not only rare but also very small 
and time is rescaled accordingly (Leimar, 2001, 2005, in press). In the case of one-
dimensional trait spaces attractivity of the singular point is independent of the 
mutational variance and the condition for strong convergence stability reduces to the 
usual condition for Continuous Stability, Eshel,  1983; Taylor, 1989; Geritz et al, 
1998. Leimar’s  (l.c.)  result is that in clonally reproducing organisms, haploids and 
diploids (but not in haplo-diploids, see Section 5) X is strongly convergence stable if 
the symmetric matrix !2s (!X!X T

) " !2s (!Y!Y T
)#$ %&(X | X)  is positive definite and 

only if it is non-negative definite. Hence, under the given restrictions on the 
reproductive system, an evolutionarily singular strategy X is strongly convergence 
stable if the symmetric matrix 
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!
" 2
P

"X"X T
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" 2
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"Y"Y T
 

#
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&

'
((1;X | X)  is positive definite. 

 

and only if  it is non-negative definite.  
The criteria for mutual invadability are different in on the one hand the clonal 

and haploid Mendelian and on the other hand the diploid Mendelian case. In the 
clonal and haploid case there exist pairs of mutually invadable strategies around a 
singular strategy X if the matrix !2s (!X!X T

) + !2s (!Y!Y T
)"# $%(X | X)  is negative 

definite and only if it is non-positive definite, or equivalently if the symmetric matrix 
 

!
" 2
P

"Y"Y T
 + 

" 2
P

"X"X T

#

$
%

&

'
((1;X | X)  is negative definite, 

 

and only if it is non-positive definite. In the diploid case this is the case if the matrix 
!2s (!X!X T

)"# $%(X | X)  is positive definite and only if it is non-negative definite (van 
Dooren, 2006), or equivalently if the symmetric matrix 

 

!
"
2
P

"X"X
T
(1;X | X)  is positive definite, 

 

and only if it is non-negative definite. 
 
4 1

2
.  The fitness proxy Q 

 

The preceding observations can be summarised in the statement that 
 

Q(Y | X) := -P(1;Y | X) 
 

can act as fitness proxy in all local calculations related to evolutionarily singular 
points. If the trait space is connected, Q can also act as fitness proxy for the checking 
of global uninvadability.  

In the next sections we present three case studies demonstrating the usefulness 
of Q. In addition, each of these studies has some interest in its own right. 
 
5. Case study I: ESSes in haplo-diploids 
 
Although the opposite possibility is not excluded by rules of logic alone, we shall for 
definiteness take the hymenopteran situation as reference and assume that females are 
diploid and males are haploid. In that case only the female reproductive output needs 
to be discounted with 1

2
. We allow any physiological structure, and only assume that 

everybody is born equal but for the sex difference, and mating is random. These 
assumptions lead to the next-generation matrix 
 

L =

1

2
f
f
Y X( ) m Y X( )

1

2
f
m
Y X( ) 0

!

"#
$

%&
 

 

with    ff  :  expected lifetime number of female offspring of a female, 
fm :   expected lifetime number of male offspring of a female, 
m :  expected lifetime number of (female) offspring of a male. 
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Of these quantities ff  and fm depend only on the female traits and m only on the male 
traits. 

As is usual in models with more than one birth state, with some spatial models 
with a good amount of symmetry as only exception, the expression for R0 
 

R
0
=

1

4
f
f
(Y | X) + 1

4
f
f

2
(Y | X) + 1

2
mf

m
(Y | X)  

 
does not excel in transparency. 

Since L has the structure of a Leslie matrix, 
 

Q(Y | X) = 1

2
f
f
+ f

m
m[ ](Y | X) !1  

 
is a full fitness proxy, without any need for restrictions on the nature of the trait space. 
The quantity 
 

T
f
= Q +1 = 1

2
f
f
+ f

m
m( )  

 
allows a nice direct interpretation as the average number of alleles transmitted from 
female to female, direct or through a male vector.  (The reason for our choice of the 
notation Tf is that similarly constructed quantities were introduced with this notation 
by Roberts and Heesterbeek (2003) and Heesterbeek and Roberts (2007) under the 
name of Type reproduction number.) 
 Evolutionarily singular strategies can be calculated by setting  

 

!Q

!Y
(X | X) = 1

2

!f
f

!Y
+ m

!f
m

!Y
+ f

m

!m

!Y

"

#$
%

&'
(X | X) = 0 . 

