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ABSTRACT. Maturation age and size have important fitnessequences through their effects
on survival probabilities and body sizes. The etroiuof maturation reaction norms in re-
sponse to environmental covariation in growth arwitatity is therefore a key subject of life-
history theory. The eco-evolutionary model we pnésand analyze here incorporates critical
features earlier studies of evolving maturatiorctiea norms have often neglected: the trade-
off between growth and reproduction, source-singypation structure, and population regu-
lation through density-dependent growth and fedyndiVe report the following findings.
First, the evolutionarily optimal age at maturatiman be decomposed into the sum of a den-
sity-dependent and a density-independent compoiidmse components measure, respec-
tively, the hypothetical negative age at which adividual’s length would be zero and the
delay in maturation relative to this offset. Secoalbng any growth trajectory, individuals
mature earlier when mortality is higher. This altows to deduce, third, how the shapes of
evolutionarily optimal maturation reaction normgead on the covariation between growth
and mortality (positive or negative, linear or dlinear, and deterministic or probabilistic).
Providing eco-evolutionary explanations for mantemative reaction-norm shapes, our re-
sults appear to be in good agreement with curnexpirecal knowledge on maturation dynam-

ics.
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Introduction

Age and size at maturation have strong impactsnandividual’s fitness, because they affect
its reproductive potential, schedule, and efficie(ftearns 1992; Charlesworth 1994). Matur-
ing early increases survival until reproductiomdthens reproductive lifespan, and reduces
generation time. Maturing late increases fecunditgige, lengthens the phase of fast juvenile
growth, and improves offspring survival througheaal body-size effects. Furthermore, in-
dividuals face a trade-off between maturing youngtdarge size, since for any given growth
rate earlier maturation implies smaller size.

Owing to their effects on fitness, age and sizeaturation are subject to natural and/or
anthropogenic selection pressures. Plastic vanatio age and size at maturation are ubiqui-
tous within species (Stearns 1992) and are oftamackerized by univariate reaction norms
that describe either age (fig 1A) or size (fig HB)maturation as a function of the growth rate
characterizing the experienced environmental cardit Bivariate maturation reaction norms
extend this concept to joint phenotypic plastigcityage and size at maturation (fig. 1C). Ac-
cordingly, a maturation reaction norm is the curvéhe age-size plane connecting the com-
binations of age and size at maturation that apressed by a given genotype for different
growth rates in the age-size plane (Stearns andd@lal984; Stearns and Koella 1986). The
evolution of maturation reaction norms has beenstifgect of numerous theoretical studies
(e.g., Stearns and Koella 1986; Perrin and RubB018errigan and Koella 1994; Day and
Rowe 2002; Ernande et al. 2004; Dunlop et al. 2@009a, 2009b; Thériault et al. 2008; En-
berg et al. 2009; Jgrgensen et al. 2009). As teess@nd benefits of maturing earlier or later
accrue in terms of survival and/or size-dependeatridity, the rates of somatic growth and
mortality are expected to serve as primary deteantsrof maturation evolution. These rates
are largely influenced by environmental conditioingJuding both biotic and abiotic factors.
For instance, growth rates depend on food resoaecggemperature (Boggs and Ross 1993;

Adolph and Porter 1993), while mortality rates also influenced by food resources and tem-
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perature, as well as by predators and pathogegs fmholt and Werner 1995; Werner and
Anholt 1996).

Rates of growth and mortality may covary positivetynegatively across environmental
conditions. Such covariation can have many causasexample, positive covariation may
arise from the trade-off between foraging time gmedation risk: individuals that forage
longer or more audaciously acquire more energy o faster, but at the same time are
exposed to higher predation risk, and thus to lighartality (Abrams 1991; Werner and An-
holt 1993; Walters and Korman 1999). In contrasgyative covariation between growth and
mortality rates may arise when the spatial distrdsuof food resources is heterogeneous,
such that individuals in richer environmental caiotis can acquire more energy than those
in poorer conditions, thus benefiting both in terwhgrowth and survival.

Several theoretical studies have investigated tiiluence of covariation between
growth and mortality on the evolution of maturaticgaction norms. Stearns and Koella
(1986) and Burd et al. (2006) analyzed differergatve relationships between growth and
mortality, and found various optimal reaction norsigpes: L-shaped, sigmoid, and V-
shaped in Stearns and Koella (1986), curved owfinvgth different slopes in Burd et al.
(2006). Berrigan and Koella (1994) extended thdyarsato positive relationships and found
other optimal shapes (flat, dome-shaped, and bbagped). However, these studies used von
Bertalanffy’s growth model, which does not accotartthe crucial energy-allocation trade-
off between somatic growth and reproduction (Dag &aylor 1997). This trade-off is key to
the evolution of maturation. It effectively pitchesrrent against future reproduction: during
and after maturation, energy is allocated to repctdn at the expense of somatic growth,
which in turn reduces future reproduction to théeekthat such reproduction increases with
body size. Studies on the evolution of maturatesction norms therefore need to account for

the energy-allocation trade-off between growth eepdoduction.
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Perrin and Rubin (1990) modeled growth and reprbdacaccording to energy-
allocation principles and thereby obtained différeptimal maturation reaction norms. How-
ever, their analysis, as those by Stearns and &¢£886), Berrigan and Koella (1994), and
Burd et al. (2006), suffered from optimizing matioa separately for each environmental
condition. This approach would be appropriate ahtyre optimal maturation reaction norm
were intended to describe combinations of age aedats maturation occurring across a large
number of separately evolving populations that eepee different, but constant, environ-
mental conditions. If, in contrast, the optimal aration reaction norm is meant to describe
combinations of age and size at maturation ocagitirina single evolving population whose
individuals may experience a range of environmentalditions, the fithess of genotypes
needs to integrate across the whole range of emwieotal conditions these genotypes may
encounter during their lifetime (Houston and McNam&992; Kawecki and Stearns 1993).
Considering such an aggregate measure of fithegspiecially critical when environmental
conditions influence offspring production. In sucdses, populations exhibit source-sink dy-
namics, so that individuals experiencing producti@aditions contribute more offspring than
those experiencing unproductive conditions, whiekuits in unequal contributions of sub-
populations to the population’s next generatiornve®a authors (Van Tienderen 1991; Hous-
ton and McNamara 1992; Kawecki and Stearns 1998ritte and Dieckmann 2004; Ernande
et al. 2004) have proposed adequate fithess meatumodel the evolution of phenotypic
plasticity. So far, however, these fithess meashea® not been applied to the evolution of
maturation reaction norms in response to envirotat@ovariation between growth and mor-
tality.

A population’s source-sink structure depends onirtexplay between variability in the
intrinsic productivity of subpopulations and thealec of population-density regulation. In
classical dispersal-selection models, density eggn occurs either locally within each mi-

croenvironment, or globally in a common pool ofspifing formed after reproduction in the
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microenvironments. The resultant source-sink stingcgives rise to soft selection (Levene
1953) or hard selection (Dempster 1955), respdgtivand is critically altered by habitat
choice (Ravigné et al. 2004, 2009). Previous studieoptimal maturation reaction norms,
however, did not incorporate density dependence e specifically, density-dependent
energy acquisition, despite its important effeatssomatic growth and reproductive invest-
ment, and thus on the selection pressure affeatiatyration.