 
This equation can be written in a more elegant as well as meaningful form by 
observing that since at population dynamical equilibrium the resident females should 
just replace themselves, the population sex ratio equals f

m
(X | X) f

f
(X | X) , and the 

females are all offspring of males, that is,  
 

f
f
(X | X) = 1 ,      f

m
(X | X) = r(X) ,     m(X | X) = r!1(X) , 

 
r(X) the resident sex ratio (i.e., density of males divided by density of females). 
Expressed in the contributions of the two sexes: 

 

! ln( ff )

!Yf
+
! ln( fm )

!Yf

"

#
$

%

&
'(Xf | Xf ,Xm ) = 0 ,           ! ln(m)

!Ym

"

#
$

%

&
'(Xm | Xf ,Xm ) = 0 ,  

 

or alternatively 
 

p
m
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f

!Y
f
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f
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m
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f

"

#
$

%

&
'(Xf | Xf ,Xm ) = 0 ,           !m

!Y
m

"

#
$

%

&
'(Xm | Xf ,Xm ) = 0 , 

 

with pm(X) and pf(X) the resident fractions males and females, pm = r/(1+r), pf = 
1/(1+r). 
 Invadability close to a singular strategy X can be determined from 
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or, written out in the male and female components 
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(X | X) . 

 
Apparently in the ESS conditions males and females behave as separate species with 
as only coupling the feedback loop through Eattr(X). 
 The determination of conditions for strong convergence for haplo-diploids is 
an open problem. The reason is that the canonical equation of adaptive dynamics (see 
Dieckmann and Law, 1996; Champagnat, 2003; and in particular Durinx et al., 2008), 
which was used by Leimar (2001, 2005, in press) to derive his criteria, takes an 
unusual form for haplo-diploids (Metz and De Kovel, in prep). In diploids, if there are 
no parental effects, gene expression becomes additive for small enough mutational 
steps. Invasion fitness is a property of heterozygotes. However, after a substitution the 
population again consists of homozygotes. The eventual substitution step is therefore 
twice as large as the phenotypic step used in calculating the invasion fitness. This 
leads to an additional factor 2 in the canonical equation for diploids as compared to 
haploids or clonal reproducers. Otherwise the canonical equation for diploids is an 
exact copy of the canonical equation for clonal reproducers. This factor 2 appears in 
front of the mutational covariance matrix. So all that happens compared to the clonal 
case is that the mutational covariance matrix is effectively replaced by a matrix that is 
twice as large. Therefore, Leimar’s (l.c.) results apply equally to the clonal and the 
standard Mendelian case. In haplo-diploids the factor 2 comes in for the diploid sex, 
but not for the haploid one. Therefore this factor cannot be absorbed in the mutational 
covariance matrix. Only when the mutational steps of the two sexes are fully 
uncorrelated the if part, but not the only if part, of the Leimar theorem applies without 
further ado. 
 The situation for mutual invadability is similar to that for strong convergence.  

In the, at first sight maybe attractive but on second thought rather contrived, 
case that Xm = G(Xf), 

 

Q(Y
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Y
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with Y
m
= G( !Yf ) , !Y

f
 the trait value of the additional homozygote corresponding to the 

heterozygote Y
f
 and homozygote X

f
. (In haplo-diploid species, the developmental 

systems of the males and females are bound to be even more different than in diploids 
as they start from different complements of genes.) If there are no parental effects on 
gene expression, for small mutational steps !Xf = Xf + 2(Yf " Xf ) + o Y

f
" X

f( )  and 
hence  

Y
m
! X
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= 2
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! X

f( ) + o Y
f
! X
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Therefore, the equation for the evolutionarily singular strategies becomes 
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Their invadability can be determined from the criteria given in Section 4, using the 
second derivatives of Q(Y

f
,Y
m
| X

f
)  for Y

f
 and X

f
 calculated as if 

dY
m
dY

f
= 2 dG dX[ ](X) . In view of the contrivedness of the assumption Xm = G(Xf) 

we refrain from giving the long and ugly explicit formula.  
 
6. Case study II: Invasion of a genetic dimorphism by either a different allele or 

a modifier under Hardy-Weinberg conditions 
 

In this and the next section we shall consider the evolution of a dimorphism on a locus 
called A. In agreement with the implicit practice of population genetical modelers, we 
assume the non-focal loci to be either without phenotypic effects or monomorphic, at 
least in the resident population. The dimorphism may evolve by either the substitution 
of alternative alleles on the focal locus or by substitutions on other loci, referred to as 
modifiers and generically called B. All individuals are assumed to be born equal but 
for genetic differences, and to be formed by random mating. Otherwise there are no 
restrictions on the physiological structure. In this section we shall moreover take on 
board one further standard assumption of population genetics: the numbers of macro- 
and micro-gametes that end up in zygotes are at all times proportional (i.e., for all 
genotypes and h-states). This assumption is usually encountered in its equivalent form 
as the assumption that under random union of gametes newly formed zygotes occur in 
Hardy-Weinberg proportions. (Actually, as we shall only consider equilibria and their 
invadability, it suffices to assume proportionality of the lifetime effective micro- and 
macro-gametic outputs.)  
 When we consider allelic evolution the individuals (i.e., objects to the type of 
which we assign fitnesses) to consider are the gene copies. Their h-state consists of 
the h-state of their carrier together with the type of the other allele with whom they 
share this carrier, which may be a or A. In the case of modifier evolution the 
individuals correspond to the usual biological ones, but now with as additional birth 
state component the genotype on the A-locus. 
 
Notation:  

alleles on the dimorphic locus:          A, a (residents), α (mutant), 
resident allele on a modifier locus:    b  (generally suppressed in the notation),   
mutant allele on a modifier locus:     B; 
resident trait vectors:   X

aa
! X

aabb
, X

AA
! X

AAbb
 

X
aA
= X

Aa
! X

aAbb
= X

Aabb
, 

mutant heterozygote trait vectors:    Y = X
a!
,!X

A!
,X

aaB
,X

aAB
,X

AAB
, with 

X
aaB
:= X

aabB
,X

aAB
:= X

aAbB
,X

AAB
:= X

AAbB
; 

relative frequency of haplotypes:      pa, pA (residents; depend on X
aa
,X

aA
,X

AA
), 

pα, paB, pAB (mutants); 
lifetime offspring numbers:  2w Y | X

aa
,X

aA
,X

AA( )  
       with specific cases abbreviated as   w

a!
:= w X

a!
| X

aa
,X

aA
,X

AA( ) , 
w
aaB
:= w X

aaB
| X

aa
,X

aA
,X

AA( ) , etc.;  
recombination probability of AB:     c, with  0 ≤ c ≤ 1

2
. 
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It is possible to develop a consistent population dynamical formalism based on 

the mental construction of (generalised) individuals described in the introduction 
(Metz in press). However, when genetic differentiation is involved it is usually far 
easier to use the standard population genetical formalism as this more effectively 
exploits the symmetry  inherent in Mendel’s laws. After working out the relevant 
linearisations one ends up with exactly the same formulas as for the population 
dynamical formalism (Metz l.c.).   

The linearised generation dynamics of the gene frequency of a mutant in one 
of the alleles constituting the polymorphism is 
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"

      with          w
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In population genetics w
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 is known as the marginal fitness of the ! -allele. Hence,   
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where the form of the formula brings out that the phenotype engendered by an allele 
consists of two components, expressing the dependence on the two intra-individual 
environments that it may encounter.   

The linearised generation dynamics of the gene frequency of a mutant on a 
modifier locus is  

!paB = waaB pa paB + waAB (1" c)pA paB + waABcpa pAB ,

!pAB = wAAB pA pAB + waAB (1" c)pa pAB + waABcpA paB .
 

 

 

This can be rewritten in vector-matrix form as 
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and 
w

•aB = pawaaB + pAwaAB ,        w
•AB = pawaAB + pAwAAB . 