In this study, we investigate the evolution of nmation reaction norms under the influ-
ence of environmental covariation between growtth moortality in a manner that addresses
and overcomes these three issues. We describeatteedff between somatic growth and re-
production according to energy-allocation princgpléKozlowski and Wiegert 1986;
Kozlowski 1992; Day and Taylor 1997). We use thacapt of invasion fitness (Metz et al.
1992), and its application to subdivided populaighletz and Gyllenberg 2001), to aggre-
gate components of fitness that result from théouarenvironmental conditions individuals
may encounter. We consider populations with denggulation and source-sink structures
implied by density-dependent energy acquisitionyinich the growth and fecundity of indi-
viduals is affected by the population’s total bi@saCombining the framework of physio-
logically structured population models (Metz ancknann 1986; De Roos et al. 1992; De
Roos 1997) with a selection-gradient approach, wdehthe evolution of maturation reaction
norms as function-valued traits (Kirkpatrick and ckman 1989; Gomulkiewicz and
Kirkpatrick 1992; Dieckmann et al. 2006; Parvin¢male 2006).

After describing how we model life history, enviroantal conditions, population dy-
namics, and evolutionary dynamics, we analyze tifieence of environmental covariation
between growth potential and mortality rate on shape of evolving maturation reaction
norms. We first consider linear and nonlinear deteistic relationships between growth and
mortality, and then extend our analysis to prolstil relationships. We find that the evolu-

tionarily optimal age at maturation involves a dgnamdependent and a density-dependent
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component and discuss the importance of densitgrignce. We also show that, along any
growth trajectory, individuals mature earlier whaortality is higher, and that this one simple
rule helps us explain the shapes of evolving métmaeaction norms under a wide range of

conditions. We finally compare our results withatkheoretical and empirical studies.

Model Description

Our model describes the life history of individuated the environmental covariation between
growth and mortality underlying the population dymes that determine the evolutionary
dynamics of maturation reaction norms. Below, wespnt these different components in

turn.

Life History

An individual’'s net energy acquisition rate, i#e surplus energy after accounting for main-
tenance, is assumed to scale with its weightas w23 (Kozlowski and Wiegert 1986;
Kozlowski 1992; Day and Taylor 1997). It also deses with total population biomass
because of competition for food resourcga?®/ (1+ aB), whereg measures growth poten-
tial (or weight-specific energy acquisition) as aetetined by environmental condition and
1/a measures the population biomass at which this trgetential is halved because of
density dependence. Although the allometric scathmetabolic rates is subject to vigorous
debate (e.g. Koztowski and Konarzewski 2004; Brawml. 2005), the qualitative results of
our study remain unchanged upon varying the enacgyssition scaling exponent over the
classical range considered in bioenergetics, fr@em 2/3 to 3/4. Somatic growth and fecun-
dity compete for the allocation of surplus ener@gnoting the realized growth potential by

0, = g/ (1+aB), somatic growth rate and fecundity rate are theargby
i ug,w*"® (1a)
oa

and
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b(a) =(1-u)g, \AVC ; (1b)

0

where a denotes ageh fecundity ratew, the weight of a newborn, and the proportion of
net acquired energy devoted to somatic growth, Wittu being allocated to reproduction
(Kozlowski and Wiegert 1986; Kozlowski 1992; Daydahaylor 1997). During the juvenile
stage, all energy is devoted to somatic growthk, , whereas during and after maturation at
age a,, both functions are allocated a share of energyraing to u =exp-h(a-a,)),
with h measuring reproductive effort.

Translating weight into length according vo= wl®, where & is a constant ant de-

notes an individual’s length, we obtain the dynatlength growth,

ol 1

EZWUQV 2

At steady state, i.e., at constant total populab@mass, the resultant growth trajectory is

linear before maturation and afterwards convergestasymptotic length, (fig. 1C),

I0+%£{,3a fora<a,
I(a) = ()
1 g9 —h(a-
l(am)+1_’>a}/3h(l_eh( ™) fora>a,,

with length at birthl, = (w,/ )", length at maturatioh(a, ) =1,+a_g,/ (3&"®), and asymp-
totic length |, =1(a,) + g, / (3hw'’®). Therefore, age at maturation affects adult aryinps
totic lengths, as well as size-dependent fecun@ity 1). When varying the reproductive ef-
fort h from 0O to infinity, growth ranges from indetermiado determinate.

Maturation responds plastically to environmentaiafaility through its dependence on
growth (Stearns and Crandall 1984; Stearns andl&ad8B6). Considering only populations
at steady state, a growth trajectory is charaadrlzy its growth potentiayy. Therefore, we
describe age at maturation as a function-valued &g()) depending on growth potential,
i.e., as a univariate reaction norm that descniaemtion in maturation age as growth poten-

tial g varies with environmental condition (fig. 1A). Lgth at maturation is deduced from
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an(9) asl(ay(9)) (fig. 1B), and the bivariate maturation reacti@mm is thus obtained as a
parametric curvga_(9),l(a,(g))) of the growth potentiaf (fig. 1C).

For the sake of simplicity, we keep mortality ratmnstant throughout an individual’s
lifetime, although stage- or size-dependent madytahtes could be considered. An individ-

ual’s survival until agea is therefore obtained as
s(a) =, exp(-ma), (4)

where s, denotes the low survival probability affecting tarliest life stageg=0). After-
wards, the mortality raten is assumed to vary according to environmental itimmd Its co-

variation with growth potentiag) is described in the next section.

Environmental Covariation between Growth and Mortality

Environmental variability generates (co)variationgrowth and mortality. We consider de-
terministic and probabilistic relationships betwegowth potentialg and mortality ratem.
The deterministic cases allow us to examine detaféects of the shape of the relationship
on evolving maturation reaction norms, whereas gidistic cases help us understand matu-
ration reaction norms favored by natural selectiomore realistic noisy ecological settings.

We assume that, whilg and m are constant throughout an individual’s lifetintegy
vary among individuals. This can be interpretedetial variation in environmental condi-
tions, or more generally as stochastic variatiaosg microenvironments.

For deterministic relationships, mortality rat€g is)treated as a function @f, which
is normally distributedg ~ N(g,04) . To encompass both linear and nonlinear relatipssh
we definem(g )as a parametric trade-off curve (Appendix A). Tparameters,fS and c,
control the relationshipg controls its slope (fig. 2A) and determines whetthe two vari-
ables are independendri(g) /0g =0 for S =0), or if they are dependent, whether they are
correlated positivelydm(g) /g >0 for £ >0) or negatively §m(g)/0g <0 for £<0). c

controls the curvature of the relationship (fig.)2&hich can be convex@@m/dg2 >0 for
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c<landp< Qorforc>1andp> 0, linear (m(g) =m+ £(g—7g) for c=1), or concave
(0°m/dg? <0 for c>1 and < O, or for c<1 and 8 > 0.

Probabilistic covariation between growth and mdstals represented by a bivariate
normal probability density functiomp(g,m dlescribing the likelihood that an individual, as a
result of environmental variability, experiencesecific combination ofg and m. The
function p(g, m) implies meansg andm, standard deviationsy ando,,, a slopeg of the
regression ofm againstg, and a correlation coefficient (fig. 2C). By definition,f and p
have the same sign, so that only the correlati@fficeent’'s absolute valugo| conveys extra
information. Linear deterministic relationships arathing but special cases of probabilistic
relationships, with p| =1. To describe probabilistic relationships, we tif@me use the same
parameters as for linear deterministic relationshi@, o4, M, and #), complemented by

|o|. The standard deviation of mortality ratedig = o, 8/ p.