 
(Please note that formulas (33) and (34) in Metz (2008) are wrong and have to be 
replaced with the ones above.) Hence  
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where the form of the formula brings out that a mutant modifier allele is characterised 
by a phenotype that consists of three components expressing the dependence on the 
three intra-individual environments that it may encounter as well as the recombination 
fraction between its and the focal locus. 

A Dimorphism is Evolutionarily Steady if it is uninvadable by both alternative 
alleles and modifiers. The first can be judged from whether w

•!
< 1  for all possible 

values of Xaα and XAα , the second from QB. First consider the case where c = 0. This 
case is similar to that of invasion attempts by alternative alleles, but possibly for a 
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difference in the set of accessible phenotypes. Hence if both w
•aB

< 1  and w
•AB

< 1 , 
the dimorphism is uninvadable by modifiers with c = 0. A closer look at the formula 
for QB shows that in that case QB is also negative whatever the value of c. So w

•aB
< 1  

and w
•AB

< 1  for all possible modifiers is a sufficient condition for a dimorphism to be 
globally uninvadable. Without any constraint on the genetic architecture this condition 
with the strict inequality signs replaced with their non-strict counterparts is also 
necessary. More precisely, if the genetic and developmental architecture allow for 
alleles or modifiers for which w

•aB
> 1  or w

•AB
> 1 , and, in the special case that there 

happen to be no such alleles and there only exist such modifiers for which 
paw•aB + pAw•AB < 1 , at least one of these is sufficiently closely linked to the focal 
locus, then the dimorphism is invadable. 
 
Remark: Modifiers entering genetic dimorphisms present an interesting subtlety with 
respect to the use of Q that in other classes of problems tends to be non-generic. In the 
special case where c = 0 the next-generation matrix of the resident has more than one 
eigenvalue equal to 1. In Figure 7 the residents are located at the point (trace, det) = 
(2,1) connecting the stable region with the troublesome region where both zero 
crossings of the characteristic polynomial are larger than 1. Hence the first alternative 
of condition (iv) in the theorem in Section 3 does not hold true, and it is possible for 
the trait vector Y of a pair of pseudo-alleles (aB, AB) to move away from the resident 
value X directly into the troublesome region.  However, if both w

•aB
< 1  and w

•AB
< 1  

for all possible modifiers, the second alternative of condition (iv) in the theorem in 
Section 3 holds true. Moreover, Q

B
(c,Y | X) < 0  for all modifiers. On the other hand, 

if there are modifiers such that either w
•aB

> 1  or w
•AB

> 1  then Q
B
(c,Y | X) > 0  if 

paw•aB + pAw•AB > 1  or the A and B loci are sufficiently strongly linked. Finally, 
consider modifiers such that both w

•aB
> 1  and w

•AB
> 1 : For very small c these 

modifiers correspond to values of trace and det in the troublesome region where both 
zero crossings of the characteristic polynomial are larger than one. In that region QB is 
negative and yet the polymorphism is invadable. The latter result extends to larger c 
as then 1 < paw•aB + pAw•AB < R0 < max w

•aB ,w•AB{ } . To prove these inequalities 
differentiate through the characteristic equation 

 

! w
•aB ! R0( ) w•AB ! R0( ) + cwaAB paw•aB + pAw•AB ! R0( ) = 0  

 
for c and solve for dR

0
dc to arrive at 

 

dR
0

dc
= !

waAB paw•aB + pAw•AB ! R0( )
w

•aB + w•AB ! cwaAB ! 2R0
, 

 

which should be combined with R
0
= max w

•aB
,w

•AB{ }  at c = 0. The denominator is 
negative for c very small, and cannot pass through zero for 0 < c < 1 since 
w

•aB
+ w

•AB
! cw

aAB
! 2R

0
= 0  would imply that the two roots of the characteristic 

polynomial coincide, which is impossible since for 0 < c < 1 the matrix A
B

 is non-
negative and irreducible. Hence the, continuous, right hand side is negative for 
paw•aB + pAw•AB < R0 < max w

•aB ,w•AB{ }  and zero when R
0
= paw•aB + pAw•AB . 