Population Dynamics and Evolutionary Dynamics

We model the population dynamics resulting frore hiistory using a physiologically struc-
tured population model (Metz and Diekmann 1986;H@®s et al. 1992; De Roos 1997). It
describes the continuous-time dynamics of the demgg, g, m) of individuals ageda with
growth potentialg and mortality ratem (Appendix B). Considering populations at equilib-
rium, an individual's length is deduced from itseagnd growth potential. Reproduction is
panmictic and offspring distribute randomly acr@ss/ironmental conditions according to
their frequencyp(g,m ) The resulting gene flow among subpopulations B&peing differ-
ent environmental conditions inhibits local diffetiation and favors genotypes that respond
plastically to environmental variability. These pegses also ensure that unproductive sub-
populations receive net contributions of offsprirgm productive ones, generating a source-
sink population structure. The stable densiia, g,m of)the population at equilibrium can

be found analytically, up to its total biomaBs which must be computed numerically.

10
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Based on this population model, we focus on théutom of maturation reaction norms
by considering the evolutionary dynamics of thecfion a,, () determining age at matura-
tion (Appendix B). We use a selection-gradient apph (Abrams 2001), which is consistent
with the frameworks of both quantitative genetitar(de 1979, 1982; Iwasa et al. 1991,
Abrams et al. 1993) and adaptive dynamics (Dieckmamnd Law 1996; Metz et al. 1996;
Geritz et al. 1997). The selection gradi@gm(g) describes the strength and direction of
selection ona,,(g): for eachg, a positive gradient value indicates that selecfavors an
increase inay,(9), while a negative gradient value implies the ojiposThe selection-
gradient functionGarn (¥ is derived from invasion fitness, following metisodeveloped for
function-valued traits (Kirkpatrick and Heckman 99®ieckmann et al. 2006; Parvinen et al.
2006). We use the lifetime reproductive succBgsas a measure of invasion fitness. When
density dependence regulates a population onlugira single environmental variable ap-
pearing as a multiplicative factor reducing the rat offspring production (here the inverse of
total biomass}l/ B reducing the fecunditp, eq. 1b), evolution optimizeR, (but not other-
wise; Mylius and Diekmann 1995; Metz et al. 19960&). The evolutionary dynamics of
an () reach a selection-induced evolutionary equilibriwinen the selection gradient van-
ishes, Gy (9) =0. Since in our modeR, is maximized by evolution, the optimal maturation
reaction norma:n([)] that cancels the selection gradient is not onkiyveogence stable but
also locally and globally evolutionarily stable (Mna et al. 2001; Dieckmann et al. 2006).

Throughout this study, we denote population eqadiby a tilde and evolutionary equi-
libria by an asterisk. We are interested in thanogtt maturation reaction norms that result

when both dynamics have equilibrated.

11
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Results

Constant Growth and Mortality: Higher Mortality Favors Earlier Maturation

To understand the basic features of maturationugiool, we first deal with the simple case of
constant growth potential and mortality rate, teestigate their independent influences. In
this case, maturation age and length are givenpmjirat along a single growth trajectory (fig.

3). The evolutionarily optimal maturation ag*@1 can be found analytically,

. —mf—hm+6h?+y/m*+ 4hm3+ 31’ m%+ 6+ 364 . &Y @aB") . | . 5
an = ~lo =amitd g ()

m® +5hm? + 6h°m g

up to the total biomasB” at population and evolutionary equilibrium, whictust be deter-
mined numerically.afn is the sum of a density-independent comporu%q]it and a density-
dependent componerﬁgid :—I03a)1/3(1+a§*)/g. The latter is the root of the juvenile
growth function (eq. 3, first row)l(é;’d):o, and thus represents the hypothetical age at
which length would equal 0, which is negative byirdéon. a,,; = a,, -804 describes the
density-independent timing of maturation relatisean offset measured kﬁ(g’d, while é’ad
itself is adjusted by density dependence. It fodwat a:n,i has to be positive, which is en-
sured as long ab>m [@n the extreme case of determinate growth, fa.,h - o, the
optimal age at maturation relative to the age agtle 0 equals twice the average individual's
lifespanl/m, a, -&,,=4,,; - 2/m.

The density-independent componmﬁ{yi evolves towards younger ages when mortality
rate m increases and reproductive efftrtdecreases, sinah:m /om< dnhd aa:m /oh> O,
respectively. Notice that these changes are ewolaty and not plastic. Earlier reproduction
is favored when mortality increases, because itavgs an individual’'s likelihood to produce
offspring before dying, which in turn increaseslitstime reproductive success. For repro-
ductive effort, the evolutionary rationale relies the trade-off between current and future
reproduction. An increased reproductive effort impéuture reproduction, because it lowers

growth after maturation, and thus size-dependenirféity (eq. 1b). Concomitantly, current

12
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reproduction is improved, but this effect diminishegith age, since energy allocation to re-
productionl-u=1-exp-h(a—a,,)) tends to 1 fora — «, independent oh>0. The net
effect is that, counter-intuitively, lifetime remhactive success decreases as reproductive ef-
fort increases, which is compensated for by magulater and larger (eq. 3).

Mortality rate m and reproductive efforh have also indirect effects on the a@@d at
length O, through biomasB”. These effects are opposite to thoseaﬁr{]. 56’(1 increases
when m increases dagq/dm=-(Bolqa/g)dB" /om> P or h decreases
(0agg/dh=-(3031a/ g)aB" /0h < 0), because total bioma®’™ is a decreasing function
of m (aé* /0m< 0) and an increasing function of (aé* /oh>0) (Appendix C).

Despite these opposite effects, the net effectsatality rate and reproductive effort
on the optimal maturation agzii;1 are qualitatively the same as on its density-iedent
componenta:n’i (fig. 3A, 3B). However, for length at maturatidhe implications of density
dependence are not negligible. For higher mortalitgsm or lower reproductive efforh,
the resultant decrease in total biomags improves the realized growth potential
gj =g/(1+aB'). Despite the associated decrease;i]n the resultant length at maturation is
larger than expected without this compensatoryaesp.

Length I, at birth, growth potentiafy, and strength of density dependenc®nly af-
fect age at length CES,d. They have both a direct and an indirect effeattoial biomass” .
Surprisingly, these effects compensate perfectiythat da,,/dl,=0a,,/dg =da,/da =0
(Appendix C). Thereforeﬁad and the optimal maturation agén are insensitive to variation
in these parameters. More specifically, variatiorgi or o affects B" in such a way that the
realized growth potentiafj, =g/ (1+aB ) stays constant. It follows that the optimal age an
length at maturation are also left unchanged @(@). As |, increases, fecundity diminishes,
as it is inversely related to initial weight (edp),Lso thatB" decreases. Changes B here

result in an increase in realized growth potenghlthat compensates for the increasdgn

13
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and results in a constant optimal age at maturahevertheless, the increase(]ﬁ results in

a larger length at maturation (fig. 3D).

Deterministic Covariation between Growth and Mortality: General Insights

We now examine evolving maturation reaction normden environmental covariation be-
tween growth and mortality, starting with determstia relationships. The resulting optimal
age a:n O at maturation has the same form as in case otaanenvironment, but now is a

reaction norm depending on growth potengal

g)= -m(g)? - hm(g) + 6h% +/m(g)* + 4hm(g)*+ 3t m @ >+ 60 n @ )+ 36\4_| 3u3(1+aB")
9 m(g)° +5hm(g)? + 6h’m(g) g (6)

= a:n,i (9)+ é{o,d(g)

Yet, two fundamental differences to the case ofstammt environment exist: the density-
independent componedn'i (g vparies plastically withg, due to its link with mortality rate
m(g), and that the density-dependent comporﬁ%}g(g alsd varies plastically witly, be-
cause total biomasB” now stays constant whatever specific environmerdablition g is
considered, sinc&” quantifies the total population biomass acrosem@lironmental condi-
tions. As a corollary, the evolution of age at mation in one environmental condition de-
pends on all other environmental conditions throtlgdir joint effect on total biomass. More-
over, owing to the source-sink structure of theyaton, the evolution of age at maturation
can proceed for environmental conditions that wdelad to non-viable populations were
these considered in isolation, as offspring produnesubpopulations in viable conditions are
distributed to those in non-viable conditions.