Therefore R0 decreases with c and cannot pass below paw•aB + pAw•AB .   !  
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The next step is to derive an equation for hunting down prospective ESDs. To 
this end it helps first to look at the population dynamical and genetical equilibrium 
equations (Charlesworth, 1994; Diekmann et al. 2003): 

 
w X

aa
,X

aA
,X

AA( ) = 1       with      w := pa
2
waa + 2pa pAwaA + pA

2
wAA .  

 
respectively 
 

pAwAA + (1! pA )waA = w ,          or equivalently         pawaa + (1! pa )waA = w . 
 
Hence at the step where the invaders are set equal to the resident one may substitute 
w

•!
= w

•a
= 1 , w

•!
= w

•A
= 1 , w

•aB
= w

•a
= 1  and w

•AB
= w

•A
= 1. (Of course, this 

result also follows immediately from the fact that R0 of the resident alleles should be 
1.) 

First consider the modifier evolution case. Prospective ESDs can be 
determined from  
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or equivalently, 
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their local uninvadability from whether 
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are negative definite. Apparently at modifier evolution based ESDs each comprising 
type has locally the maximal lifetime reproductive output that is possible under the 
circumstances. Moreover, the conditions satisfied by a modifier evolution based local 
ESD make that locally also no alternative alleles can invade.  

Deriving the latter results by differentiating R
0
=
trace + trace

2
! 4det

2
A

B( )   

may be possible, but is not immediately trivial. 
If for each of the types the maximum of the lifetime reproductive output is 

global on the trait space minus the two other types, the ESD is also global. In that case 
necessarily all the maxima are equal, and hence w

AA
=  w

aA
= w

AA
= 1 . Such fitness 

equalising evolutionarily stable polymorphisms are known in the literature as Ideal 
Free (e.g. Bulmer, 1994). The reason for this name is the following. Let X denote the 
space of all possible trait vectors that may somehow be genetically realised. The Ideal 
Free hypothesis says that from any (Xaa,XaA,XAA) the support of the distribution of a 
mutant triple (XaaB,XaAB,XAAB) equals X3.  (Hence under the Ideal Free hypothesis the 
discussion is implicitly confined to global ESDs.) 
 
Proposition: Under the Ideal Free hypothesis any ESD equalises the lifetime offspring 
numbers of the three phenotypes.  
 
Proof: Suppose that the average effective lifetime offspring numbers were not 
equalised. In that case a modifier mutant that as a heterozygote has a phenotype equal 
to that of the resident genotype with the maximal effective lifetime offspring number, 
can act as a phenotypically monomorphic invader with R

0
= max w

aa
,w

aA
,w

AA{ } > 1  
(the latter since not all w’s are equal and w = 1 ).        !  
 
 The Ideal Free hypothesis can be flouted in two manners. One is by local 
constraints, i.e., the possible mutants depend on the starting position, e.g. since large 
steps are forbidden. The other is by global genetic constraints, i.e., the set of 
phenotypes achievable by heterozygotes is larger than that achievable by 
homozygotes. Sickle cell anemia stands as an example. From a mathematical 
perspective this and other sorts of global constraints derive from the structure of the 
genotype to phenotype map:  
 

  
! : (X

A1
,X

A2
;!;X

B1
,X

B2
;!)" X

A1A2!B1B2!
, written as 

 
X

A
1
A
2
B
1
B
2

for short, 
 
with 

 
A

i
= a,A , 

 
B

i
= b,B , and Xa, XA, Xb, XB vectors of allelic traits.  

 
Remarks: Biologically you may think of these allelic traits as corresponding to e.g. the 
gene expression levels under various micro-environmental circumstances and/or at 
various times in the life cycle and/or in various parts of the body, with alleles 
corresponding not so much to different variants of the coding as well as of the 
regulatory regions of the gene. In this view alleles are more extensive stretches of 
DNA than just the coding regions; mathematically alleles and modifiers differ by the 
fact that for alleles the probability of a recombination within the allele during a 
substitution run is neglected, whereas between alleles and modifiers such 
recombinations are assumed to be relatively frequent. 