The direction of plastic changes in optimal agenaturation in response to variation in
growth potential is given by the sign of the detive of a:;(g) with respect tag,

03 (9) _ Om(g) 92m;(9) , 080a(0)

(7)
dg dg om(g) a9

14
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Any environmental increase in mortality rate leads to a plastic aeeren the density-
independent componer,,; (g , $ince dan,;(g)/dm(g) < Q Plastic changes ia,;(g are
thus opposite to the sign of growth-mortality covariatiom(g)/dg, given by the parameter
£ (Appendix A). Specifically, wherg increases,a:n,i (g )lastically decreases if mortality
increases with growth > )0 whereas it increases if mortality decreases with growth
(p <0). On the other hand, the ag'é,d(g af length 0 plastically increases wighirrespec-
tive of the growth-mortality relationship, sindﬁayd(g)/ag = 3a)1/3lo(1+ aé*)/gz > (Bo-
tice that, in contrast to the case with constant growth anthhty, the derivative ofB" is
not involved, becaus8” depends on the entire distribution of growth potentials, ralizer
on any one growth potential from this distribution). Plasktianges irﬁ&d(g will thus coun-
teract those ira;],i (g )f g is positive, and amplify them if is negative. In the former case,
the direction of net plastic change in the optimal age atratain a:n(g) will depend on the
relative amplitude of the two components’ plastic changes. Numeesalts show that the
plastic response ofy,(g) is qualitatively driven byay,;(g ) with d,4(g) having only a
weak effect. Consequently, fast-growing individuals mature yeutigan slow-growing ones
if mortality rate increases with growth potential, and mature aofdaortality rate decreases
with growth potential.

If mortality rate and growth potential are independefit=(0, so thatom(g)/dg =0),

the density-independent component is fixéd:,(,i (g)/og= )ad

am: () = (-m? — hm+6h2 +m* + 4hm® +37h2m?2 + 60h3m+36h* ) /(m? + 5hm? + 6h?m) .
(8)

In this case, plastic changes in the é?ég(g at length 0 have a more conspicuous effect. As
the growth potentialg diminishes,é&d(g ) (which is negative) decreases, but its absolute
value increases. Therefore, the optimal age at maturation is almssartoior high to mod-

erate values ofj, but decreases for low values gf

15
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No analytical results are readily available to further investigate thadngs the slope
and curvature of deterministic growth-mortality relationships enstiape of optimal matura-
tion reaction norms. Therefore, in the following subsectiores,cambine numerical results
with approximate analytical insights based on descrilﬁﬁ,@g) by a second-order Taylor
expansion of the density-independent comporté,q}it(g around the mean growth potential
g (Appendix D). Comparison between the two types of results cantinat this approxima-

tion is accurate (not shown).

Linear Deter ministic Relationships between Growth and Mortality: Effects of Sope

If mortality rate and growth potential are linearly related=() with slope S, the optimal

reaction norm is approximated by
* * . . 1 . ~%
am(9) = am;(0) ~kuB(9 = 8) + S ko8 (9~ 0)° +a(0). (9a)

where k; and k, are two positive constants that depend only omodkptive efforth and
mean mortality rateam . This approximation enables three analytical insgFirst, the posi-
tion a,;(9)+&,,(g) of the optimal reaction norm,,, () is independent of the slogg so
that # mostly affects the shape aﬁn (DY, not its position. The constant teraﬁ],i (g) is obvi-
ously independent of3, Whereas%,d(g )can be affected by through its effect on total
biomassB" . Numerical results show th&  decreases aB increases, leading to an increase
of %,d(g) for all g. This is because a8 increases, highly productive environments (large
g) suffer higher mortality, while less productivevennments (lowerg) suffer lower mor-
tality, leading to the decrease of total biomassweler, the amplitude of this effect is gener-
ally small. Second, the linear termk;3(g — g) confirms the result (eq. 7) that the direction
of plastic changes ila:n,i (g ik opposite to the sign of the slope Finally, the optimal age at
maturation varies nonlinearly with growth potentiddecause the quadratic term
kzﬁz(g —g)z /2 is positive. Consequently, if growth potentigl and mortality ratem are

negatively correlatedf < ) the plastic increase ia:n,i (g 3ccelerates wheg increases,
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which is amplified by plastic changes qu,d(g , Whereas, wherg and m are positively
correlated 3 > 0, the plastic decrease iay;,i(g decelerates wheny increases, which is
partly counteracted by plastic changesﬁﬁh(g )

Optimal maturation reaction norms rotate togethigh whe slopef (fig. 4). Reaction
norms with positive and negative slopes are shgbtnvex and concave, respectively (fig.
4C-E, 4F-H; this is more visible for reaction norinsgrey obtained for larger variability in
growth potential). The reaction norms are curvedabee of the delay in age at maturation
induced by the effect of decreasing growth potéotiathe age at length 0, as described in the
previous subsection. Two specific cases are ndilee&Vhen mortality rate and growth po-
tential are independeniZ(=0), an almost vertical reaction norm, or maturatge thresh-
old, evolves (fig. 4B). In contrast, for some pwgtslope f (around 0.004 in our example;
fig. 4G), an almost horizontal reaction norm, ortumation-size threshold, evolves. Unlike for
the maturation-age threshold, the value offor which such a maturation-size threshold
evolves can only be assessed numerically.

Early maturation does not necessarily imply smd#agth at maturation. For instance,
reaction norms with negative slopes (fig. 4F), wh&volve for shallow positive growth-
mortality relationships, generate larger lengthsnaturation when maturation occurs early.
This is reversed for reaction norms with positil@ss, which are favored for steeper posi-
tive growth-mortality relationships (fig. 4H). Alswider plastic variation in age and length at
maturation evolves as the growth-mortality relasiop becomes steeper. In this case, vari-
ability in growth potential induces a wider varatiin mortality rate, which leads to the evo-
lution of broader plastic variation in maturatiogeaand thus in maturation length.

Finally, the effects on the optimal maturation teatnorm of altering the degreg, of
variation in growth potential depends on the sigrthe slopef. If =0, increasingo
generates wider reaction norms, encompassing nxbrenge growth trajectories (fig. 4F-H).

If g <0, increasingsy also displaces reaction norms toward smaller sizesaturation (fig.
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4C-E). In this case, productive conditions (laggimply lower mortality, so that they make
a larger contribution tB" than unproductive conditions. Additional variatyilin productiv-
ity (g) exacerbates this effect, so tHat increases withr 4. Consequently, for a giveg,
the realized growth potentiaj: diminishes (compare grey and black growth trajeesofor
the mean growth potential, fig. 4C-E), while theim@l maturation age stays roughly con-

stant. This generates a smaller size at any giennation age.