As an aside we mention that in the general case phenotypes also are not what 
one may naïvely expect. In keeping with the general ecological view that also formed 
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the basis for the ecological definition of fitness, phenotypes should in principle be 
interpreted as reaction norms (another term is conditional strategies), i.e., maps from 
(micro-)environmental conditions to phenotypes in the naïve sense, i.e., characteristics 
of individuals. These reaction norms supposedly come as families with the phenotypic 
traits as identifying parameters. Only in the simplest cases these reaction norms are 
degenerate, taking only a single value, which we then may use as the phenotypic trait, 
so that the general abstract and naïve sense phenotypes coincide.     !  
 

At this moment there is no systematic theory classifying genotype to 
phenotype maps in view of their evolutionary consequences. Tantalizing glimpses of 
what such a theory might do may be seen in the work of Sean Rice (1998, 2000,2002, 
2004a, 2004b, 2008) and by various people around Günter Wagner (e.g. Wagner and 
Mezey, 2000; Hansen and Wagner 2003; Bagheri-Chaichian et al., 2003; Bagheri-
Chaichian and Wagner, 2004; Hansen et al., 2006). Most research so far considers 
either quantitative genetics or the dynamics of gene frequencies, with but little 
connection to ESS theory (for the most notable exception see Van Dooren, 1999, 
2000, 2006).  

The classification of the interplay between allelic and modifier evolution when 
there are developmental or genetic constraints requires a sufficiently general 
framework for dealing with genotype to phenotype maps. For lack of such a 
framework, we confine ourselves to the special case of calculating ESDs when only 
alleles evolve without any involvement of modifiers (for example since !  is such 
that other loci than A have only negligible influence on the traits under consideration), 
since this problem is of some interest in its own right, were it only for the number of 
publications that make this or a very similar assumption (e.g. Kisdi and Geritz, 
1999;Van Dooren, 1999, 2000; Van Doorn and Dieckmann, 2006; Proulx and 
Phillips, 2006; Peischl and Bürger, 2008). 

ESDs resulting from the co-evolution of alleles in an otherwise fixed or un-
influential genetic background can be calculated by setting the derivative of 
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 for Xα equal to 0 at Xα = Xa and Xα = XA 

resulting in the equations 
 

pa
!w

!Y
Xaa | Xaa ,XaA ,XAA( )

!"

!X
#

Xa ,Xa( ) + pA
!w

!Y
XaA | Xaa ,XaA ,XAA( )

!"

!X
#

XA ,Xa( ) = 0 , 

pa
!w

!Y
XaA | Xaa ,XaA ,XAA( )

!"

!X
#

Xa ,XA( ) + pA
!w

!Y
XAA | Xaa ,XaA ,XAA( )

!"

!X
#

XA ,XA( ) = 0 , 

 
which, as always, should be solved in combination with the population dynamical and 
genetical equilibrium equations. Let the phenotypes be n-dimensional and the allelic 
traits m-dimensional. When 2m < 3n , generically the solutions, if they exist, are 
isolated, and the ESDs fail to maximise the lifetime reproductive output of the three 
participating phenotypes (are not “full maximisers”); in other words, generically any 
ESDs are co-determined by genetic constraints.  When 2m ! 3n  fully maximising 
ESDs become possible. When 2m = 3n  any ESDs are generically isolated in the 
space of pairs of allelic trait vectors. When 2m > 3n , generically any ESDs are full 
maximisers and are underlain by a 2m ! 3n  dimensional manifold of phenotypically 
equivalent pairs of allelic trait vectors. 
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7. Case study III: Invasion of a genetic dimorphism by a different allele or a 
modifier when the trait may differentially affect the micro- and macro-
gametic contributions to the next generation 

 
One of the things that we became uncomfortably aware of when working on equations 
for physiologically structured populations with genetic differentiation is that it is hard 
to justify the implicit assumption of standard population genetics that the expected 
lifetime macro- and micro-gametic outputs ending up in zygotes are at all time 
proportional. Take for example an organism that seemingly almost ideally conforms 
to the assumptions of the classical population genetical models, to wit a 
hermaphroditic annual plant. Most genetic differences that influence competitive 
ability will also operate in the seed setting phase when the anthers are already gone. 
Hence, their influence on the reproductive output through the ova will differ from that 
through pollen production. Therefore, we believe it to be important to spend more 
than the now customary education and research time on the study of population 
genetical tools that do not assume proportional effective macro- and micro-gametic 
outputs. As a small contribution we reconsider in this section the problem treated in 
the previous section without making the proportionality assumption. 
 In general the notation in this section is the same as in the previous one but for 
the changes indicated below. 
 