Nonlinear Deterministic Relationships between Growth and Mortality: Effects of Curvature

We now consider nonlinear deterministic covariati@ween growth potential and mortality
rate and examine the influence of the curvaturampaterc on maturation evolution. The

optimal reaction norm is then approximated by
* * J— —_— 1 J— ~%
3 (9) = 8n;(9.8.0) +ka(B.0)(G = 9)+ Sk (B.C)G = T) +&0,4(9) (9b)

The main analytical insight from this approximatisnthat at intermediate growth potential,
optimal maturation is delayed relative to the linease for convex relationships €1 and
<0, orc>1 and g > 0 and accelerated for concave relationships1 and g < Q, or
c<1 and g > 0. The mortality ratem at intermediate growth potentig is indeed lower
for convex relationships than for linear ones (6é\, curves B and G), which favors delayed
maturation, and higher for concave relationshipiictv favors earlier maturation (fig. 5A,
curves D and E). More specifically, the constanhta;yi(g,,é’,c) depends on both the slope
S and the curvature parameterof the relationship. It increases asincreases for positive
growth-mortality covariation £ > 0 whereas it decreases for negative covariatpr (). 0O
The effect ofc on the ag%’d(g Rt length 0 is opposite. This is because aacreases for
£ >0, individuals on average suffer less mortality. SThesults in an increase of total bio-
massB’, and thus in a lower agﬁgld(g at length 0. The converse applies fox . How-
ever, the magnitude of the effect ofon %’d(g) is weak relative to its effect oai;’i(g,ﬂ,c),

so the latter dominates the effect ©fon the optimal maturation reaction noraﬁl,([)]. The
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coefficientsk; (8,c) andk,(8,c) depend on botl# andc in an analytically intractable way:
no further analytical insights into their effecendbe derived.

The direction of plastic changes in maturation siijedepends on the sign ¢f: fast-
growing individuals mature later for negative grbwmortality covariation (fig. 5B to 5D)
and earlier for positive one (fig. 5E to 5G). Coxnand concave reaction norms evolve for
negative and positive convex growth-mortality caation (fig. 5B, 5G), respectively, and for
positive and negative concave covariation (fig. 5B), respectively. In addition, the curva-
ture of the growth-mortality relationship exacegsathe effect of growth variabilitg; rela-
tive to the linear case. Ag, increases, reaction norms are shifted toward @des and lar-
ger sizes for convex relationships (fig. 5B, 5&G¢cduse the average mortality rate decreases

(fig. 5A, grey curves B and G). The converse apioe concave relationships (fig. 5D, 5E).

Probabilistic Covariation between Growth and Mortality: Effects of Correlation Coefficient

We now focus on more realistic cases of probalalgtowth-mortality relationships and in-
vestigate the effect of the linear regression c¢oiefiit 5 and of the absolute valye of the
correlation coefficient. Since in this case no giiedl solution can be derived for the optimal
age at maturation, we present only numerical result

As in the linear deterministic case, maturatiorctiea norms rotate together with,
whatever the magnitude ¢p (left to right columns in fig. 6). Earlier matuia occurs for
fast growth when growth and mortality covary pasgly, and for slow growth when they co-
vary negatively. Decreasinyp , implying lower determinism in growth-mortality aria-
tion, induces three effects (top to bottom rowim 6). First, optimal reaction norms shift
toward older ages and larger sizes. Second, tlftsistarger for growth trajectories that are
subject to lower mortality rates, i.e., for steegeswth trajectories when growth and mortal-
ity are positively correlated, and for shalloweowth trajectories when they are negatively

correlated. Third, where this shift occurs over tlomlinear part of growth trajectories, the
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reaction norms’ curvature increases, Yyielding ceacegeaction norms for positive growth-

mortality covariation and convex reaction normsrfegative covariation.

Discussion

Optimal maturation age reflects both density-independent and density-dependent processes

A major novel result of our study is that optimgkaat maturation decomposes as the sum of
a density-independent and a density-dependent coempoThe latter represents the hypo-
thetical negative age at which an individual’s léngould be zero. This means that density
regulation affects optimal maturation reaction nimy shifting this offset age, with density-
independent effects acting on top of the offsetr fihding generalizes an earlier result ob-
tained by Day and Taylor (1997), which was basedhensame energy-allocation model as
our study, but was restricted to non-plastic mdioina determinate growth, and density-
independent life histories (see also Lester eR@D4). In contrast, our result holds for non-
plastic and plastic maturation, determinate ane@tewhinate growth, and density-dependent
and density-independent life histories. Below, ve¢ad the implications of density depend-
ence.

Density regulation in constant environments. For non-plastic maturation, density de-
pendence results in the optimal maturation agegoeisensitive to growth potential, strength
of density dependence, and length at birth. Thig result contrasts with earlier findings by
Day and Taylor (1997), who predicted a strong posieffect of growth potential on optimal
maturation age, for determinate and density-indépengrowth.

Density regulation across a continuum of environmental conditions. We consider a con-
tinuum of environmental conditions coupled throwfgmsity regulation: energy acquisition is
regulated by a population’s total biomass acrossfiii range of environmental conditions.
Consequently, all individuals experience the saewsily dependence, which, together with

the random dispersal of offspring across all emmmental conditions, results in a continuous

20



Marty et al. Evolving maturation reaction norms

version of hard selection (Dempster 1955; see Rbpagné et al. 2004, 2009). This coupling
of subpopulations in different conditions implies@urce-sink population structure, in which
some subpopulations export an oversupply of offigptd others. These features have three
important effects on the evolving maturation reatthorms. First, optimal maturation reac-
tion norms are affected by the length at birth,dh@wth potential, and the strength of density
dependence, because total biomass is independehée gfopulation density in the specific
environmental condition considered. These new tesantrast with those for constant envi-
ronments. Second, the source-sink structure masitadividuals under growth and mortality
conditions that would cause population extinctibexperienced in isolation. This enables
evolution of the maturation reaction norm in thase-viable conditions. Third, the evolution
of the maturation reaction norm in a given envirental condition is constrained by all other
environmental conditions, since the populationtltbiomass equally affects the hypotheti-
cal age at length 0 across all conditions. Indigldun unproductive conditions suffer stronger
density dependence than if they were isolated,usecthey experience a higher total biomass
enabled by the more productive conditions. The wiah of a maturation reaction norm’s
density-dependent component is thus dominated édytbductive environments. This asym-
metry is exemplified by the effect of growth vaigat on the position and shape of maturation
reaction norms (fig. 4C-E, black and grey lineshisTresult extends to density-dependent
plastic life histories previous insights about éwelutionary effects of source-sink population
structure obtained for density-dependent non-gla@rown and Pavlovic 1992; Holt and
Gaines 1992) and density-independent plastic (Mouahd McNamara 1992; Kawecki and
Stearns 1993) life histories. The novelty herehat density dependence can be the mediator
of the influence of productive environmental commfis on reaction-norm evolution. Previous
treatments of the influence of growth and mortatity the evolution of maturation reaction

norms (Stearns and Koella 1986; Perrin and Rub@0;1Berrigan and Koella 1994; Day and
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Rowe 2002; Burd et al. 2006) missed these redudtsause they lacked the joint density regu-

lation of subpopulations across different environtakconditions.

One Smple Rule Helps Explain all Evolutionarily Optimal Reaction Norm Shapes

According to general insights into life-history éwion, investing more energy into growth
by delaying maturation will on average not pay @fblutionarily, if the probability of dying
before reproduction is high (Stearns 1992). Ina@danortality thus selects for earlier matura-
tion. This was shown by earlier studies, which, deer, were limited to non-plastic matura-
tion (e.g., Koztowski and Wiegert 1987). The newight provided by our study is that this
rule also applies to adaptive plasticity in agenaturation:along any growth trajectory, in-
creased mortality selects for earlier maturation. Consequently, the shapes of evolutionarily
optimal maturation reaction norms can be deducenh fnow growth and mortality covary
across environmental conditions.