Notation:  

relative frequency of haplotypes:  p (micro-gametes), q (macro-gametes); 
average lifetime micro-gametic output  
    that ends up in zygotes:   m

A!
:= m(X

a!
| X

aa
,X

aA
,X

AA
) , etc.; 

average lifetime macro-gametic output 
    that ends up in zygotes:   fA! := f (XA! | Xaa ,XaA ,XAA ) ,  etc.. 

 
The allelic invasion reproduction ratio equals the dominant eigenvalue of the 

next generation matrix 
 

L! =
1

2

ma!qa + mA!qA ! !ma! pa + mA! pA

fa!qa + fA!qA ! ! fa! pa + fA! pA

"
#$

%
&'

. 

 

To see this, observe that the next generation of successful α-micro-gametes is 
produced by the αa and αA individuals. Over their lifetime these produce maα 
respectively mAα successful micro-gametes, half of which are of the α type. The 
individuals themselves came about through the combination of an α-micro-gamete 
with either an a- or A-macro-gamete, giving the upper left component of L

!
, or 

through the combination of an α-macro-gamete with an a- or A-micro-gamete, giving 
the upper right component of L

!
. The story for the lower components of L

!
 is the 

same except that we now have to consider successful macro-gametes. 
From L

!
 we calculate the allelic invasion fitness proxy 

 

!!!!!!!!!!!!!!!!!!!!!Q!

Xa!

XA!

"
#$

%
&'

 

Xaa

XaA

"
#$

%
&'

,
XAa

XAA

"
#$

%
&'

"

#$
%

&'
= (det I ( L!( ) =

1

2
pa fa! + pA fA! + qama! + qAmA!( ) ( 1

4
paqA ( pAqa( ) fa!mA! ( fA!ma!( ) (1.

 

 



27 

(To keep the expression for Q
!

 symmetric in a and A we have refrained from using 
that paqA ! pAqa = pa ! qa = qA ! pA .) 

The modifier invasion reproduction ratio equals the dominant eigenvalue of 
the next generation matrix 

 

L
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= L
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B,rec
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L
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with L
aB

 and L
AB

the equivalents of L
!

 for the pseudo-allele ! = aB  respectively 
! = AB , and 
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qA !!!! pA !!!!!qa !!!!! pa( ) . 

 

L
B,sel

 is derived by observing that without recombination the aB and AB gametic types 
reproduce independently (thanks to the severe dilution of the mutant population) in a 
manner similar to a new allele. Recombination occurs in the zygotes. It only has an 
effect when B resides in a zygote that is heterozygous on the A-locus. So we only have 
to see how the offspring of such individuals are affected.  Hence only maAB and faAB 
occur in L

B,rec
. A recombination event changes some aB gametes to AB gametes and 

vice versa via an exchange with the complementary Ab respectively AB haplotype. 
This is where the signs in L

B,rec
 come from. For the remainder L

B,rec
 is constructed so 

that the resident frequencies of A and a (i.e., Ab and ab) combine in the right manner 
with the frequencies of the mutant aB and AB gametes to get the frequencies of the 
ab.AB  and Ab.aB heterozygotes.  