For positively correlated relationships, fast-gnogvindividuals experience higher mor-
tality and therefore mature earlier while whetheyt mature larger or smaller depends on the
steepness of the relationship (fig. 4F, 4H and@pwth trajectories approach the resultant
optimal maturation norms always from below. Thewase holds for negatively correlated
relationships except that fast-growing individualways mature larger (fig. 4C-E and fig. 6).
Considering curvilinear relationships, optimal t&@t norms bulge toward younger ages for
concave relationships, i.e., when mortality atnmediate growth is higher than in the linear
case, and to older ages for convex ones (fig. Snpaturation age threshold (fig. 4B) evolves
when mortality is constant despite variation invgito while a maturation size threshold (fig.
4G) evolves for shallow positive linear determimmiselationships. For probabilistic relation-
ships, lower determinism in growth-mortality coion favors older ages and larger sizes at
maturation (fig. 6), because the functisfa,m) = s, exp(ma) (which translates mortality
rate m into survival probability) is convex. When mortglvaries around its meam(g) on

a growth trajectory with growth potentig@, the resultant average survival therefore always
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exceedss(a,m(g)). The implied reduction in average mortality fav@ater maturation. This

weaker average selection pressure toward earlyratetn relative to the linear deterministic
case can be related to a secondary source-sinkgtigpustructure for each growth potential:
as sources experience lower mortality than sirfkesy tontribute more offspring to the next

generation and therefore drive the evolution ofuretton.

Comparison with Earlier Theoretical Studies

Effects of growth potential. Studies that describe growth using a monophasuthr
model, such as von Bertalanffy’'s model, and fectynalé an allometric function of body size
predict plastically delayed maturation when growtitential decreases (Stearns and Koella
1986; Berrigan and Koella 1994; Burd et al. 2008)is prediction is based on overlooking
the energy trade-off between growth and reprodadtizay and Taylor 1997). Explicitly ac-
counting for the underlying energy allocation, werid that, when growth varies alone, matu-
ration is plastically delayed as growth increas@sl, when growth and mortality covary, plas-
ticity in maturation age occurs in the directiorpopite to the sign of growth-mortality co-
variation. These results agree with previous ssidiased on energy-allocation principles
(Perrin and Rubin 1990; Day and Rowe 2002).

Direction of reaction-norm curvature. Like several previous studies, our model predicts
both concave and convex optimal maturation reagimmms. Concave reaction norms evolve
for positive linear (fig. 4F-H), positive convexdf 5G), and negative concave (fig. 5D) de-
terministic growth-mortality covariation, and foogtive probabilistic covariation (fig. 6).
Convex reaction norms evolve for relationships wfith opposite features (fig. 4C-E; 5B; 5E;
6). Also Berrigan and Koella (1994) predicted carecand convex reaction norms, respec-
tively, for convex and concave positive determinigrowth-mortality covariation. However,
for positive linear deterministic covariation, thelgtained convex rather than concave reac-
tion norms. This discrepancy with our results isiagdue to the use of von Bertalanffy's

growth model, which favors delayed maturation aswijn decreases.
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Srength of reaction-norm curvature. Using an energy-allocation model, Perrin and
Rubin (1990) obtained convex and concave react@mms for positive and negative linear
deterministic covariation of growth and survivahe€ir results qualitatively agree with ours,
although they obtained stronger curvatures. Pamih Rubin (1990) interpreted these curva-
tures as resulting from the additional selectivespure toward early maturation generated by
the finite lifespan they assumed in their modelr @sults show that this specific assumption

Is not at all necessary for obtaining curved r@aginorms.

Moded Limitations and Extensions

The variety of shapes we have found for optimalursion reaction norms results from the
diversity of ecological settings we have considetddwever, several model limitations or
extensions that can be important for understandatgral maturation processes and their de-
terminants would be interesting to explore in tbeufe. First, following earlier studies we
assumed that growth variation is purely environragmnwhereas it may also be genetic. It is
therefore important to realize that our resultsiaraffected by the nature of growth variation
as long as it is independent of maturation evotutio addition, since we were interested in
the ecological determinants of maturation evolutie did not consider genetic constraints
related to the additive genetic covariance strigctfrthe population and instead focused on
evolutionary equilibria determined by vanishingesgibn gradients.

Second, processes modifying mortality, such asdgpendent mortality and parental
effects may generate unexpected selective pressuaresaturation age and size. Mortality
may decrease with size, due to a lower vulnerghalitlarger individuals to predators, or in-
crease with size, a typical feature of human hameggmes (e.g., Ernande et al. 2004; Dunlop
et al. 2007, 2009a, 2009b; Thériault et al. 2008ydEg et al. 2009; Jgrgensen et al. 2009;
Okamoto et al. 2009). Parental effects may enharfispring survival through better egg
quality or parental care (Trippel 1995; Berkeleyakt2004). To account for such parental

effects, Stearns and Koella (1986) defined intdmsvenile mortality as a decreasing function
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of age at maturation. They found that increasingiresic juvenile mortality delayed matura-
tion, as the higher risk of dying before reprodoictdue to delayed maturation was counter-
balanced by the concomitant improvement of offgprauirvival. This conclusion was cor-
roborated by Dunlop et al. (2007) based on an gobigonary model.

Finally, density dependence might affect procesgber than energy acquisition. For
example the larval stage is known to be the donipaase of density regulation in many
species (Stubbs 1977; Stiling 1988; Wootton 1988).the sake of analytical tractability, we
did not include these additional processes, but toelld be accommodated in future exten-

sions.

Comparison with Empirical Knowledge

We conclude this study by highlighting the consistebetween some of our results and em-
pirical observations. For determinate growth, wedpot that the optimal age at maturation is
roughly proportional to twice the average individlif@span. This result extends earlier work
by Day and Taylor (1997) and Lester et al. (20@4paopulations regulated through density-
dependent energy acquisition. It is consistent Withempirical observation that age at matu-
ration is approximately proportional to average latitespan (Charnov and Berrigan 1990;
Charnov et al. 2001). Even more encouragingly, aigenaturation indeed equals roughly
twice the average lifespan for Clupeidae (herrirgfgds, sardines, hilsa, and menhadens),
Engraulidae (anchovies), Pandalidae (Pandalid gisimand Sander vitreus (walleye)
(Charnov and Berrigan 1990). Although growth insaepecies is indeterminate, it declines
markedly after maturation, thus approaching coadgiof determinate growth.

Most empirical studies have documented maturatesction norms with negative
slopes: fast growing individuals generally matueglier and larger, whatever the taxon
(Stearns and Koella 1986; Berrigan and Koella 192y and Rowe 2002). In a theoretical
study, Day and Rowe (2002) showed that this pattetid arise when constant mortality is

combined with a developmental size threshold. Gesults show that positive growth-
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mortality covariation is an alternative, yet nottomlly exclusive, explanation for negatively
sloped maturation reaction norms. Indeed, an iiserea mortality with improved growth

agrees with most predictions from foraging thearyg( Werner and Anholt 1993; Walters
and Korman 1999; Abrams 2001) and empirical studugkin and among fish species
(Beverton and Holt 1959; Pauly 1980).

Since natural growth-mortality covariation is prbbiatic and tends to be positive, our
results predict that dome-shaped (i.e., concavdynaitzon reaction norms with a negative
slope will be widespread in nature, as reportedPbyrin and Rubin (1990) for fish species.
More recently, a number of empirical studies hastereated probabilistic maturation reaction
norms (Heino et al. 2002) for numerous fish stotkgse indeed turned out to be dome-
shaped, or roughly linear, with negative globapsi® (Grift et al. 2003, 2007; Engelhard and
Heino 2004; Olsen et al. 2004, 2005; Barot et @052 Mollet et al. 2007). Only very few
probabilistic maturation reaction norms have begorted to exhibit positive slope (Heino et
al. 2002) or to be roughly flat (Barot et al. 200Bmpirical studies for animal species other
than fish appear to be scarce. Plaistow et al (R@®gerimentally tested the model by Day
and Rowe (2002) using soil mites and found a maturaeaction norm with negative slope.
Even though in empirical studies of plant populagiphenotypic plasticity of flowering onset
has been extensively treated, it has mostly beemged in terms of threshold size or age for
first flowering, assuming either a size-dependeng.( Wesselingh et al. 1997) or age-
dependent flowering probability (e.g., Lacey 19883.highlighted by Burd et al. (2006), the
joint phenotypic plasticity of both age and sizdiest flowering in plants has received little
attention in empirical studies, and when both vex@mined together they were considered as
alternatives. Consequently, empirical results angd are not directly comparable to our theo-
retical predictions.

In view of an encouraging convergence between #teat results and empirical obser-

vations, the remaining gaps in understanding akrd@nants of maturation reaction norms
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call for further theoretical investigations and tbe empirical testing of resultant predictions.
A first step towards achieving the latter goal vebilde to measure patterns of growth-
mortality covariation in wild populations togethgith their maturation reaction norms and to
assess the observed associations in light of @arétical predictions. Selection experiments

based on controlled growth-mortality relationshigsuld constitute an appealing alternative.
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APPENDIX A

Deterministic Relationships between Growth and Morality

We independently control the means of growth paaéaind mortality rate and the shape of
their relationship, by defining them as sums of nseand deviationsg=g+Ag and
m=m+Am. We then relateAg and Am through a parametric trade-off curve with a pa-
rameterd ranging between 0 and 1,

Ag = Agmin + (Agmax - Ag min)guc'

Al
Am=Am__ —(Am__—Am_(1-6)"°, (A1)
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where ¢ controls the curvature of the relationship. We ireef Agy,, =30, and
AQmax =304, Which covers more than 99% of the total variaiiorg, and Amy,, = =30

and Amy,, =304, so thatp characterizes the slope between the extreng ahd m. Re-
arranging equation (Al) according to these debngi we obtain the mortality rate@ as a

function of the growth potential ,

m(g) = m+3B0, - B((60, ¥ - (g-g+ 3, F }'°. (A2)
APPENDIX B

Population Dynamics and Evolutionary Dynamics

Population Dynamics
The rate of change in the densitya,g,m o) individuals ageda with growth potentialg
and mortality ratem at timet is given by

on(a,g.m __odn(a,g,m

ot a -mn(a,g,m), (B1)

with a boundary condition at age 0 giving the numdsieoffspring n(0, g, m) with growth

potentialg and mortality ratem,
n(0,g9,m) =n(0) p(g. m), (B2a)

where n(0) denotes the total number of offspring produceth@population,
Myax Imax ~ ©

n(0)=j j j b(a,g,B)n(@,g,m)c dy an. (B2b)

Muin 9min am(g)

Individuals randomly distribute across environméntanditions according to their frequency,
as described by the probability density functipg,m (ej. B2a). Panmictic reproduction
produces a total number (@f offspring given by the sum over all mature aggswth po-

tentials, and mortality rates of individual fecuinek b(a, g,B) (eq. 1b) weighted by the den-

sity n(a, g,m) of individuals (eq. B2b).
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Population regulation arises through competitionféod resources. Density-dependent
energy acquisition is based on total populatiommaissB , which is obtained as the sum over
all ages, growth potentials, and mortality ratesndividual weightsw(a, g )weighted by the
densityn(a, g,m) of individuals,

Mpax 9 max
B= j j jw(a,g)n(a,g,m)daog dan. (B3)
Mrin Gmin O

At steady stategn/adt = QOequation (B1) simplifies to

on(a,g,m) _

-mn(a,g,m), (B4)
oa

which can be solved analytically to obtain the Eaidmpulation density
n(a,g,m) =n(0,g,m)s(a,m), (B5)

where n(0,g,m) =n(0) p(g,m)is the stable density of offspring after distribntacross en-
vironmental conditions and(a, m) (eq. 4) is their survival probability until age
The population’s Lotka-Euler characteristic equati® obtained by inserting equation
(B5) and equation (B2a) into equation (B2b), whioles
Mrax 9max 0

1= [ [ p(@m) | bl@gBs@m)dd dn. (B6)

Mhin Ymin am(g)

implying that at steady state, individuals will amerage have one descendant, so that the
population replaces itself from one generationht® mext. The right-hand side of equation
(B6) equals the lifetime reproductive succégs (Stearns 1992). Because of the dependence
of fecundity b(a,g,ﬁ) on total population biomasB8, the characteristic equation can be
solved forB. In all cases presented in this study, the charatt equation has no analytical

solution and must be solved numerically.
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Evolutionary Dynamics

According to the frameworks of quantitative gere{iQG) and adaptive dynamics (AD), the
rate of evolutionary change in the average (QQpsident (AD) age at maturatiaa, (g) at

growth rateg is proportional to
d 2 T T [
o (90] (9.9)G,,(9)4g", (B7)

where Ga, (DY is the selection gradient amﬁm (CIy is the additive genetic (QG) or mutational
(AD) covariance function (e.g., Kirkpatrick and Hetan 1989; Gomulkiewicz and
Kirkpatrick 1992; Ernande and Dieckmann 2004; Dreakn et al. 2006).

G, (I is derived from invasion fitness, which, in oundy, is defined as the expected
lifetime reproductive succesBy(ay,,a, Of a rare variant with trai, ()} in a resident
population with traita,, ([} that has attained its ecological attractor. Thi®htained as the
sum over all ages, growth potentials, and mortaéitgs of the product of the variant’s fecun-
dity b%(g)(a,g,éam) (defined by equation (1b), wheig =g/ (1+ aéam) with §am denoting
the resident’s total population biomass at equiilifn; andw = al® with | following equation
(3) in which a, is replaced bya'.) and its survival probability(a, m ,)weighted by the prob-

ability density p(g, m ) of offspring distribution across environmental diions,

Mpax Ymax 0
Ro(a;n,am):j j p(g,m)j b, , (@.9.B, )s@@m)d &y dn. (B8)
Myin Imin am(9)

G, (0 is then defined as the functional derivative ofasion fitness (Kirkpatrick and
Heckman 1989; Dieckmann et al. 2006) with respec¢hé variant’s traila;n @ evaluated at

the resident’s trait am([ﬂ' Whenever invasion fitness can be written as

R(@,.a,) =Iimax F(a,(9),9,B, ), this derivative is obtained (Parvinen et al. 2006

0 ~
G =—— F(a.(g),9,B , B9
. (9) 3 (9) (aw(9).9 a’“)a;n@:am(g) (B9a)

where according to equation (B8)
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Myax ©
F(a,(9).9.B,)= [ p(g.m) [ b, @9.B, Js@m)ddn. (BOb)
Mhin an(9)

Evolution ceases when the expected rate of evolatyoohangeda,,(g)/dt vanishes
for all values ofg, which can happen under two conditions (Kirkp&tand Heckman 1989;
Dieckmann et al. 2006). Selection-induced evolwtignequilibria occur when the selection
gradient vanishes for all values gf, G, (g) =0, so that selective forces alone are responsi-
ble for halting evolution. Covariance-induced eifib occur when the covariance function
a§m (CIY is singular, i.e., Whedaﬁm(g, 9')G,, (9') dg' = O for all values ofg while G, #0.
This second type of equilibrium results from constsacaused by the underlying genetic
architecture. Given our limited knowledge of thenggcs of maturationagm (Y cannot be

estimated, so this study only focuses on seleatidneed equilibria.