The calculation of the required determinant is made easy by the fact that 
determinants are linear in their columns. Hence the determinant of the sum of two k×k 
matrices is equal to the sum of the determinants of the 2k matrices one gets by choosing 
for each column the corresponding column of either of the two original matrices. Since 
L

B,rec
 has rank one, from these 2k determinants only the k+1 determinants remain that 

comprise either zero or one column from L
B,rec

. The calculation is further facilitated by 
the many zeros in L

B,sel
, and the fact that the result should be invariant under the 

swapping of a and A. The result is 
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Q
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)        Q
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and 
RaB =!
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pA faAB + qAmaAB( )!+! 1
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pa ! qa( ) faABmaaB ! faaBmaAB( ) , 
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4
pA ! qA( ) faABmAAB ! fAABmaAB( ) . 
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The above expression is linear in c. Hence QB is maximal in c for c = 0  or 
c =

1

2
. Therefore, it suffices to consider QB for those values of c only. The case c = 0  

is already covered by the condition that no alternative allele is able to invade. So all 
that has to be done is to check whether QB is negative for c = 1

2
.  

Even trying to calculate R0 explicitly, which is possible in principle as 
polynomial equations up to degree four allow explicit solutions, is a task for more 
than a single happy winter evening. And the result will be so horribly complex that 
you would never dare give it to a student for some ulterior use. 

It is also possible to derive equations that have to be satisfied by any ESDs. 
However, the calculations are complicated and working through them to get at results 
would take more space than warranted by the present context. The more so since 
Carolien de Kovel and the first author are presently writing an extended paper on that 
topic, the upshot of which is that generically in the ecology and the developmental 
system alleles and modifiers disagree about the combinations of trait values they want 
to have present in the population. The exceptional cases where there is agreement can 
be classified and turn out to comprise precisely the main simplified models 
encountered in the literature, like the Hardy-Weinberg case treated in Section 6, or the 
evolution of sex determining genes or genes that are expressed in only one of the 
sexes. 

 By the same argument as before under the Ideal Free hypothesis any ESDs 
equalise the average lifetime offspring numbers of the three phenotypes. However, 
when there is no proportionality between the micro- and macro-gametic contributions, 
this only amounts to 
 

1

2
faa + maa( ) = 1

2
faA + maA( ) = 1

2
fAA + mAA( ) = 1 , 

together with  
 

f X | Xaa ,XaA ,XAA( ) + m X | Xaa ,XaA ,XAA( )  is maximal at X = X
aa
,!X = X

aA
,!X = X

AA
. 

 
(remember the formula for the fitness of Mendelian diploids) leaving open the option 
for intra-genomic conflict about the sex ratio.  
 To arrive at an equality of the separate contributions an Extension of the Ideal 
Free assumption is needed: it should be possible to split up the trait vector into two 
components,   

Y =
Y
f

Y
m

!
"#

$
%&

     with Yf ∈ Xf and Ym ∈ Xm,  

 

such that there exist functions 
 
!f  and  !m  such that 

 

 
f Y | Xaa ,XaA ,XAA( ) = !f Yf | Xaa ,XaA ,XAA( ) , 

 
m Y | X

aa
,X

aA
,X

AA( ) = !m Y
m
| X

aa
,X

aA
,X

AA( ) , 
 

and from any (Xaa,XaA,XAA) the support of the distribution of a mutant triple 
(XaaB,XaAB,XAAB) should equal (Xf × Xm)3, as may e.g. be the case when the sexes are 
separate with the two components corresponding to similar quantities for the two 
sexes. When the separate contributions are all equalised the macro- and micro-
gametic contributions to the effective expected lifetime offspring numbers become 
proportional, and the zygotes occur in Hardy Weinberg proportions (Dieckmann and 
Metz, 2006). Therefore under the Extended Ideal Free assumption alleles and 
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modifiers agree again about the combinations of trait values they want to have present 
in the population. 
 
8. Concluding remarks 
 

The use of Q(Y | X) := !det I ! L(Y | X)( )  as local fitness proxy was pioneered by 
Taylor and Bulmer (1980) and Courteau and Lessard (2000). The main contribution of 
this paper is the result that when the trait space is connected this proxy allows 
conclusions about global uninvadability to be reached. Secondary contributions are 
detailed recipes for dealing with long term evolution in haplo-diploid populations and 
of genetic dimorphisms both with and without the biologically exceptional but 
commonly made assumption that the effective lifetime micro- and macro-gametic 
outputs are at all time proportional. When the proportionality assumption is flouted, 
quite weird phenomena result. The detailed analysis of these will be the subject of 
another paper (De Kovel & Metz, in prep). 
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