APPENDIX C

Derivatives of Total Biomass with Respect to ModdParameters

The total biomas$” of a population at equilibrium, with optimal reict norm a_,([)J, can-
not be derived analytically, whereas its derivatiuth respect to any model parametercan.
According to equation (BG)RO(a:n,a;) = @r, making explicit the dependence on total bio-

mass,R,(a,(B"),B") = 1Taking the derivative with respect to any parametsfields

O e s s
&Ro(am(B),B)—O

_|9a,(B)l 0B 04, (B)| |dR(aB) LB R (&,(B)B) , dR(aB)
0x B=8" ox 0B B=8 oa a=an(B) 0X 0B ‘B:B* ox |a=a:n(B* »B=B
(C1)

This equation can be solved faB" / x , which yields

o8 _ 03,(B)/ 0¥,y OR(a.B)/0d_  +OR@B)IN, ;)06
0x  0a,(B)/0B| . 0R,(a B )/aa\a:a:n(é*) +0R,(a,,(B ),B)/98|___

(C2)
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Applying this method to mortality raten and reproductive investmeht, we can show
that 0B"/om>0 and 8B /oh<0 when w, =wl3<(g /m)® or, equivalently, when
l, <@ /(ma”?), i.e., when the length of a newborn is smallentti@ee times the juvenile
growth rateg’ / (3¢}”) divided by the mortality raten, a condition that holds for almost any
realistic population.

Applying the same method to growth potentg) strengtha of density dependence,

and lengthl, at birth, we obtain

0B _1+aB ,aB :_B_’andaB __1+oB . (C3)
ag ga Oa a dlg loa

The three derivatives cﬁ’gid with respect to these parameters are thus equakto

08, ,/ 0g = 3¢l [(1+ aB")/g - 20B /dg]/g =0,
08y ,/ 9o = =3¢l ,(B" + 0B /da]/g =0, (C4)
08y 4/ 0, = -3c°[(1+aB") +1 p0B /0l J/g = 0.

APPENDIX D

Approximations for Deterministic Growth-Mortality R elationships

The optimal maturation reaction nora) (g) can be approximated by a second-order Taylor

expansion of its density-independent compor&%qgit(g around mean growth potentigl,

1) [N ()| SO
g | 004 g | @79 a0

a:n (g) = dm|(g) +

where the constant terra:n,i (g) is the density-independent component at mean Hrpet
tential, the coefficient of the first-order termsdebes the linear effect oa:n,i (g of varia-
tion in growth potentialg around its mearg, and the coefficient of the second-order term

describes the corresponding quadratic effect.
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Figure Captions

Figure 1: Schematic illustration of maturation reaction nerfy Univariate maturation reac-
tion norm a, ([, showing the relationship between maturation agéy) and growth poten-
tial g. The range of growth potentialg,,, =g - 30, to g, =g +30,, with a mean growth
potentialg and a standard deviatiar, , characterizes the extent of heterogeneity irethe-
ronmental conditions individuals may encount&rResulting univariate maturation reaction
norm | .(.), showing the relationship between maturation lerig{g) and growth potential
g, deduced from the maturation agg(g) and the growth potentiad using the growth tra-
jectory (eq. 3)C, Bivariate maturation reaction nor(a,(0l!(a,,(})), showing the combina-
tions of maturation age,,(g) and maturation length(a,(g) that result from different

growth potentialsg .

Figure 2: Examples of covariation between growth potential amortality rate.A, Linear
deterministic relationshipsc(= 1) betweeng and m for slopesf = -0.005, -0.004, -0.002,
0, 0.002, 0.004, 0.005 ™. B, Nonlinear deterministic relationships betwegnand m for
curvature parameters = 0.5, 1, 2.5 and slope8 = -0.002, 0, 0.002)™**. C, Probabilistic
relationship betweerg and m. Thin lines show equally spaced isoprobability lsevef the
probability density functionp(g,m) for a regression slopg = 0.002 g“* and a correlation
coefficient p = 0.5. The thick line shows the linear regressibmortality ratem on growth

potential g . Other parametersn = 0.2 yi*, § = 45 ¢”0yr*, ando, =5 ¢°Oyr™.
Figure 3: Evolutionarily optimal age and length at maturatfon constant growth potential
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and mortality rate. Growth trajectories and optim@inbinations of maturation age and length
for different values of the following parametefs:mortality ratesm = 0.1, 0.2, 0.3, 0.4, 0.5
yr ' B, reproductive effort$r = 0.1, 0.2, 0.4, 0.8, 1.6r™"; C, growth potentialsy = 20, 30,
40, 50, 60, 70y”°* r ! and strengths of density dependenzes 10**, 10*3 10% 10", 10

19 g7*: D, weightsw, at birth, and thus lengths at bitth= (w, / «)"'®, with w, = 0.1, 0.2, 0.3,
0.4, 0.5g. Other parameters (unless stated otherwisg}: 20.42 10°, w = 0.0104 dJcrt,

a =8.68510% g, h=05yr", w, =0.364¢, m=0.2yr", and g=45d¢”°0Oyr". These
choices are meant to represent the life historg tdng-lived fish such as cob#dus mor-

hua), but the numerical values do not affect any qatie findings.

Figure 4: Evolutionarily optimal maturation reaction nornms finear deterministic relation-
ships € = 1) between growth and mortalit%, Growth-mortality relationships for different
slopes = -0.005 C), -0.004 D), -0.002 E), 0 B), 0.002 E), 0.004 F), 0.005 G) g~ V3,

and for two standard deviations of growth potentigl = 5 (black lines), 10 (grey lines)

g’ r''. B to H, Resulting optimal maturation reaction norms (thimes) and realized

growth trajectories (thin lines, corresponding tmimum, mean, and maximum growth po

tentials, g,,, =9 -30,, §, andg,,,, =g +30,). Other parameters as in figures 2 and 3.

Figure 5: Evolutionarily optimal maturation reaction norng honlinear deterministic rela-
tionships between growth and mortaliy,. Growth-mortality relationship for different com-
binations of slopef and curvature parameter, (8,c) = (-0.002 g™?, 0.5) @), (-0.002
g, 1) ©), (-0.002g™*, 2.5) D), (0.002g™?, 2.5) E), (0.002g™"*, 1) F), (0.002g™"?,
0.5) @), and for two standard deviations of growth patentr, = 5 (black lines), 10 (grey
lines) g”°* yr*. B to G, Resulting optimal maturation reaction norms {Hines) and realized
growth trajectories (thin lines, corresponding tmimum, mean, and maximum growth po-

tentials, g,,, =9 -30,, §, andg,,,, =g +30,). Other parameters as in figures 2 and 3.

Figure 6: Evolutionarily optimal maturation reaction norn@ fprobabilistic relationships
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between growth and mortality. Optimal maturatioacteon norms (thick lines) and realized
growth trajectories (thin lines, corresponding tmimum, mean, and maximum growth po-
tentials, 9,,, =9 -30,, §, and g,,,, =7 +30,) resulting for probabilistic growth-mortality
relationships with different combinations of regies slopeS and correlation coefficient
P, and for two standard deviations of growth potnti, = 5 (black lines), 10 (grey lines)

g“®yr . Other parameters as in figures 2 and 3.
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